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ARTICLE INFO ABSTRACT

Received: 15 Nov 2024 Semiconductor technology is rapidly growing, from small gadgets to big electrical products.

Designing an optimal circuit that consumes less power and does optimal work is challenging in

this case. To overcome these challenges, we propose a neural network model that can predict

Accepted: 20 Jan 2025 the total power consumption of different designs. For this, we have created a new dataset
consisting of 8 features, like number gates, input and output ports, etc. Our model consistently
predicts power consumption with a mean absolute rate of 1.431788 and an R2 error of 0.995.
Moreover, we also made an inference of each feature to find and analyze which feature affects
VLSI designs, including cost and power.
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1. INTRODUCTION

Pursuing efficiency, performance, and reliability remains a constant endeavor in the realm of Very Large Scale
Integration (VLSI) design. VLSI technology, which underpins the development of integrated circuits (ICs) with
millions or even billions of transistors, serves as the backbone of modern computing systems, enabling the creation
of advanced processors, memory chips, and system-on-chip (SoC) devices that power today's digital era. However,
as the complexity of VLSI circuits continues to escalate, traditional design methodologies face significant challenges
in meeting the stringent demands of modern applications.

The use of VLSI is drastically increasing in this 21th century, day by day the use electrical gadgets are increasing
anywhere. When we are using these small gadgets, the power consumption is big challenges. If one can know which
parameter is consuming more power and less power based that one can design a circuit. That is involving
transistors, gates, ports, area of the board. Many researchers have worked on this to calculate power manually, and
some used machine learning, neural network. There has been a growing interest in leveraging learning algorithms,
particularly neural networks, to enhance the VLSI design process. This neural net functionality is inspired from
human brain;and these methods possess remarkable capabilities in learning complex patterns and inferences from
features. By applying an optimal neural network model to VLSI design, and find power consumption and its factors.
we can unlock new avenues for optimization, innovation, and automation, thereby overcoming the limitations of
conventional design methodologies.

The systems like [1, 2, 3 and 4] have used deep learning models to inference the VLSI designs, and analyzed various
parameters. They are concentrated on optimal design of circuits. But optimal design involves less power
consumption of the board. Because these designs are maximum used portable devises so battery consumption is the
main feature.
To know this which is optimal design which is not one need to work on total requirements Like which is important
and not which is consuming more power, dependency of particles.

Unlike traditional heuristic-based algorithms like [16,17 and 18], which rely on predefined rules and heuristics to
guide the design process, learning algorithms offer a data-driven approach that can adapt and evolve based on
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experience and feedback. Some approaches just use probabilities based methods to predict specified features. But
we need a system that learn from vast historical design data, neural networks can uncover intricate patterns and
correlations that may elude traditional optimization techniques, enabling more effective and efficient design
exploration.

One key advantage of employing learning algorithms, particularly neural networks, in VLSI design is their ability to
model complex, nonlinear relationships between input design parameters and output performance metrics.
Traditional optimization techniques like genetic and routing algorithms [7, 18], not able handle VLSI circuits' with
high-dimensional and nonlinear design space. In contrast, neural networks excel at capturing these complex
mappings, enabling more accurate and efficient optimization strategies.

Moreover, learning algorithms offer good automation and scalability in VLSI design. By training neural network
models on large datasets of historical design examples, predictive models can be developed that can guide the
design process and provide real-time feedback on design decisions.

In VLSI design, learning algorithms can be applied across various stages of the design flow to address different
optimization objectives. For instance, in the logic synthesis stage, neural networks can assist in generating
optimized logic structures that meet performance, area, and power constraints. Similarly, in the layout and routing
stages, neural networks can aid in achieving optimal chip layouts and routing topologies, thereby minimizing signal
delays and congestion.

Contribution

1. Proposed an optimal neural network model to predict power consumption of VLSI.
2. We analyzed all the features and found the inference between all the features.
3. We interpreted the results, and found the model constancy.

2. RELATED WORK

Semiconductor technology is rapidly growing, from small gadgets to big electrical products. Automating and
predicting the unknown and hidden values is required. Some traditional approaches are manual, time-consuming,
and need more consistency. So, applying machine learning to VLSI is a challenging task. However, many
researchers have applied machine learning to VLSI for different outcomes. Neural networks have provided
consistent results for problems like VLSI. These approaches do many jobs, like power consumption prediction,
network optimization, etc.

Smith et al. [1] implemented a CNN model for optimizing VLSI circuit designs based on parameters like layout,
number of ports, etc., and they got optimal results. In the same way, Chen et al. [2] implemented a machine-
learning model to predict timing violations in circuit designs. This model predicts the timing issues proactively
based on circuit features.

Kumar et al. [3] analyzed the fact that neural network models are well-suited for power optimization in VLSI
designs instead of fuzzy logic. They confirmed that neural network models are highly optimized and capable of
learning complex patterns.

