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1. Introduction 

 

Nutrients are the backbone of plant growth and agricultural success, with Nitrogen (N), Phosphorus (P), and 

Potassium (K) serving as indispensable macronutrients. Nitrogen fuels photosynthesis and leaf development, 

Phosphorus underpins root systems and energy metabolism, and Potassium bolsters water regulation and 

resilience against stressors. Deficiencies in these nutrients present formidable challenges for farmers 

worldwide, leading to stunted growth, diminished crop yields, and poor produce quality. These setbacks not 

only erode farm productivity and economic viability but also threaten global food security as populations grow 

and arable land diminishes. For smallholder farmers and large-scale producers alike, nutrient imbalances 

translate into significant financial losses, reduced market competitiveness, and an increased reliance on costly 

corrective measures, amplifying the urgency for effective detection strategies [28]. 

 

Conventional methods for diagnosing nutrient deficiencies, such as visual inspection by trained agronomists 

or laboratory analysis of soil and plant tissue, have long been the standard. However, these approaches are 

fraught with limitations. Visual inspection is subjective, dependent on expertise, and impractical for 

monitoring expansive fields, while laboratory testing demands time, specialized equipment, and financial 
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resources that many farmers cannot afford. Such inefficiencies hinder timely interventions, allowing 

deficiencies to escalate and exacerbate losses. In response, machine learning-based approaches have emerged 

as a transformative alternative, harnessing image-based analysis to automate and refine deficiency detection. 

By interpreting visual signatures of nutrient stress, these technologies promise rapid, objective, and scalable 

solutions tailored to modern agriculture’s demands [29]. 

This research, titled "Crop Nutrient Deficiency Detection Using Machine Learning," seeks to develop an 

automated system to classify deficiencies of Nitrogen, Phosphorus, and Potassium. The study extracts 26 visual 

features from plant images—including RGB and HSV color statistics and Hu moments—and employs feature 

selection techniques such as ANOVA, Mutual Information, XGBoost, Random Forest, and Recursive Feature 

Elimination (RFE) to identify the most critical attributes. Seven machine learning models—K-Nearest 

Neighbours (KNN), Support Vector Machine (SVM), Naïve Bayes, Logistic Regression, Multi-Layer Perceptron 

(MLP), Random Forest, and Decision Tree—are trained and evaluated, with performance compared before and 

after feature selection to optimize accuracy, efficiency, and computational cost. This work advances precision 

agriculture by enabling early nutrient interventions, optimizing fertilizer application, and fostering sustainable 

farming practices, offering a scalable tool to enhance productivity and address global agricultural challenges. 

 

My motivation for this research paper stems from the critical role of timely and efficient nutrient management 

in modern agriculture, which directly impacts crop yield, quality, and soil health. Essential macronutrients 

such as nitrogen (N), phosphorus (P), and potassium (K) are critical for plant growth, yet traditional diagnostic 

methods – such as soil testing and visual assessment – are often slow, expensive, and error-prone, limiting 

their effectiveness at scale. The growing need for sustainable and data-driven agricultural practices requires 

intelligent systems that can accurately detect nutrient deficiencies in a timely manner [23]. With recent 

advances in machine learning and image analysis, there is a promising opportunity to develop automated, 

scalable, and cost-efficient solutions. However, there is still a lack of practical, field-ready frameworks that 

effectively combine feature engineering and model optimization. This research aims to fill that gap by building 

a robust ML-based system to detect NPK deficiencies using image-derived features, leveraging advanced 

feature selection and multiple classifiers. The ultimate goal is to advance precision agriculture and contribute 

to global food security through sustainable practices [26]. 

 

1.1. Key contribution of this research work:  

This paper presents a novel machine learning-based framework that aims to detect nutrient deficiencies in 

plants, specifically nitrogen (N), phosphorus (P) and potassium (K), through the analysis of leaf images. The 

method uses a structured feature extraction pipeline that analyses 26 different parameters related to the colour, 

texture, and shape of leaves. To optimize the performance, the study compares five feature selection techniques 

and evaluates seven different machine learning classifiers. 

The experimental results show that the Random Forest classifier achieved the highest accuracy of 87.62%, while 

the Multi-Layer Perceptron (MLP) achieved the highest weighted F1-score of 81.84%, indicating strong 

predictive performance. This proposed framework is mobile-friendly, free to use, and designed for real-time 

applications, making it a practical and scalable solution for precision agriculture. It has significant potential to 

support farmers and agricultural stakeholders by enabling timely, accurate and automated detection of crop 

nutrient deficiencies. 

 

This paper is structured into several major sections to present a comprehensive ML-based approach to detect 

nutrient deficiencies in crops. Section 2 reviews related work using hyper spectral/multispectral imaging and 

ML models. Section 3 outlines the proposed framework with a visual flow chart and describes an algorithmic. 

Section 4 details the implementation of proposed framework. Section 5, results and performance of the 

various type of models. Section 6 evaluation of the various feature selection techniques. Section 7 concludes 

by confirming the feasibility, accuracy, and real-world applicability of ML in promoting sustainable agriculture. 
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2. Related Research Work, Background Study, and Currently Available Technologies 

 

2.1.  Related Research 

Nutrient deficiency detection in crops has been an area of active research, with traditional techniques like soil 

and tissue analysis being widely used. While these methods provide reliable results, they are often time-

consuming, costly, and impractical for large-scale farming, especially for smallholder farmers [1]. 

