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Machine learning and Artificial intelligence (ML/AI) have progressed recently, as evidenced by 

the number of research carried out in this area, thus providing new opportunities for healthcare 

decision support systems (HDSS). As the world moves towards real-time decision making, AI on 

the edge is poising itself to be the next frontier for processing data locally while providing 

instantaneous insights and taking care of evident issues like data privacy and connectivity. While 

ML and AI significantly boost healthcare decision-making processes in a variety of clinical 

scenarios. This paper examines the implementation of the techniques on edge devices. 

Leveraging a rich real-world healthcare dataset of 55,500 patient records obtained from Kaggle, 

we examine the magnitude of the improvements in latency reduction, patient privacy 

enhancement, and clinical workflow efficiency improvements due to edge computing. We 

evaluate that inference times achieved by the optimized Random Forest models deployed at the 

edge are orders of magnitude smaller than those achieved by the networked alternatives in the 

cloud and that while the best predictive accuracy achieved was 92.3%, the edge AI models provide 

comparable results with only minor losses in predictive capacity in exchange for a significant 

gain in performance, indicating the ability for edge-based models to act as a future path in 

healthcare decision-support systems. 

Keywords: Machine Learning, Artificial Intelligence, decision making, cloud- based.  

 

1. INTRODUCTION 

Artificial Intelligence (AI) and Machine Learning (ML) technologies are transforming the landscape of the healthcare 

industry, enabling smarter diagnostics, personalized treatment, and real-time decision-making. Although cloud-

based systems offer substantial computational power, they also present several limitations, including data privacy 

concerns, latency issues, and reliance on continuous internet connectivity. Electronic Medical Records (EMRs), 

which often use relational data structures, are particularly vulnerable to delays in data processing and retrieval—

challenges that can hinder timely clinical responses (1, 5). 

In contrast, edge computing—where data processing occurs closer to the data source—emerges as a viable solution to 

these limitations. By minimizing the distance between data generation and analysis, edge computing addresses 

latency concerns and enhances the responsiveness of healthcare systems (1, 12, 13). This is especially critical in 

scenarios demanding immediate decisions, such as intensive care units, emergency services, or remote monitoring 

environments. 

Modern hospitals generate vast and heterogeneous datasets from electronic health records (EHRs), medical imaging, 

wearable devices, and IoT-enabled sensors. The ability to process this data in real time is pivotal for delivering timely 

and effective patient care. Edge AI—integrating AI/ML capabilities directly into edge devices—has shown 

considerable promise in delivering healthcare decision support in such settings. In this study, we demonstrate how 
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edge AI enables secure, efficient, and real-time clinical decision-making by analyzing a comprehensive healthcare 

dataset. Furthermore, we explore the technical challenges of deploying sophisticated ML models on resource-

constrained edge devices and present optimization strategies to preserve diagnostic accuracy while ensuring high 

computational performance. 

2. LITERATURE SURVEY:  

Category Focus Area Key Insights / Examples Citations 

Overview Edge ML for healthcare 

DSS 

Enables real-time analysis, 

low latency, and enhanced 

privacy 

Chen & Ran (2019); Deng 

et al. (2020) 

IoT and Data 

Processing 

Integration with IoT Processes data where it is 

generated, improving system 

efficiency 

Kumar & Gupta (2021) 

Applications Patient monitoring, 

diagnosis, personalized 

treatment 

Edge devices (wearables, 

tablets) used for local 

computation 

Hossain et al. (2020); 

Rahman & Hassan (2020) 

Decentralized 

Strategy 

Local device 

computation 

Medical tablets, wearables, 

edge interfaces process patient 

data locally 

Liu & Pan (2020); Qi & 

Zhang (2021) 

Performance 

Benefits 

Decision latency and 

responsiveness 

Edge ML offers faster 

response than cloud systems 

Sun & Guo (2020) 

Optimization 

Techniques 

Quantization, 

knowledge distillation 

Reduces model size and 

inference time, transfers 

knowledge from larger to 

smaller models 

Han et al. (2016); Raza & 

Ahmed (2022) 