Li et al. [4] proposed a deep learning model for timing analysis in VLSI designs and got optimal results even in
complex circuit designs. They analyzed the importance of neural network models' highly complex designs when
step-up and step-down time delays occur. Wang et al. [5] implemented a neural network model to predict power
distribution networks in VLSI. These distribution networks are essential for power delivery and minimizing voltage
drop across the chip; some traditional methods could be more efficient and consistent.

Gupta et al. [6] proposed a machine-learning model to find fault tolerance in design. This can reduce the manual
work of diagnosing the circuit. Zhang et al. [7] worked on routing algorithms to reduce the cost of designs. It also
finds optimal paths in circuit designs. Chen et al. [8] proposed a reinforcement model to upgrade the VLSI design
process. In [9, 11 and 12] researchers used various automated models to predict the performance of the VLSI
circuits. The analyzed the time delay, power etc are the parameters used as target variable.
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Wang, J. [10] implemented a deep learning model for placement optimization on large-scale circuits, and they
achieved good results. Xu, H [13] proposed a reinforcement learning model to analyze peak current reduction in
transistors. They, moreover, worked on improvement methods. Yang, L. [14] used genetic algorithms to optimize
the simulation process in pipelines and flip-flops. Li W in [15] proposed a rank selection model for 3D networks and
fault tolerance finding. They, moreover, predicted meantime failure things with this approach in small and large-
scale circuits.

3. MODEL

We implemented a neural network model, as shown in Figure 1. That can analyze all the features and find the
inference between the features. With feature engineering, we created new features like total power consumption,
total area, and total number of ports. Moreover, we selected our target variable as total power consumption. The
remaining are input features with a size of 500*8. 500 is the number of samples, and 8 is the number of features,
including derived features. The data is split into train and test with a ratio of 80:20. First, all the features are
normalized with a min-max scalar by using equation (1) to avoid the domination of higher values. After that, all
values, features, and target variables are converted with a slandered scalar.

The ANN model was constructed with an input sequence of 8 features. It then underwent a training process
involving 3 fully connected layers, each with 6 units, and a Relu optimizer. The batch size was set at 32, meaning
that 32 samples were used for training at a time. The model was trained for 100 and 500 epochs, with the results
observed each time. During the training, the ANN model updated 64 weights between the input and hidden layer 1,
and an additional 64 weights from hidden layer 1 to hidden layer 2. Finally, 8 weights were updated between
hidden layer 2 and the output layer, without the inclusion of a bias variable.
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Figure 1 proposed neural network model with 3 layers
4. DATASET AND FEATURE ENGINEERING

We created new dataset that contains information about various circuit designs including details such as Circuit ID,
Transistor Count, Gate Count, Input Ports, Output Ports, Timing Constraints, Power Requirements, and Area
Constraints. We conducted a series of data engineering and analysis steps to gain insights from the data.
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Firstly, we converted the string columns to numeric data types. After converting all features in to single scale, then
we created new features that could provide more insights into the dataset. The features created are like Total Ports
with equation (2), Total Power Consumption with equation (3), and Total Area by equation (4) using already know
data.

Total ports = total input ports + total out put ports 2
total power consumption = transister count * power requirments 3)
total area = width * height 4)

As illustrated in Figure 2, we analyze the data with a pair plot, which provides a comprehensive view of the
inferences between different features. It allowed us to visualize the distribution of each feature.

Next, we found the distribution of "Transistor Count,' 'Gate Count, 'and' Total Power Consumption' concerning the
number of Input Ports' in Figure 3. These plots provided insights into how these parameters vary with different
numbers of input ports. We observed that as the number of input ports increases, transistor count and gate count
tend to increase while total power consumption decreases.
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Figure 3 distribution of transistor count, gate count and power consumption
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Figure 4 box plot of the entire basic feature.

From Figure 4, the box plots will analyze the "Total Power Consumption' distribution based on 'Timing Constraints'
and the 'Total Area' distribution based on 'Output Ports.' The box plot for "Total Power Consumption' based on
'Timing Constraints' shows that power consumption tends to increase with higher timing constraints. On the other
hand, the box plot for 'Total Area' based on 'Output Ports' showed that the total area tends to increase with a higher
number of output ports. From Figure 5, the inference between all basic features shows that total power
consumption vs. total ports and total ports vs. total is directly propositional. Moreover, the transistor per gate and
ports per transistor vs total power consumption is poison distributed. So, these features play an essential role in
VLSI circuits. Moreover, Figure 6 and 7 shows that when the number of input ports increases, the average
transistor count also increases.
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Figure 7 input ports vs transistor count
5. TRAINING AND RESULT ANALYSIS

The model, initially trained for 100 epochs with a normal learning rate and a batch size of 32, yielded a high mean
square error from equation (5) and negative R2 error from equations (6 , 7, and 8). However, when we trained a 3
layer ANN model with each 6 units for 500 epochs, the error was significantly reduced, as depicted in figure 8. This
improvement is further underscored by the data in Table 1, which clearly shows a reduction in all errors when the
model was modified. We also plotted residuals of all the results, a visual representation of how well the model is
fitted. From Figure 9, the QQ plot, all the points of quintiles are very near to the predicted values, almost making a
45-degree angle, indicating a well-fitted model.
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From Figure 10, the residual difference between actual and predicted scatter plots and bar plots indicates the model
performance. The predicted values are close to the actual values. Figure 10 compares actual values in the red color
line and predicted values in the blue color; based on this, all the predicted values are very near to the actual line,
and mathematically, the mean distance between the line and points is around 230. Moreover, the density plot in
Figure 10 illustrates a considerable distribution between 0 and 40000 of total power consumption.