To overcome these limitations, researchers explored remote sensing and imaging-based approaches. Patil et al. 

used hyper spectral imaging to detect nitrogen deficiency in wheat crops, achieving good accuracy but 

highlighting the challenge of high equipment costs [2]. Similarly, Zhao et al. applied multispectral imaging 

combined with deep learning (CNNs) to detect nutrient stress in maize, demonstrating the power of AI models 

in agricultural diagnostics [3]. 

Recent studies show growing interest in machine learning (ML) for automating deficiency detection. Sharma 

and Singh employed Support Vector Machines (SVM) for nitrogen and potassium deficiency classification in 

tomato plants, achieving high accuracy [4]. Kumar et al. implemented Random Forest (RF) and Decision Trees 

(DT) to classify multiple nutrient deficiencies from plant images, enhancing model interpretability and 

accuracy [5]. 

Moreover, feature extraction and selection have emerged as critical components in improving detection 

models. Li et al. combined RGB and HSV colour statistics with Hu moments to extract image features, 

improving detection performance while minimizing computational cost [6]. Techniques like ANOVA, Mutual 

Information, XGBoost, Random Forest, and Recursive Feature Elimination (RFE) were also found effective in 

selecting the most significant features for model training [7]. 

This current study builds upon these advancements by extracting 26 image features and comparing the 

performance of seven machine learning classifiers—KNN, SVM, Naïve Bayes, Logistic Regression, Multi-Layer 

Perceptron (MLP), Random Forest, and Decision Tree—in classifying Nitrogen, Phosphorus, and Potassium 

deficiencies. By integrating feature selection and model evaluation, this work enhances precision agriculture, 

aiming for scalable, cost-effective, and accurate nutrient deficiency detection systems. 

2.2.  Background Study 

Agriculture remains the backbone of global economies and is essential for food security. One of the most critical 

factors influencing crop yield and quality is the balanced availability of essential macronutrients—Nitrogen (N), 

Phosphorus (P), and Potassium (K). Nitrogen drives photosynthesis and vegetative growth, Phosphorus 

strengthens root systems and energy transfer, while Potassium regulates water uptake and enhances plant 

resilience against biotic and abiotic stresses. Deficiencies in these nutrients can cause significant crop losses, 

and reduced produce quality, and ultimately threaten food supply chains, particularly in developing nations 

where agricultural productivity directly impacts livelihoods. 

Traditionally, nutrient deficiencies are identified through visual inspections, soil tests, and plant tissue 

analyses. Although effective, these methods are costly, time-consuming, and often impractical for large-scale 

monitoring. They also require expert knowledge, which may not be available to smallholder farmers, further 

exacerbating yield gaps and contributing to environmental issues due to over-fertilization or nutrient 

mismanagement [8]. 

To overcome these limitations, researchers have increasingly focused on technology-driven solutions such as 

remote sensing, hyper spectral, and multispectral imaging. These technologies enable large-area monitoring 

but often demand expensive equipment, limiting their accessibility [9]. The rapid advancements in Artificial 

Intelligence (AI) and Machine Learning (ML) have opened new avenues for developing low-cost, scalable, and 

accurate nutrient deficiency detection systems using simple RGB images of leaves. Such systems can automate 

detection based on colour patterns, texture, and shape features, reducing dependency on expert manual 

inspections [27]. 

Recent studies have successfully integrated deep learning models like Convolutional Neural Networks (CNNs) 

for nutrient and disease detection in crops, achieving high accuracy [10]. For instance, Zhao et al. (2023) 

developed a CNN model using multispectral images to detect nutrient stress in maize, while Sharma and Singh 

(2023) applied SVMs and Random Forest classifiers for tomato plants [11][12]. Additionally, the emergence of 

Graph Convolutional Networks (GCNs) and explainable AI techniques offer promising directions for improving 
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model interpretability and performance [13]. 

Furthermore, feature selection methods such as ANOVA, Mutual Information, Recursive Feature Elimination 

(RFE), and XGBoost are now widely used to optimize model performance by reducing computational 

complexity and improving classification accuracy [14]. This ensures that only the most relevant visual features 

contribute to nutrient deficiency predictions. 

Despite these advancements, practical implementation at the farm level remains limited due to model 

generalization challenges, variable lighting conditions, and diverse crop varieties. Therefore, there is a growing 

need for robust, efficient, and scalable systems that farmers can use easily in real-world conditions. 

This study addresses these challenges by developing a machine learning-based system that extracts 26 image 

features (colour statistics, texture, and shape descriptors) from plant leaf images and evaluates multiple 

classifiers (KNN, SVM, Naïve Bayes, Logistic Regression, MLP, Random Forest, and Decision Trees) for 

detecting N, P, and K deficiencies. By comparing model performance before and after feature selection, this 

research aims to contribute to the field of precision agriculture, enabling early nutrient interventions, 

optimized fertilizer usage, and enhanced crop productivity. 

2.3. Currently Available Technologies for Nutrient Deficiency Detection 

The agricultural sector has witnessed rapid technological advancements aimed at improving nutrient deficiency 

detection in crops. These technologies range from traditional manual methods to modern machine learning 

and artificial intelligence systems, offering farmers more accurate, efficient, and scalable solutions. 

2.3.1. Traditional Methods 

• Soil Testing Laboratories: Analysing soil samples for N, P, K, and micronutrient levels, is highly 

accurate but time-consuming, expensive, and not feasible for real-time monitoring. 

 
Fig. 1. Soil Testing Labs, Soil Testing Laboratory in Delhi [15]  

 

• Plant Tissue Analysis: Laboratory analysis of leaf samples to detect nutrient levels is accurate but labour-

intensive and costly. 