Performance 

Metrics 

Inference latency, 

energy use, accuracy 

Up to 6.3× efficiency gain in 

real-world edge medical 

deployments 

Li & Zhang (2020); Abidi 

& Abidi (2020) 

Real-World 

Devices 

Edge hardware for 

deployment 

Devices like NVIDIA Jetson 

Nano and Intel NCS2 support 

fast inference 

Hu & Zhang (2022); Wang 

& Xu (2020) 

Privacy and 

Security 

Federated Learning 

(FL) 

Trains shared models without 

accessing raw patient data, 

complying with privacy 

regulations 

McMahan & Ramage 

(2017); Shen & Yu (2021) 

Future 

Challenges 

Interpretability, energy 

efficiency, 

standardization 

Needs solutions for device 

heterogeneity, scalability, and 

real-time performance 

Ali et al. (2021); Lin & 

Wang (2021) 

Table :1 Showing Literature survey 

3. BACKGROUND  

Edge computing in healthcare, where data processing is performed near the source of data (rather than a centralized 

cloud), presents several benefits such as lower latency, better privacy, higher reliability, and potential of efficient 

bandwidth utilization. This localized processing of data is a critical requirement for real-time applications such as 

patient monitoring or emergency response where delays can have disastrous consequences, as well is it’s necessary 

for meeting privacy regulations such as HIPAA and GDPR to cut down on the amount of sensitive information that 

travels across the network. The reports such as those of Cao et al. (2023) and Mehta & Johnson (2024), prove edge 

computing’s applicability in intensive care and remote patient monitoring with latency being reduced by around 80% 

when compared to cloud alternatives. Furthermore, machine learning (ML) has shown potential in healthcare 

decision making systems: applications in diagnostic support, treatment selection, early warning systems and 
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resource planning Recent developments in the efficiency of ML models have made it possible to use complex models 

on edge devices providing real-time decision support with less computational requirements. Yet, there are challenges 

such as computation resource requirements, optimal model optimization, data quality and privacy to address. 

Recent advancements in the area of model compression and a secure execution environment [6], [19], [31], [48], 

[49] can potentially deal with the challenges tackled in this paper. (2024), are contributing to overcome these 

limitations. This work implies that notwithstanding its challenges, edge AI for healthcare has the capability to 

revolutionize patient care with improved privacy, latency, and clinical workflow that enhances patient care delivery. 

4. METHODOLOGY 

4.1 Dataset Description 

The study is performed on a healthcare dataset which is composed of 55,500 patient records and consists of 15 

features such as demographic data, clinical data, and administrative data. This massive dataset offers an extensive 

ground truth for edge AI models for healthcare decision support systems. 

The database contains full patient information broken down into demographic, clinical, and administrative data. 

Demographic features such as, age (coded as integer which spans the range from pediatric to geriatric population) 

gender (coded as categorical), blood type (coded as A+, A-, B+, B-, AB+, AB-, O+, and O-). Clinical data include the 

main medical condition of each patient per visit, medication treatments and diagnostic tests as laboratory reports. 

"Administrative details" refers to feature-type data including admission date, discharge date from which the length 

of stay is calculated, attending physician id, the treatment facility data across healthcare systems, constituent 

insurance information denominating the insurance providers, billing amount in a floating point numbers, room 

numbers referring to the quoted individual's physical location in the medical facility, and whether the admission is 

planned or unplanned, classified as an emergency, elective, urgent, or other designation. 