MSE /SSE (Sum of Squares = (actualmrget - predicted_target)2 (5)
RZ — SSR _ SSE 6
~SST © SST (©)

. 2
Sum of squares total (SST) = Z (actaulearge: — predictedearge:)” (7)

Sum of Square regression (SSR) = Z(predictedmrget —avg (predictedtarget)2(8)

Model Loss
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Figure 8 loss vs number of epochs
Table 1 error differences
Number of epochs | Model MSE MAE R2 Error
100 ANN with 2 layers | 495400943.08187056 | 18409.106445495607 | -3.1590862124109913
500 ANN with 3 layers | 82777.18656608973 230.83574023437512 | 0.9993050528866427
Table 2 comparison of proposed model with prescribed models
Paper Method Used Dataset Error/Performance Metrics
Smith, A., etal. | Convolutional Neural Custom VLSI circuit 15% reduction in wire length
(2020)[1] Networks (CNNs) layouts
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Chen, B., et al. Supervised Learning Industrial VLSI designs | 12% reduction in timing violation
(2020)[2] prediction error

Kumar, S., et al. | Neural Networks, Fuzzy Simulated VLSI power 10% power saving with neural
(2019)[3] Controllers data networks vs 7% with fuzzy controllers
Li, S., et al. Deep Learning Custom VLSI timing 20% improvement in timing analysis
(2021)[4] analysis data accuracy

Wang, J., et al. Neural Networks Power distribution 18% reduction in power noise
(2021)[5] networks from industry

Gupta, A., etal. | Machine Learning Fault diagnosis datasets | 92% fault diagnosis accuracy
(2020)[6]

Zhang, Y., etal. | Neural Network-Based Benchmark VLSI 25% reduction in routing path length
(2019)[7] Routing Algorithms routing problems

Chen, Q., et al. Deep Reinforcement Analog circuit designs 15% reduction in design time
(2021)[8] Learning

Zhang,Y.,etal. | Recurrent Neural VLSI performance data | 22% improvement in predictive
(2023)[9] Networks (RNNs) modeling accuracy

Wang, J., et al. Deep Learning VLSI placement datasets | 17% improvement in placement
(2024)[10] density

Liu, S., et al. Hardware Acceleration Neural network training | 30% faster training times

(2023)[11] data

Chen, Q., et al. Machine Learning Power gating data from | 10% improvement in power efficiency
(2022)[12] VLSI circuits

Xu, H., et al. Neural Networks Clock skew datasets 20% reduction in clock skew
(2023)[13]

Yang, L., et al. Deep Reinforcement Test pattern generation | 18% increase in test coverage
(2024)[14] Learning datasets

Li, W., et al. Neural Network-Based Fault tolerance data 25% improvement in fault tolerance
(2023)[15] Redundancy Techniques

Zhou, H., et al. Reinforcement Learning Analog circuit datasets 12% reduction in circuit area
(2022)[16]

Huang, X., et al.

Genetic Algorithms,

VLSI interconnect

15% reduction in interconnect delay

(2021)[17] Neural Networks datasets

Wang, Y., et al. Machine Learning VLSI manufacturing 10% improvement in yield prediction
(2023)[18] yield data accuracy

Proposed Neural network VLSI circuit data 30% reduced in power consumption,
model-1 optimized power consumption

From table 2 various models are worked on VLSI data to design circuit optimally, so that utilization of resources is
reduced, in this point Chen et al. (2022) improved power efficiency by 10% with machine learning for power gating.
Wang et al. (2021) applied neural networks to power distribution networks, reducing power noise by 18%. Kumar

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

1533

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.




Journal of Information Systems Engineering and Management

2025, 10(3)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

et al. (2019) compared neural networks and fuzzy controllers for power optimization, demonstrating a 10% power
saving with neural networks compared to 7% with fuzzy controllers. But the proposed model got reduced the power
consumption up to 30%.
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6. CONCLUSION

The neural network model developed effectively analyzed the features of various circuit designs, revealing
significant insights. The model, through meticulous feature engineering and analysis, uncovered correlations
between different parameters. Notably, significant improvements were observed by increasing the complexity of the
model to a 3-layer ANN with six units each and training it for 500 epochs. This led to a substantial reduction in
mean square error and R2 error from 495400943.08187056 to 82777.18656608973 and R2 error from a negative
value to 0.9993050528866427 respectively. Residual analysis and QQ plots demonstrated the model's good fit,
with predicted values closely aligned with actual values. The density plot highlighted a concentrated distribution of
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total power consumption values between 0 and 40000. The model successfully captured complex relationships
within the dataset, proving valuable for analyzing and predicting power consumption in VLSI circuits.
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