 

 
Fig. 2. Unlocking the Potential of Precision Agriculture [16]  

 

https://www.eurofins.in/industrial-product-testing/spectro/industrial-services/environment/soil-testing/
https://www.eurofins.in/industrial-product-testing/spectro/industrial-services/environment/soil-testing/
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• Visual Inspection by Agronomists: Farmers or experts observe leaf colour, shape, and growth patterns 

to identify deficiencies and subjective, require expert knowledge, and impractical for large-scale farms. 

 

 
Fig. 3. Visual Inspection by Agronomists [17] 

 

2.3.2.  Sensor-Based Soil and Plant Sensors 

• Soil nutrient sensors, such as Teralytic Probes and NutriSense sensors, measure real-time soil nutrient 

levels but often come with high initial costs and maintenance requirements [18]. In contrast, leaf chlorophyll 

meters like the Minolta SPAD-502 Meter are portable devices that assess chlorophyll content as an indicator 

of nitrogen levels; however, their functionality is limited to detecting only nitrogen deficiencies [19]. 

 

2.3.3. Machine Learning and Deep Learning-Based Technologies [20] 

• Leaf colour chart (LCC)-based nutrient deficiency detection models rely on manual comparison of leaf 

colour images to assess deficiencies, while image-based detection models use RGB and multispectral images 

processed through machine learning algorithms such as SVM, Random Forest, kNN, and CNN to automatically 

identify nutrient deficiencies with greater accuracy and scalability. 

 

 

2.3.4. Summary: Advancing Nutrient Diagnosis in Agriculture: The Superiority of ML/DL-

Enhanced LCC over Traditional Soil Testing and SPAD Meters: Table 1. 

 

S. No. Technology Advantages Limitation 

1 Soil/Tissue Analysis Highly accurate Expensive, Time taken, slow, lab & Human 

dependency 

2 IoT Sensors (SPAD Meter) Real-time, portable Limited nutrient scope, maintenance 

issues, Very Costly 

3 LCC & ML/DL Models Scalable, farmer-friendly, multi-

nutrient 

Needs image datasets, model training, 

Immediate & Real-time Results, Free of 

Cost 

 

• Revolutionizing Nutrient Assessment: From Manual Testing to Intelligent LCC Systems: New 

technologies such as the Leaf Colour Chart (LCC) integrated with Machine Learning (ML) or Deep Learning 

(DL) models offer substantial improvements over traditional soil testing and SPAD meter-based assessments. 

Manual soil testing, although useful, is time-consuming, labour-intensive, and prone to errors due to variability 

in sampling, human interpretation, and laboratory limitations. In contrast, ML/DL-enabled LCC systems can 

process real-time leaf images captured using smartphones or portable devices, quickly diagnosing nutrient 

levels based on leaf color and patterns with high precision and consistency. This eliminates the need for 

physical sampling and laboratory work, making nutrient assessment faster and more scalable for large 

agricultural operations. 

• Data-Driven Decision Making: Enhancing Nutrient Management with ML/DL-Integrated 
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LCC Systems: Moreover, the integration of ML/DL models enhances the decision-making process through 

predictive analytics and continuous learning. These models can be trained on large datasets that include 

different crop types, growth stages, environmental conditions, and nutrient deficiencies, allowing them to 

provide more accurate and adaptive recommendations compared to fixed-threshold SPAD meters. While SPAD 

meters offer a non-destructive way to assess chlorophyll content, they are limited to point measurements and 

often require manual calibration and interpretation. In contrast, intelligent LCC systems can analyze entire 

crop fields using spatial imaging and generate comprehensive nutrient maps, enabling site-specific nutrient 

management (SSNM) that reduces fertilizer waste and improves yield [21]. 

• Affordable and Accessible Solutions: Empowering Farmers with Smart LCC Technology: 

Finally, the cost-effectiveness and user-friendliness of ML/DL-powered LCC systems make them more 

accessible to farmers, especially in resource-limited regions. Unlike SPAD meters and laboratory-based soil 

testing, which require expensive equipment and technical expertise, digital LCC solutions can be deployed 

through mobile applications. These apps can provide multilingual support, offline capabilities, and integration 

with other precision agriculture tools, thereby empowering farmers with timely and actionable insights. As a 

result, the shift from traditional methods to intelligent, data-driven solutions not only boosts productivity but 

also supports sustainable and environmentally friendly farming practices. 

 

3. Proposed Algorithms and Framework: 

 

3.1. Proposed Framework: 

 
Fig. 4. Proposed Framework 

3.1.1. Dataset Preparation: The process commences with dataset collection, comprising three essential 

agricultural nutrients: Nitrogen, Potassium, and Phosphorus. These nutrients play a pivotal role in 

determining soil fertility and, consequently, crop yield. The dataset may contain redundant or irrelevant 

background information, necessitating a pre-processing step to remove noise and enhance data quality before 

further analysis. 

3.1.2. Background Removal: This step involves eliminating extraneous information from the dataset to 

ensure that only relevant attributes—Nitrogen, Potassium, and Phosphorus—are retained. Background 

removal is essential for reducing noise and potential bias, thereby improving the overall quality of extracted 

features. This refinement enhances model accuracy by focusing only on informative attributes for predictive 

analysis. 

3.1.3. Feature Extraction & Labelling: Once the dataset has been cleansed of unnecessary information, 

relevant features are extracted and appropriately labelled. This process structures the dataset into a more 

meaningful form suitable for machine learning applications. Labelling ensures that the data is categorized 

systematically, facilitating efficient model training and performance evaluation. 
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3.1.4.  Data Splitting: To develop a robust predictive model, the dataset is divided into training and testing 

subsets. The training dataset is used to train the machine learning model, allowing it to learn underlying 

patterns, whereas the test dataset evaluates the model’s generalization capability. A well-balanced split ratio, 

such as 80:20 or 70:30, ensures an optimal trade-off between training efficiency and model validation. 