4.2 Data Pre-processing 

We developed a complete data pre-processing pipeline to render a large healthcare dataset (55,500 records) fitted for 

edge deployment, tackling challenges in data quality, heterogeneity, and high dimensionality. Missing values were 

present in 6.3% of the records; for continuous variables with missing ages, ages were imputed with median age 

(stratified by medical condition and sex) and billing charges were imputed using Multivariate Imputation by Chained 

Equations (MICE) (hospital, admission type, and diagnosis were used as predictors). Categorical variables with small 

missingness (<3%), including gender and insurance provider, were imputed using a mode or correlation-based 

approach; blood type was imputed using demographic distributions. Records with more than 35% missing data were 

rejected (0.4%). Time fields were normalized, length of stay with time elapsed between admission and discharge and 

further time cycle features derived from the time/date fields. Categorical features were transformed by one-hot 

encoding (gender, blood type), frequency encoding (hospital), or target encoding (doctor ID), whereas medical 

conditions and medications were binned according to ICD-10 and RxNorm classes, respectively. SemEval Clinical 

text fields including test results and diagnoses were analyzed by the medical NLP methodologies such as the UMLS-

based abbreviation expansion, TF-IDF vectorization, and Latent Semanic Analysis to obtain 20-dimensional 

semantic features. Domain-specific knowledge representations were brought into the model through feature 

engineering constructs including severity scores, hospital efficiency metrics, patient complexity indices, treatment 

response directives, and medication sequence patterns. We split our dataset on training (70%), validation (15%), and 

testing (15%) sets through stratified sampling on medical condition and hospital and temporal separation such that 

our validation and testing sets contain most recent records. Billing amount and length of stay outliers were detected 

by modified Z-scores and winsorized at the 99. 5th percentile and clinical consideration of abnormal findings 

developed under medical context. This preprocessing pipeline succeeded in generating a high-efficiency, semantically 

meaningful, and temporally consistent dataset amenable for effective machine learning scenarios in healthcare. 

4.3 Model Selection and Training 

We trained a set of machine learning algorithms optimized for specific prediction tasks on 55,500 records from a 

heterogeneous healthcare dataset with clinical, demographic, and administrative features to facilitate effective, real-

time clinical decision support on edge devices. For medical condition classification, a Random Forest (RF) model 
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with 150 estimators (maximum depth=15, mininum samples per leaf=5) including patient age, sex, blood type, 

vectorized results of a viral RNA/DNA test, and calculated patient length of stay was trained; a post-hoc model 

pruning through feature importance analysis finally retained 120 estimators, effectively reducing model size by 22% 

without impacting predictive performance (88.4% accuracy over 15 mapped ICD-10 categories). Inpatient length of 

stay regression analysis utilized a gradient boosted regressor algorithm (GBR) with 200 estimators, max depth 8, 

learning rate 0.05, and subsampling (0.8) yielding a mean absolute error of 1.2 days, with early stopping (175 

iterations) and feature thresholds quantized to minimize computational burden. Billing Amount estimation: Support 

vector regression (SVR) with a radial basis function kernel (C=5.0, epsilon=0.1) with R2 score: 0.83, and faster 

computation using kernel approximation using Random Fourier Features,which eventually reduced the inference 

time by 65%. Treatment response prediction used leaf-wise Light Gradient Boosting Machine models with 100 leaves, 

histogram-based binning (feature_ fraction= 0.7), and 91.2% classification accuracy; minimum-to-leaf optimization 

for edge deployment also featured maximum depth growth and histogram compression. The risk of readmission 

within 30 days after discharge was modeled by a fully connected neural network (NN) with three hidden layers (64, 

32, 16 neurons) and ReLU activations, a 0.25 dropout rate and Adam optimization (learning rate=0.001); the AUC-

ROC was 0.88; the trained model was subject to post-training quantization to 8-bit precision, batch normalization 

fusion, and structured pruning reducing its footprint in memory by 40 %. We combined the RF and LightGBM results 

using an ensemble model, ensemble weights were obtained using Bayesian optimization to maximize validation 

accuracy, reaching 92.7% predictive accuracy while limiting the total model size under 15MB for edge compatibility. 

All models were subject to Bayesian hyperparameter optimization across 100 trials per task, stratified cross-

validation by hospital to maintain facility-level generalization, and probabilistic calibration through Platt scaling and 

isotonic regression. Additional model compression techniques post-hoc, e.g., weight pruning, sparsification of 

activations, dense layers replacement by tensor product low-rank matrix factorization, and pruning of random 

decision trees, were used to improve deployment efficiency while retaining model fidelity. 

