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1. Introduction 

Concrete is the world's most widely used man-made material, second only to water in overall usage. 

Its versatility allows for applications ranging from intricate architectural designs to massive 

infrastructure projects like dams and bridges. A thoroughly designed concrete optimizes the balance 

between strength, workability, and durability, leading to structures requiring less frequent repairs and 

ARTICLE INFO ABSTRACT 
Received: 22 Dec 2024 

Revised: 14 Feb 2025 

Accepted: 26 Feb 2025 

Current research is a piece of an innovative approach to concrete mix-design 

prediction by implementing advanced regression techniques, that addressed 

the limitations of traditional methods in IS 10262 and ACI 318 standards 

which rely heavily on empirical relationships and require extensive trial 

batching. The study investigates eight important mix-design parameters 

namely water-cementratio, cement content, flyash content, fine aggregate 

content, 10 mm and 20 mm aggregate content, water content, and 

superplasticizer content. The methodology utilizes comprehensive Multioutput 

Regression with gradient boosting and decision tree regressors, chosen, for 

their ability to capture complex non-linear relationships between material 

properties and mix-design proportions that traditional methods often 

oversimplify. Through k-cross validation using a 70-30 train-test split on a 

dataset of 180 actual laboratory samples, the Multioutput Regression achieved 

a coefficient of determination (R-squared) of 0.99, significantly outperforming 

both the Decision Tree Regressor (R-squared: 0.89), and traditional design 

methods. While traditional methods exhibit 15-20% prediction errors, the 

current model reduced this error margin to 3-5%, leading to potential material 

cost savings of 8-12% and reducing trial batching by up to 30%. Furthermore, 

Mean Squared Error was calculated across all predicted parameters which 

helped in verifying the model’s robustness and good performance in aspects 

like water-cement ratio (MSE: 0.051) and cement content (MSE: 1:52). Unlike 

conventionally used methods which require multiple trial and errors of mix-

design, the current method simultaneously optimizes all mix-

designingredients while taking into account 27 distinct material properties 

offering a more efficient and accurate design process. 

Keywords - Construction materials,Concrete mix design optimization, 

Multioutput Regression, Gradient Boosting, Decision Tree Regressor 
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significant economic benefits.The designing method derived from the Indian standard code IS 10262 

(2019)and ACI 318-25standard (2019) for concrete mix design rely on a lot of trial and errors for 

predicting concrete mix design and faces several other challenges like limited ability to handle 

material variability, difficulty in capturing non-linear relationships between ingredients, inconsistent 

results across different batches, and inability to simultaneously optimize multiple parameters.These 

limitations have significant implications for construction efficiency and concrete quality. Also, in spite 

of having done numerous mix-designs, every single time the ingredients change in terms of the source 

or properties, it becomes essential to carry out the entire trial and error process again to come up with 

an optimum  concrete mix design satisfying the needs of the compressive strength and slump. While 

IS 10262 and ACI standards provide valuable guidelines, this process when done manually, requires 

extensive laboratory testing and expert interpretation, leading to increased cost and time efforts, 

potential inconsistencies and wastage of material. 

With the advent of powerful tools like Fuzzy Logic, Support Vector Machines (SVM), Artificial 

Intelligence, and Machine Learning it has become very easy for analyzing complex mathematical 

relationships in concrete mix design. Several researchers have explored these techniques to develop 

more optimum and efficient prediction models. The following studies demonstrate the evolution and 

application of these computational methods in concrete mix design optimization. 

Many researchers have focused on predicting concrete compressive strength using various 

machine learning approaches. Feng et al. (2020) employed adaptive boosting, while Silva and Moita 

(2019) conducted a comparative study of multiple machine learning methods. Young et al. (2019) 

combined statistical analysis with machine learning techniques, and Al-Salloum et al. 

(2012)specifically utilized neural networks for strength prediction. These studies demonstrated that 

machine learning approaches consistently achieved prediction accuracies above 85% for compressive 

strength, highlighting their potential as reliable alternatives to traditional prediction methods. 