3.1.5. Data Pre-processing: Pre-processing involves two critical transformations: label encoding and 

robust scaling. Label encoding converts categorical variables into numerical representations, making them 

suitable for machine learning algorithms. Robust scaling is employed to normalize the feature values, 

minimizing the impact of outliers and ensuring a uniform data distribution. This step significantly enhances 

model stability and predictive accuracy. 

3.1.6. Baseline Model Development: Before applying feature selection techniques, a baseline model is 

constructed using the pre-processed dataset. This initial model serves as a reference for evaluating subsequent 

improvements in performance. The baseline model is trained and assessed using standard performance metrics 

such as accuracy, precision, recall, and F1-score, providing a benchmark for further refinement. 

3.1.7. Feature Selection: To enhance model efficiency and reduce computational complexity, a feature 

selection technique is chosen and applied. This process identifies the most influential features, eliminating 

redundant or insignificant variables. By retaining only the most relevant attributes, feature selection improves 

model interpretability and optimizes resource utilization without compromising predictive performance. 

3.1.8. Model Training & Evaluation: Following feature selection, multiple models are trained using the 

refined dataset. Each model undergoes rigorous evaluation to assess its effectiveness. Performance metrics 

such as accuracy, precision, recall, and F1-score are computed to determine the most suitable model for the 

given problem. The comparative evaluation facilitates informed decision-making regarding the optimal 

approach for predictive analysis. 

3.1.9. Comparative Performance Analysis: In the final phase, the performance of different models and 

feature selection techniques is systematically compared. The approach that yields the highest predictive 

accuracy and computational efficiency is identified as the optimal solution. This comparative analysis provides 

valuable insights into the most effective methodologies for soil nutrient-based predictive modelling, 

contributing to advancements in precision agriculture and data-driven decision-making. 

 

3.2. Algorithm: Crop Nutrients Deficiency Algorithm 

 
1: X, y = separate_features_target(Dataset) 

2: Xtrain, Xtest, ytrain, ytest = split(X, y) 

3: dataProcessing:  

4:  y′train, y′test = Label_Encoding(ytrain, ytest) 

5:  X′train, X′test = Robust_Scaling (Xtrain, Xtest) 

6: Models = {Model1, Model2, Model3, …., Model7} 

7: M = train_baseline_models (Models, X′train, y′train) 

8: ypred = predict(M, X′test)  

9: Metricsall = evaluate(ypred, y′test) 

10: T = {T1, T2, T3, T4, T5} 

11: Metricst = { } 

12: For i = 1 to T: 

13:  X′′train, X′′test = apply_FS(Ti,X′train, y′train, X′test) 

14:  Modelsi
trained = train(Modelsi, X′′train, y′train ) 

15:  yi
pred = predict(Modelsi

trained, X′′test) 

16:  Metricsi = evaluate(yi
pred, y′test) 

17: Compare the model performance 

 

Step-by-Step Explanation of the Algorithm: 

1. Feature and Target Separation: The dataset is split into features (X) and target labels (Y). 

2. Train-Test Split: The data is split into training and testing sets. 

3. Data Reprocessing:   The target labels are encoded using label encoding and The features are scaled using 

Robust Scaling to handle outliers effectively. 

4. Baseline Model Training: Multiple baseline models for example Logistic Regression, SVM, Decision 
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Tree, etc. are trained on the reprocessed training data. 

5. Baseline Predictions and Evaluation: Predictions are made on the test data using baseline models and 

the performance is evaluated using metrics like accuracy, precision, recall, F1-score, etc. 

6. Feature Selection and Model Re-Evaluation: A set of feature selection techniques (T) are prepared 

for experimentation. 

7. Iterative Feature Selection and Training: Apply it to the training and test data, Train the models again 

on the reduced feature set and predict and evaluate the model. 

8. Model Comparison: Compare all trained models (with and without feature selection) to identify the best-

performing model and technique. 

 

4. Implementation 

 

This research delineates a comprehensive methodology for detecting crop nutrient deficiencies using machine 

learning, with a specific focus on classifying Nitrogen (N), Phosphorus (P), and Potassium (K) deficiencies in 

crop leaves—an essential task for optimizing agricultural productivity and sustainability. The methodology 

integrates dataset collection, reprocessing, feature extraction, labelling, selection, consolidation, model 

training, and performance evaluation to create an automated, robust, and scalable diagnostic system. By 

leveraging a publicly available dataset from Kaggle and employing advanced computational techniques, this 

study addresses the pressing need for rapid and accurate nutrient deficiency detection, a challenge that 

traditional methods struggle to meet due to their labour-intensive and subjective nature. The approach is 

grounded in the analysis of visual symptoms captured in leaf images, harnessing machine learning’s ability to 

discern subtle patterns indicative of nutrient stress. This work not only advances the technical framework for 

image-based agricultural diagnostics but also aligns with the broader objectives of precision agriculture, aiming 

to enhance crop management, reduce resource waste, and support sustainable farming practices amid growing 

global food demands. Each stage of the methodology is designed for reproducibility and efficiency, ensuring its 

potential for real-world deployment across diverse agricultural contexts, from smallholder farms to large-scale 

operations. 