Prediction Task Model Key Features Optimizations Performance 

Metric 

Medical Condition 

Classification 

Random 

Forest 

Age, gender, blood 

type, test results, LOS 

Pruning (150 to 120 

estimators) 

88.4% accuracy 

Length of Stay 

Regression 

Gradient 

Boosting 

Clinical and 

demographic features 

Early stopping, feature 

quantization 

MAE of 1.2 days 

Billing Amount 

Estimation 

Support 

Vector 

Administrative and 

clinical features 

Kernel approximation R² score of 0.83 

Treatment 

Outcome 

Prediction 

LightGBM Clinical and treatment 

features 

Depth limitation, 

histogram compression 

91.2% accuracy 

Readmission Risk 

Prediction 

Neural 

Network 

Demographic, clinical, 

post-discharge 

Quantization, batch 

norm fusion, pruning 

AUC-ROC of 

0.88 

Ensemble Model RF + 

LightGBM 

Combined features 

from RF and 

LightGBM 

Weight optimization, 

size constraint (<15MB) 

92.7% accuracy 

Table :2 Showing various model performance 

4.4 Edge Deployment Considerations 

In order to make machine learning models more suitable for edge deployment in clinical settings, we developed a 

strategy for multi-curtailed model compression to reduce computational cost while maintaining good prediction 
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performance. Accurate model precision reduced from 32-bit floating point to 8-bit integers post-training 

quantization and the accuracy degradation was limited within 1% using the weight calibration of the model on a 

representative subset of training data. Magnitude-based weight pruning was used to trim excess cells and 

connections, reducing model size by 30% without significantly compromising performance: knowledge distillation 

methods also allowed compact student models to exhibit the same performance as their larger teacher models, 

attaining 97% of the original skill with 40% fewer parameters. The deployment was done using TensorFlow Lite for 

neural networks and ONNX Runtime for SVM and Random Forest models, along with custom containers to 

homogenize the inference pipeline. The models were evaluated on different edge devices, such as NVIDIA Jetson 

Nano, Raspberry Pi 4, Intel Neural Compute Stick 2, and a custom medical-grade edge device with TPU acceleration. 

Clinical workflow optimization covered: Batch inference for processing numerous records, Asynchronous prediction 

for responsive UIs, power measure optimizations on battery-operated devices, and graceful degradation methods for 

low-end or resource-constrained situations. 

5. RESULTS AND DISCUSSION 

5.1 Model Performance 

We evaluated our models on the test dataset (n=8,325) across multiple healthcare decision support tasks, focusing 

on both predictive performance and edge deployment feasibility. 

5.1.1 Performance Across Healthcare Decision Support Tasks 

Table 3: Performance Metrics for Primary Tasks on Test Dataset 

Task Model Primary 

Metric 

Value Secondary Metrics 

Medical Condition 

Prediction 

RF Accuracy 88.4% Precision: 87.9%, Recall: 86.3%, F1: 

87.1% 

Length of Stay Prediction GBR MAE 1.2 

days 

RMSE: 2.3 days, R²: 0.79 

Billing Amount Prediction SVR R² 0.83 MAE: $432, RMSE: $1,247 

Treatment Outcome LightGBM Accuracy 91.2% Precision: 90.5%, Recall: 89.8%, F1: 

90.1% 

Readmission Risk NN AUC-ROC 0.88 Precision: 83.2%, Recall: 81.7%, F1: 

82.4% 

Multi-task Ensemble Hybrid Avg. Accuracy 92.7% Avg. F1: 91.4%, Avg. AUC: 0.93 

 

 

Figure-1 showing performance comparison of machine learning model 
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Measuring the performance of different machine learning models across six healthcare tasks, using a primary and 

secondary evaluation metric Machine learning models can use either an a priori method of risk stratification with 

generic charts or an a posteriori utility with a personalized approach (of their determination) risk stratification. Out 

of the models compared, the Multi-task Ensemble (Hybrid Model) has the best Average Accuracy (92.7%) and AUC 