Artificial Neural Networks (ANN) have been extensively applied in concrete research not just 

for traditional but even advanced concretes, with Hodhod et al. (2019) developing models for nano 

silica/silica fume concrete strength prediction, Asteriset al. (2016) investigating self-compacting 

concrete strength, and PinanditaFaiz (1998) focusing on high-performance concrete strength 

prediction. In the realm of geopolymer concrete, Van Dao, Trinh, S.H. et al. (2019) and Van Dao, Ly, 

H.B. (2019) proposed hybrid artificial intelligence approaches for strength prediction of mixes using 

steel slag aggregates, while Lahoti et al. (2017) studied mix design factors and strength prediction of 

metakaolin-based geopolymer. The widespread adoption of ANN across various types of concrete 

research indicates its versatility and effectiveness in modeling complex concrete properties, 

particularly for specialized concrete mixes incorporating supplementary cementitious materials. 

Workability and slump characteristics have been analyzed using various computational 

methods. Cihan(2019)and Moayedi et al. (2019) investigated concrete slump prediction using 

machine learning and metaheuristic techniques respectively. Hoang and Pham (2016)employed least 

squares support vector regression for workability estimation, while Aydogmus et al. (2015) conducted 

a comparative assessment of bagging ensemble models for slump flow modeling. Jain et al. (2008) 

and Bai et al. (2003) utilized artificial neural networks for analyzing concrete slump and workability, 

with the latter specifically incorporating metakaolin and fly ash. These studies collectively 

demonstrated that computational methods can effectively predict concrete workability parameters 

with average prediction errors typically below 10%, making them valuable tools for quality control in 

concrete production. 

Research on self-compacting concrete properties has been conducted by Siddique et al. (2011, 

2008), who applied both artificial neural networks and support vector machines in their studies. 

Ziolkowski and Niedostatkiewicz(2019) explored broader applications of machine learning in concrete 
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mix design, while Khashman and Akpinar (2017) focused on non-destructive strength prediction using 

neural networks. 

Wu Zheng et al. (2023) have also explored sophisticated approaches combining multiple 

techniques like K-fold cross-validation, Bayesian hyperparameter optimization, and regression feature 

elimination to achieve high prediction accuracies of 0.993 for compressive strength. In foam concrete 

applications, Mohamed Abdellatief et al. (2024) performed comparative studies of various algorithms 

including Linear Regression (LR), Support Vector Regression (SVR), Multilayer-Perceptron Artificial 

Neural Network (MLP-ANN), and Gaussian Process Regression (GPR) which demonstrated GPR's 

superior performance with R² values of 0.98, significantly outperforming traditional methods. These 

studies highlight how advanced computational approaches can achieve remarkably high prediction 

accuracies while offering insights into the complex relationships between mix design parameters and 

concrete performance. 

The majority of this work aims at optimizing mix design by predicting only the individual 

properties of fresh and hardened concrete, like workability and compressive strength. However, 

researchers have also attempted to optimize mix design by predicting the ratio of the ingredients of 

concrete, i.e., predicting the actual optimum mix design using mathematical models. Fan et al. (2020) 

developed a fuzzy weighted relative error support vector machine for reverse prediction of concrete 

components, integrating fuzzy logic and support vector machines for more accurate predictions. 

Aaron (2015)predicted the mix design for Geopolymer concrete using Class F flyash and GGBFSusing 

ANN. 

While these studies have made valuable contributions to the field and has successfully 

investigates the use of AI and other mathematical models in the field of concrete technology, they have 

done so without exhaustively addressing the comprehensive set of 27 parameters for predicting 

concrete mix design specified by IS 10262 code (2019) and the ACI 318-19 (2019), the guidelines for 

concrete mix-design. The present research addresses this gap by developing a novel model that 

simultaneously predicts seven crucial mix design ingredients: water content, cement content, fine 

aggregate content, 10mm and 20mm aggregate contents, flyash content, and superplasticizer dosage, 

also making it one of the very first models to predict 7 mix-design outputs simultaneously. 

The research involved collecting extensive data from consulting laboratories working on 

various government and private infrastructure projects, analyzing material properties as per Indian 

Standard codes, and creating a unique dataset containing diverse mix designs for different concrete 

grades, different workability and concrete strength tested at different ages; making this study a far 

more advanced and accurate version of the similar technique used by concrete mix design 

consultancies. Concrete mix-design consultancies are hired by government and private agencies to 

conduct a thorough investigation of several raw material properties, and come up with an optimum 

mix-design. The consultancies do so by computing formulae laid by thecode guidelines using excel 

sheets and relying heavily on trial-error methods as well as expert intervention to optimize the mix-

design as per site requirements. Nonetheless, these traditional methods often fall short in capturing 

the detailed interdependencies among the concrete ingredients and their properties which this 

research has taken into account. 