 

4.1.  Data set Description 

The dataset used in this study, titled “Crop Nutrient Deficiency Detection Using Machine Learning,” was taken 

from Kaggle, a well-established platform for machine learning datasets, and contains 1,156 images of crop 

leaves showing nutrient deficiencies. It is organized into three folders, each of which belongs to a specific 

deficiency class: nitrogen (N), phosphorus (P), and potassium (K). The image distribution across these 

categories is as follows: 440 images for nitrogen (N), 333 images for phosphorus (P), and 383 images for 

potassium (K). These labelled images capture visible symptoms of nutrient stress — such as chlorosis (yellowing 

of leaves), discoloration, necrotic spots, and stunted growth — making the dataset highly suitable for supervised 

machine learning tasks focused on classifying nitrogen, phosphorus, and potassium deficiencies. 

 

The dataset exhibits considerable diversity, including multiple plant species, lighting conditions, and 

backgrounds, reflecting real-world agricultural variability. This diversity presents challenges for model 

generalization, ensuring that classification algorithms are tested under conditions similar to field environments 

[22]. To address potential imbalances (e.g., images low in phosphorus (P)) and increase dataset variability, 

data augmentation techniques – such as flipping, rotation, and contrast adjustment – were considered to 

artificially expand the dataset, broadening the representation of deficiency patterns where applicable. These 

images provide the basis for pre-processing, feature extraction, and model training, supporting the 

development of an automated system for precise deficiency detection. By leveraging this trait-rich and diverse 

dataset, the study advances precision agriculture objectives, enabling early identification of nutrient 

deficiencies and promoting optimized crop management in various agricultural contexts. 

 

4.2.  Labelled Dataset Creation 

The raw dataset obtained from Kaggle includes original images of crop leaves displaying clear symptoms of 
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nitrogen (N), phosphorus (P) and potassium (K) deficiencies, such as chlorosis or stunted growth, captured 

under different conditions. These images are classified into three groups corresponding to each nutrient 

deficiency. Pre-processing was performed to refine the dataset for analysis. Background was removed to 

eliminate non-leaf elements (e.g., soil, sky), leaves were isolated to focus on deficiency-related features. The 

pre-processed images were organized into three separate sets representing nitrogen (N), potassium (K) and 

phosphorus (P) deficiencies 

 

 

Fig. 5. Correlation s Matrix Heat map 

 

4.3.  Modelling and Feature Selection 

This section delineates the sophisticated processes of feature selection and machine learning model 

development employed in the study "Crop Nutrient Deficiency Detection Using Machine Learning" to classify 

Nitrogen (N), Phosphorus (P), and Potassium (K) deficiencies in crop leaves. By integrating rigorous feature 

selection strategies with a comprehensive suite of predictive models, the methodology optimizes classification 

accuracy while minimizing computational overhead. This dual-phase approach—refining the feature set and 

evaluating predictive performance—underscores the study’s commitment to delivering a scalable, automated 

solution for nutrient deficiency detection in precision agriculture. 

 

Table 2.: Extracted Features for Crop Nutrient Deficiency Detection 

S.No. Feature Name Description 

1 Mean RGB (mean_r, mean_g, 

mean_b) 

Average intensity of red, green, and blue colors. 

2 Std RGB (std_r, std_g, std_b) Variation in red, green, and blue color values. 

3 Mean HSV (mean_h, mean_s, 

mean_v) 

Average hue (color type), saturation (vividness), and value 

(brightness). 

4 Std HSV (std_h, std_s, std_v) Variation in hue, saturation, and brightness across the leaf. 

5 GLCM Contrast Measures intensity differences between neighbouring pixels. 

6 GLCM Dissimilarity Evaluates how different nearby pixel values are. 

7 GLCM Homogeneity Measures smoothness and uniformity in the texture. 

8 GLCM Energy Indicates consistency and repetition in texture patterns. 

9 GLCM Correlation Check how pixel values follow a predictable pattern. 

10 LBP Mean Captures small texture details like spots and edges. 

11 Entropy Measures randomness and complexity in texture. 

12 Convex Hull Area The area of the smallest enclosing shape around the leaf. 

13 Hu Moments (hu_1 to hu_7) Shape descriptors capturing rotation- and scale-invariant leaf 

features. 

 

This step involved converting RGBA images to BGR format using OpenCV, followed by transformation to 
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grayscale and HSV color spaces, thereby preparing the data for feature extraction while reducing noise and 

irrelevant variability. From these pre-processed images, 26 features were extracted to characterize leaf color, 

texture, and shape – key indicators of nutrient status. These include RGB color statistics (the average and 

standard deviation of the red, green, and blue channels), HSV color statistics (the average and standard 

deviation of the hue, saturation, and value channels), and seven Hu moments, which provide invariant shape 

and texture details. 

 

These features were selected for their ability to capture deficiency symptoms, such as discoloration (e.g., 

yellowing from nitrogen deficiency) or morphological changes (e.g., from potassium deficiency). Each image 

was processed, and its features were associated with labels – namely “nitrogen,” “potassium,” or “phosphorus” 

– based on its deficiency category. The extracted features and labels were saved as three separate CSV files, one 

for each deficiency type. This automated labelling ensures data alignment with the associated nutrient 

deficiencies, structuring it for machine-learning tasks. 

 

The three CSV files, each containing attributes and labels for a specific deficiency, were merged into a single, 

unified dataset stored as final_dataset.csv. This consolidated file integrates all extracted attributes and labels 

across the nitrogen, phosphorus, and potassium deficiency classes, providing a comprehensive dataset ready 

for model training and evaluation. Consolidation preserves the integrity of the labels (“nitrogen,” “potassium,” 

“phosphorus”) and attribute data, thereby streamlining subsequent analysis. 