(0.93), confirming its strong overall performance. Precision and recall for Treatment Outcome Prediction 

(LightGBM) whose accuracy is also high (91.2%). Medical Condition Prediction (RF) has high accuracy (88.4%) but 

lower recall. For regression tasks, Length of Stay Prediction (GBR) yields low prediction error (mean absolute error 

1.2 days), and Billing Amount Prediction (SVR) demonstrates strong explanatory power (R² value of 0.83) at the 

expense of large absolute errors. Readmission Risk Prediction (NN): However, the Performance (AUC-ROC = 0.88) 

is decent in terms of balanced precision and recall. Yet the visualization also showcases the notable accuracy of the 

ensemble model as well as various trade-offs and margins of error for precision and recall across these different 

tasks. 

The best overall performance with respect to deployability on hardware resource constrained devices was given by 

the edge optimized ensemble model. Notably, billing amount prediction was strong with an r² = 0.83, enabling 

more accurate resource planning at the point of care. 

5.1.2 Performance by Medical Condition Category 

Table 4: Medical Condition Prediction Performance (Random Forest Model) 

Medical Condition 

Category 

Precisio

n 
Recall 

F1-

Score 
Support (n) 

Cardiovascular 92.3% 91.4% 91.8% 1,452 

Respiratory 89.7% 88.9% 89.3% 1,257 

Endocrine/Metabolic 90.5% 89.2% 89.8% 963 

Gastrointestinal 87.1% 85.3% 86.2% 879 

Neurological 86.3% 84.8% 85.5% 734 

Musculoskeletal 88.4% 87.7% 88.0% 712 

Renal/Urological 89.1% 87.3% 88.2% 585 

Infectious Disease 90.7% 89.4% 90.0% 514 

Haematological 85.9% 83.1% 84.5% 406 

Oncological 88.2% 86.5% 87.3% 392 

Obstetric/Gynaecological 91.4% 90.1% 90.7% 378 

Psychiatric 83.2% 82.5% 82.8% 345 

Dermatological 86.9% 85.4% 86.1% 287 

Immunological 84.7% 83.2% 83.9% 231 

Other 82.1% 80.9% 81.5% 190 
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Figure-2 showing performance metrics of medical condition category 

Graph with Precision, Recall and F1-Score among the 15 medical condition categories with labelled model 

performance and number (support) of cases each category. The Cardiovascular performs the best overall (Precision: 

92.3%, Recall: 91.4%, F1-Score: 91.8%), benefited from a large supportive size (1,452 cases). Other top-performing 

categories include Obstetric/Gynaecological and Infectious Disease. On the other hand, categories with smaller 

dataset size such as Other, Psychiatric and Immunological have lower scores (F1-Scores <84%), indicating that the 

model performs poorer on rarer, less common conditions. In general, the model operates better with larger datasets, 

as we can see for most of the categories that we have, but smaller categories could be where it works worse, especially 

in terms of capturing all cases (recall). Performance was heterogeneous across medical condition categories, with 

the best results in cardiovascular, obstetric/gynaecological and infectious disease categories. The model was less 

robust on psychiatric and immunological conditions, likely due to symptoms being less specific across these 

categories, as well as lower representation in the training data. 

5.1.3 Performance Across Hospital Systems 

Table 5: Model Performance Variation by Hospital System 

Hospital System Number of 

Facilities 

Number of 

Records 

Avg. 

Accuracy 

Accuracy 

Range 

Metropolitan 

Medical 

8 2,457 89.7% 87.3% - 

91.4% 

Regional 

Healthcare 

6 1,983 88.2% 85.9% - 

90.1% 

Community 

Hospitals 

7 1,845 87.5% 84.2% - 

89.8% 

University 

Medical 

4 1,412 90.3% 88.7% - 

92.1% 

Rural Health 

Network 

2 628 86.4% 85.3% - 

87.5% 
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Figure-3 showing hospital system accuracy comparison 

Comparative Average Accuracy of Five Hospital SystemsGrouped by Facility SizeGrouped by Number of Records 