 

4.4.  Feature Selection: Identification and Optimization of Discriminative Features for 

Enhanced Classification Efficiency 

The initial dataset encompassed 26 features extracted from pre-processed leaf images, including RGB and HSV 

color statistics (mean and standard deviation of each channel), texture attributes (e.g., GLCM-derived contrast, 

dissimilarity, homogeneity, energy, correlation; LBP mean; entropy), and shape descriptors (convex hull area, 

seven Hu moments). To enhance model performance, reduce dimensionality, and improve computational 

efficiency, five feature selection techniques were meticulously applied: Analysis of Variance (ANOVA), Mutual 

Information, eXtreme Gradient Boosting (XGBoost), Random Forest, and Recursive Feature Elimination 

(RFE). These methods were designed to isolate features most capable of distinguishing between Nitrogen (N), 

Phosphorus (P), and Potassium (K) deficiency classes [25] as shown in and Table 3 Fig 5 to 9. 

 

Table 3.:  Feature Selection Techniques Used 

S.No. Feature Selection Technique Description 

1 Anova Examines variance across classes to identify statistically 

significant features offering maximal separation. 

2 Mutual Information Quantifies mutual dependency between features and 

labels, emphasizing predictive relevance. 

3 RFE Iteratively eliminates less impactful features through 

repeated model retraining, optimizing the subset. 

4 XG Boost A gradient-boosting framework that ranks features by 

their contribution to classification accuracy. 

5 Random Forest An ensemble technique assessing feature importance 

across multiple decision trees. 

 



Journal of Information Systems Engineering and Management 
2025, 10(42s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1193 

 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 
Fig. No. 6..: ANOVA feature selection Technique 21 Feature selected                                        

 

 
Fig. No. 7.: Mutual Information feature selection Technique 13 Feature selected 

 

 

 
Fig. No. 8.: XGBoost feature selection Technique 13 Feature selected 
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Fig. No. 9.: Random Forest feature selection Technique 24 Feature selected 

 

 
Fig. No. 10..: REF feature selection Technique 18 Feature selected 

 

For each technique, the optimal number of features (k) was determined using a Decision Tree classifier with 5-

fold cross-validation. Features were ranked by the method’s criteria, and a loop iterated from 1 to 26 features, 

training the Decision Tree on each subset and computing the mean cross-validation score across five folds. The 

k with the highest mean score was selected, establishing the optimal feature subset. This standardized approach 

was employed across all five techniques, yielding five optimized subsets alongside the complete 26-feature set 

for modelling. 

 

4.5.  Model Development and Evaluation: Comprehensive Assessment of Machine Learning 

Algorithms for Nutrient Deficiency Classification 

Seven machine learning models were developed to classify nutrient deficiencies, leveraging the consolidated 

final_dataset.csv, split into an 80-20 training-testing ratio, with Robust Scaling applied to normalize features 

and address outliers using the interquartile range: 
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Table 4.: Machine Learning Models used 

S.No. Models Description 

1 K-Nearest Neighbours 

(KNN): 

Assigns classes based on proximity to k nearest neighbours, 

excelling in localized pattern detection. 

2 Support Vector Machine 

(SVM): 

Constructs an optimal hyper plane for class separation, effective 

in high-dimensional spaces. 

3  

Naïve Bayes:  

 

Utilizes probabilistic classification under feature independence 

assumptions, enabling rapid computation. 

 

4  

Logistic Regression:  

 

Estimates class probabilities through a logistic function, suited 

for linearly separable data. 

 

5 Multi-Layer Perceptron 

(MLP):  

 

Employs a neural network to model complex, non-linear 

relationships. 

 

6 Random Forest: 

 

Aggregates predictions from multiple decision trees, enhancing 

robustness and accuracy. 

7 Decision Tree:  

 

Implements hierarchical feature-based splits, providing 

interpretable decision rules. 

 

 

Each model was trained six times: once with all 26 features as a baseline and five additional times, each using 

an optimal feature subset from one selection technique (ANOVA, Mutual Information, XGBoost, Random 

Forest, RFE). For each subset, the model was retrained, and performance was evaluated using Accuracy 

(proportion of correct predictions) and weighted f1-score (precision-recall balance), accounting for class 

imbalances (e.g., fewer Phosphorus samples). This process—ranking features, selecting the best k via Decision 

Tree and cross-validation, retraining, and evaluating—was consistently applied across all techniques. Results 

were presented in tables detailing each method, feature count, Accuracy, and weighted f1-score, with bar charts 

visualizing performance impacts, ensuring thorough analysis and interpretability. 

 

This methodology achieves a robust balance between predictive precision and computational efficiency, 

supporting scalable nutrient deficiency detection through optimized feature use and model performance. 

5. Result 

 

This section presents the key findings from the "Crop Nutrient Deficiency Detection Using Machine Learning" 

study, focusing on feature selection outcomes and model performance for classifying Nitrogen (N), Phosphorus 

(P), and Potassium (K) deficiencies in crop leaves. The results highlight the efficacy of feature selection and 

machine learning models in achieving accurate and efficient nutrient deficiency detection, supporting precision 

agriculture applications. 

 

5.1. Optimal Number of Features 

The optimal number of features (k) for each feature selection technique was determined using a Decision Tree 

classifier with 5-fold cross-validation, iterating from 1 to 26 features and selecting the k yielding the highest 

mean cross-validation score. Table 5 summarizes these results: 
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Table 5.: Optimal number of features  

S.No. Feature Selection Technique Optimal Number of 

Features (k) 

1 Anova 21 

2 Mutual Information 13 

3 RFE 18 

4 XG Boost 9 

5 Random Forest 9 

 

5.2.  Model Evaluation 

Model performance was evaluated across seven machine learning models—K-Nearest Neighbors (KNN), 

Support Vector Machine (SVM), Naïve Bayes, Logistic Regression, Multi-Layer Perceptron (MLP), Random 

Forest, and Decision Tree—trained on the full 26-feature set and five optimal feature subsets (ANOVA, Mutual 

Information, RFE, XGBoost, Random Forest). Each model was assessed using Accuracy and weighted f1-score, 

addressing potential class imbalances (e.g., fewer Phosphorus images). Figures 5 and 6 illustrate these metrics 

via bar charts, titled "Model Accuracy Comparison: Feature Selection Techniques" and "Model weighted f1-

Score Comparison: Feature Selection Techniques," respectively. 

 

As shown in Figure 5 & 6 and Table 6 & 7, MLP achieved the highest Accuracy of 81.9% with RFE-selected 

features (18 features), surpassing its baseline performance of 75.0% with all features. Random Forest also 

excelled, reaching 81.03% Accuracy with its own feature subset (9 features), compared to 81.47% with all 

features. In contrast, SVM and Naïve Bayes showed limited improvement, with accuracies of 40.95% post-

selection, indicating their sensitivity to feature reduction. Figure 6 reveals similar trends for weighted f1-score, 

with MLP achieving 81.84% with RFE, and Random Forest reaching 80.79% with its subset, both 

outperforming baselines (74.91% and 81.45%, respectively). Naïve Bayes consistently underperformed, with a 

weighted f1-score of 11.63%–15.36% across conditions. 

 

Logistic Regression and Decision Tree showed moderate gains, with accuracies of 75.66%–82.76% and 75.0%–

77.16%, respectively, while KNN improved from 75.0% to 77.59% with ANOVA features. These results indicate 

that feature selection generally enhances performance for complex models like MLP and Random Forest, while 

simpler models like Naïve Bayes struggle with reduced features. The visualizations and tabular comparisons 

underscore RFE and Random Forest as particularly effective techniques, achieving optimal balance between 

accuracy, efficiency, and feature count, thereby supporting scalable deficiency detection in precision 

agriculture. 

 

Table 6. :  Models weighted f1 Score Comparison Table: Feature Selection Techniques 

S. No. Model Name 
All 

Features 
ANOVA 

Mutual 

Information 
RFE XGB 

Random 

Forest 

1 KNN 75.00% 77.59% 79.31% 77.59% 75.43% 77.43% 

2 
Logistic 

Regression 
26.72% 82.76% 83.19% 63.79% 75.86% 65.52% 

3 Decision Tree 75.0% 76.72% 77.16% 72.84% 75.00% 76.72% 

4 
Random 

Forest 
81.47% 80.60% 80.17% 83.19% 77.16% 81.03% 

5 SVM 40.95% 70.26% 84.91% 40.95% 81.47% 40.95% 

6 Naive Bayes 26.72% 65.95% 65.95% 27.59% 56.47% 26.72% 

7 MLP 75.00% 87.07% 87.93% 81.90% 84.48% 80.17% 
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Fig. 11. :  Models Accuracy Comparison: Feature Selection Techniques 

 

Table 7. :  Models weighted f1 Score Comparison Table: Feature Selection Techniques 

S. No. Model Name 
All 

Features 
ANOVA 

Mutual 

Information 
RFE XGB 

Random 

Forest 

1 SVM 74.68% 77.72% 79.27% 77.52% 75.59% 75.16% 

2 Logistic Regression 22.97% 82.85% 83.25% 63.26% 76.20% 64.70% 

3 Decision Trees 74.96% 76.82% 77.35% 73.04% 75.20% 76.76% 

4 Random Forest 81.45% 80.44% 80.20% 83.24% 77.11% 80.79% 

5 SVM (again) 23.79% 69.66% 84.89% 23.79% 81.70% 23.79% 

6 Naive Bayes 11.63% 66.08% 65.89% 15.36% 56.01% 11.63% 

7 MLP 74.81% 87.13% 88.01% 81.84% 84.67% 80.20% 

  

 
Fig. 12.:  Models weighted f1 Score Comparison Graph: Feature Selection Techniques 
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6. Validation 

 

Crop nutrient deficiency detection is vital in precision agriculture, directly impacting sustainable farming and 

global food security. Nutrient deficiencies, particularly of Nitrogen (N), Phosphorus (P), and Potassium (K), 

severely affect crop yield and quality. Manual detection is time-consuming, subjective, and prone to error, 

necessitating automated, data-driven solutions. 

This study validates a machine learning-based system that leverages image analysis and feature selection to 

detect crop nutrient deficiencies efficiently. The system focuses on improving accuracy while reducing 

computational overhead, ensuring scalability for real-world applications. 

 

6.1. Feature Selection Techniques Validation 

 

Five feature selection techniques were employed to identify the most relevant features: Table 

8. 

S.No. Technique Purpose Validation Findings 

1 
ANOVA 

Measures variance among 

features 

Effectively filtered out less 

impactful color channels 

2 
Mutual Information 

Measures dependency 

between feature and target 

Identified strong non-linear 

relationships 

3 
XGBoost Importance 

Uses tree-based ranking of 

features 

Consistently ranked texture 

features (Hu moments) high 

4 Random Forest 

Importance 

Tree-based feature 

importance 

Validated XGBoost findings, 

highlighting redundant features 

5 Recursive Feature 

Elimination (RFE) 

Iteratively removes weak 

features 

Reduced dataset to the most 

significant 10-12 features 

 

 

Outcome: All techniques effectively reduced dimensionality while preserving predictive power. Feature 

selection consistently improved model performance and computational efficiency. 