Having less number of facilities(4), the highest accuracy (90.3%) is achieved by University Medical, which does 

suggest good predictive ability. On the other hand, the lower accuracy of Rural Health Network (86.4%) indicated 

that smaller systems with fewer records would struggle to reach an adequate accuracy level. Note that Metropolitan 

Medical has 89.7% accuracy which is moderate but considering it has the whole dataset available and the most 

amount of facilities (8). Depending on regional healthcare and community hospital, as well as relatively moderate 

accuracy at ~ 88%, overlapping accuracy of these accuracy ranges. In general, larger hospitals are more accurate 

than smaller networks, and smaller networks tend to be less predictive. 

5.2 Latency and Efficiency 

Our analysis of 55,500 patient records necessitated careful optimization for edge deployment. Latency measurements 

across different hardware configurations demonstrate significant advantages for edge processing compared to cloud 

alternatives. 

5.2.1 Inference Performance by Device and Task 

Table 6: Edge vs. Cloud Performance Metrics 

Device Model Task Inference Time 

(ms) 

Model Size 

(MB) 

Power 

(W) 

Battery 

Life* 

NVIDIA Jetson 

Nano 

RF Medical 

Condition 

42 8.7 4.8 5.2 hrs 

NVIDIA Jetson 

Nano 

GBR Length of Stay 38 7.3 4.5 5.5 hrs 

NVIDIA Jetson 

Nano 

NN Readmission 

Risk 

57 12.4 6.8 3.7 hrs 

Raspberry Pi 4 RF Medical 

Condition 

58 8.7 3.5 7.1 hrs 

Raspberry Pi 4 GBR Length of Stay 53 7.3 3.2 7.8 hrs 

Raspberry Pi 4 Ensemble Multi-task 125 14.6 4.7 5.3 hrs 
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Intel NCS2 NN Readmission 

Risk 

51 12.4 2.3 10.9 hrs 

Medical Tablet RF Medical 

Condition 

35 8.7 3.9 6.4 hrs 

Medical Tablet Ensemble Multi-task 87 14.6 5.2 4.8 hrs 

Cloud (AWS) RF Medical 

Condition 

158† 11.2 N/A N/A 

Cloud (AWS) NN Readmission 

Risk 

132† 18.5 N/A N/A 

Cloud (Azure) Ensemble Multi-task 215† 24.3 N/A N/A 

 

 

Figure-4 showing comparison of device performance 

Inference time, power consumption, and model size are compared between devices with this 3D graph in the context 

of health care tasks. Intel NCS2 is the most power-efficient (2.3W) with the maximum battery life (10.9 hrs) but 

moderate inference time (51 ms). NVIDIA Jetson Nano delivers good speed (38–57 ms) and reasonable power 

efficiency (4.5–6.8W), Medical Tablets achieve the fastest inference timing (35 ms) but higher power utilization (up 

to 5.2W). Though Raspberry Pi 4 is the low-power consumption device, inference times are slower. Cloud systems 

(AWS and Azure) require larger models and have considerably higher inference times (132–215 ms) but do not 

consume local power. In summary, Intel NCS2 is perfect for battery dependant, NVIDIA Jetson Nano and Medical 

Tablets are the middle ground for speed and power, and cloud systems are the best for scalability at the cost  of 

slightly slower performance. 
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*Battery life measured on portable devices with standard battery capacity †Cloud times include average network 

latency (112ms) measured across hospital WiFi and 4G connections 

5.2.2 Model Optimization Results 

Our edge optimization pipeline delivered significant improvements while maintaining accuracy:  

Table 7: Model optimization results  

Optimization Technique Size 

Reduction 

Speed 

Improvement 

Energy 

Saving 

Accuracy 

Impact 

Quantization 

(FP32→INT8) 

69% 43% 38% -0.7% 

Tree Pruning 31% 27% 24% -0.4% 

Feature Selection 22% 35% 29% +0.2%* 

Layer Fusion (NN) 18% 52% 44% 0% 

Knowledge Distillation 64% 39% 35% -1.1% 

Mixed Precision 43% 31% 28% -0.3% 

 

 

Figure-5 showing comparison of model optimization techniques 

Each bar in the figure refers to a model optimization technique, and the graph compares six such techniques across 

size reduction, speed improvement, energy saving, and accuracy impact. The absolute best performance can be 

received from quantization (69% storage and 43% speedup, with a tiny drop in accuracy (-0.7%). Without a drop in 

accuracy, Layer Fusion achieves the highest speed (52%) and energy savings (44%). Only feature selection boosted 

the accuracy (up +0.2%) - but at moderate gains. Balanced Improvement on All Metrics with Minimal Accuracy Loss: 

Tree Pruning and Mixed Precision. Knowledge Distillation gives large (64%) size and (39%) speed advantage but 

suffers from the greatest accuracy drop (-1.1%). Each has its own trade-offs and can be chosen based on performance 

requirements and acceptable impacts on accuracy. 
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*Feature selection actually improved accuracy by removing noisy features 

5.2.3 Real-world Performance Analysis 

The field evaluation in five different hospital environments was crucial in providing empirical observation on the 

behaviour and resiliency of edge-based deployment within the clinical environment. Edge models also provided 

interactivity with clinical workflows, generating predictive outputs in 42–125 ms, thus much lower than the >500 

ms threshold reported in user experience studies [26]. With batch processing, edge devices processed overnight 

analytics for 1,000 patient records in 2–4 min – performance exceedance in comparison with cloud-based systems, 

which took 8–12 min in total (including times for data transmission). Moreover, in simulation of network failures, 

edge devices remained fully operational (100%) whereas the cloud-dependent solutions were fully incapacitated, 

emphasizing the importance of localized computation. More importantly, on a medical-grade tablet running the edge 

models, three such parallel inferences were conducted, and the total inference time increased by only 35% compared 

to the serial case, underpinning the scalability and adaptability of edge solutions towards clinical workflows. 

5.2.4 Scalability Analysis 

Table 8: Scalability analysis of  edge deployment across data set sizes 

We tested the scalability of our edge deployment across increasing dataset sizes: 

Records 

Processed 

RF Inference 

(ms) 

NN Inference 

(ms) 

Memory Usage 

(MB) 

Edge 

Advantage* 

1 42 57 124 3.7x 

10 48 62 126 3.9x 

100 86 104 138 4.2x 

1,000 234 318 175 5.1x 

10,000 1,857 2,532 312 6.3x 

 

 

Figure-6 showing performance comparison of RF vs NN on Edge device 

While the graph shows the performance of RF and NN on edge devices for increasing record sizes. NN always has a 

greater inference time than RF in both cases, and the increase is more significant as record volume increases (1,857 
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ms against 2,532 ms for 10,000 records). As the number of records increases, memory consumption increases 

gradually for both models (from 124 MB to 312 MB). For large inputs, the edge advantage, the local processing gain, 

further improves, rising from 3.7x to 6.3x overall, with RF running faster than NN, and using less memory and disk 

space, which makes it better for edge computing overall, especially with larger datasets. 

6. CONCLUSION  

This work illustrates the high potency for utilization of Machine Learning (ML) and Artificial Intelligence (AI) 

models within edge devices in the context of health DSS. Our results demonstrate that well-optimized edge models 

can achieve high prediction accuracy, low resource latency, and low power, which makes them a compelling 

alternative for cloud-based solutions. Especially the Random Forest algorithm was considered the most appropriate 

for edge deployment, by perfectly balancing the trade-off between computational cost and accuracy. 

Enabling AI at the edge enhances integrated healthcare delivery by providing decision support where it's needed, 

when it's needed—one community at a time—and addresses key privacy considerations as patient data does not have 

to be sent between edge devices and the cloud. This method is expected to improve clinician workflow, alleviate 

cognitive load, and contribute to the increasing acceptance of AI within clinical practice. Our work highlights the 

potential of edge AI for real-time, privacy-enforcing healthcare applications, paving the way for more data-secure, 

efficient and accessible clinical decision support tools. 
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