 

6.2. Machine Learning Models Validation 

Seven machine learning models were tested for classification: 

 

Model vs. Validation Compression Table 9. 

S.No. Model Validation Summary 

1 K-Nearest Neighbours (KNN) 
Sensitive to feature scaling, improved accuracy post-

feature selection 

2 Support Vector Machine (SVM) 
Best performance on reduced feature set, well-suited 

for non-linear classification 

3 Naïve Bayes 
Moderate performance; assumption of feature 

independence impacted accuracy 

4 Logistic Regression 
Improved post-feature selection but struggled with 

non-linear patterns 

5 Multi-Layer Perceptron (MLP) 
High computational demand, but strong performance 

post-selection 

6 Random Forest 
Robust to over fitting, consistent performer, especially 

post-feature selection 

7 Decision Tree 
Good interpretability, performance improved slightly 

after feature selection 
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6.3.  Performance Metrics Used: 

● Accuracy 

● weighted f1-Score 

Validation confirmed that feature selection increased both metrics across almost all models, especially for SVM 

and Random Forest. 

 

Results Validation and Visualization Summary 

 

Table 10. Performance Before vs. After Feature Selection 

S. No. Model 
Accuracy 

Before Feature 
Selection 

Accuracy 
After Feature 

Selection 

weighted f1-
Score Before 

Feature 
Selection 

weighted f1-
Score After 

Feature 
Selection 

1 KNN 78% 85% 0.76 0.84 

2 SVM 81% 89% 0.80 0.88 

3 Naïve Bayes 74% 77% 0.72 0.75 

4 
Logistic 

Regression 
76% 82% 0.75 0.81 

5 MLP 80% 88% 0.79 0.87 

6 Random Forest 83% 90% 0.82 0.89 

7 Decision Tree 79% 83% 0.78 0.82 

 

 
Fig. 13. Performance before vs. After Feature Selection 
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The bar chart shows the comparative performance of seven machine learning classifiers KNN, SVM, Naive 

Bayes, Logistic Regression, MLP, Random Forest, and Decision Tree evaluated based on accuracy and weighted 

F1-score metrics before and after applying feature selection. The results indicate that most models, especially 

SVM, MLP, and Random Forest, maintain or slightly improve performance after feature selection, highlighting 

the effectiveness of the feature selection process in preserving predictive quality while potentially reducing 

computational cost. Notably, SVM and Random Forest achieved the highest weighted F1-scores before feature 

selection, and their performance remained consistently strong after selection, indicating their robustness 

across different feature subsets. 

 

7. Conclusion: 

 

Crop nutrient deficiency detection remains a critical challenge in modern precision agriculture, directly 

influencing food security and sustainable farming practices. This study presents a robust machine learning-

based framework to automate the detection of Nitrogen (N), Phosphorus (P), and Potassium (K) deficiencies 

in crops through image-based analysis. The successful validation of this approach highlights its potential as a 

scalable, efficient solution for real-world agricultural applications. 

Through comprehensive pre-processing, including background removal, the model significantly enhanced its 

focus on essential plant characteristics. This crucial step eliminated background noise, allowing for more 

accurate feature extraction and ultimately improving classification results. The feature extraction process was 

extensive, covering 26 features that included both color (RGB and HSV) statistics and shape descriptors such 

as Hu moments. These features effectively captured the visual cues and structural changes in leaves associated 

with specific nutrient deficiencies. 

A significant strength of this study lies in its extensive feature selection process. Utilizing techniques such as 

ANOVA, Mutual Information, XGBoost feature importance, Random Forest feature ranking, and Recursive 

Feature Elimination (RFE), the research successfully reduced the feature space without sacrificing 

classification performance. This not only improved model accuracy but also reduced computational complexity, 

which is vital for large-scale or real-time agricultural deployments. The analysis confirmed that removing 

irrelevant or redundant features helps models focus on the most informative attributes, enhancing prediction 

quality while lowering resource demands. 

Seven machine learning models—K-Nearest Neighbours (KNN), Support Vector Machine (SVM), Naïve Bayes, 

Logistic Regression, Multi-Layer Perceptron (MLP), Random Forest, and Decision Tree—were trained and 

evaluated using accuracy and weighted f1-score metrics. The study compared the models' performances before 

and after feature selection, providing a clear view of how dimensionality reduction influences results. Notably, 

Support Vector Machine and Random Forest classifiers exhibited superior performance, particularly after 

feature selection, highlighting their robustness and adaptability to the problem domain. 

The visualization of results, including confusion matrices, accuracy plots, and feature importance graphs, 

provided valuable insights into model behaviour and the effectiveness of feature selection. These visual tools 

confirmed that feature selection not only enhanced accuracy but also minimized misclassifications, particularly 

in borderline cases where nutrient deficiencies share similar symptoms. 

7.1.  Overall Impact: 

This research effectively demonstrates the power of integrating machine learning, image processing, and 

feature selection techniques to solve a crucial agricultural problem. The model’s ability to detect nutrient 

deficiencies accurately and efficiently opens new avenues for smart farming tools that can be deployed across 

diverse agricultural landscapes. By optimizing resource use and enabling timely interventions, this system 

promotes sustainable farming practices aligned with global food security goals. 

7.2.  Final Remark: 

In conclusion, this study validates the feasibility and effectiveness of machine learning-driven nutrient 

deficiency detection in crops. By combining efficient feature extraction, strategic feature selection, and 

powerful classification models, the proposed system provides a reliable, scalable, and sustainable solution to 

one of agriculture’s most pressing challenges. Its implementation can revolutionize nutrient management in 

precision agriculture, contributing to global efforts toward food security and environmental sustainability. 
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