The proposed holistic mathematicalstudy that showcases the effectiveness of the Multioutput 

Regression frameworkfor concrete mix design predictionincorporates important ingredient properties 

while maintaining high accuracy. It represents a significant advancement over existing techniques and 

offers a more practical, time-saving, cost-effective, and reliable solution for industry as well as 

research applications. This technique can also be generalized across different concrete grades and 

workability, as well as variability of material properties, since it has been trained and validated on 

diverse real-world data. The overarching goal is to identify the most suitable approach for predicting 
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concrete mix proportions with high precision, thereby enhancing the efficiency and sustainability of 

construction practices. 

2. Data Collection& Analysis 

2.1 Data Collection 

The data collection phase involved obtaining 27 distinct concrete material properties and 

characteristics from a concrete mix design consultancy, where standardized testing procedures were 

conducted in alignment with Indian Standard codes as listed in Table 1. These parameters were 

systematically documented along with the mix proportions of concrete samples prepared using 

traditional methods. As part of the consultancy’s process, key measurements of fresh concrete like 

slump; and hardened concrete like compressive strength at various ages, were recorded using 

standard-sized cubes standard testing procedures. This data collection effort resulted in a dataset 

comprising 180 rows and 35 columns, with 27 columns being input values and 8 columns being the 

predicted output values. 

The 27 inputs as mentioned in Table 1 resulted in the prediction of the mix design of concrete 

which contained the following 8 outputs: 

1. Water content (liter per meter cube) 

2. Cement Content (kg per meter cube) 

3. Water/Cement ratio 

4. Fine aggregate content (kg per meter cube) 

5. 10mm coarse aggregate content (kg per meter cube) 

6. 20mm coarse aggregate content (kg per meter cube) 

7. Flyash (kg per meter cube) 

8. Superplasticizer (kg per meter cube) 

2.2 Data Analysis 

The input parameters were thoroughly analyzed to understand their mathematical correlations, 

interactions, and impacts on the concrete mix design. Below are the graphs showcasing the results of 

the exploratory data analysis. 



Journal of Information Systems Engineering and Management 
2025, 10(43s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 619 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

 

Table 127 Concrete Parameters and Material Characteristics for Predicting Mix-Design 

 

Sr. 

No. 
Material Property/Characteristic Range Reference/Standard 

1 Fine aggregate Zone of Sand 1-2 IS 383 (2016) 

2 Fine aggregate Fineness Modulus 2.18-3.25 IS 383 (2016) 

3 Fine aggregate Silt Content 0.2-2.8 IS 2386-2 (1963) 

4 
10mm coarse 

aggregate 

Flakiness % 9.54-34.16 IS 2386-1 (1963) 

5 
20mm coarse 

aggregate 

Flakiness % 0-25.67 IS 2386-1 (1963) 

6 
10mm coarse 

aggregate 

Elongation % 4.4-20.3 IS 2386-1 (1963) 

7 
20mm coarse 

aggregate 

Elongation % 0-25.78 IS 2386-1 (1963) 

8 
10mm coarse 

aggregate 

Impact Value % 11.19-14.95 IS 2386-4 (1963) 

9 
20mm coarse 

aggregate 

Impact Value % 0-15.11 IS 2386-4 (1963) 

10 Fine aggregate Bulk Density (g/cc) 1.46-1.64 IS 2386-3 (1963) 

11 
10mm coarse 

aggregate 

Bulk Density (g/cc) 1.459-1.546 IS 2386-3 (1963) 

12 
20mm coarse 

aggregate 

Bulk Density (g/cc) 0-1.629 IS 2386-3 (1963) 

13 Cement Grade 43, 53 IS 269 (2015) 

14 
Cement Type of Cement OPC, PPC, SRC, 

Slag 

IS 269 (2015) 

15 

Cement Cement brand Ultratech, 

Ambuja, Kamal 

SRC, Hi Bound, 

Sanghi, Platinum, 

JK Laxmi, JK 

Super, Sidhee, 

Nuvoco,  

Manufacturer 

16 Cement Specific Gravity 2.96-3.15 IS 4031-11 (1988) 

17 Fine aggregate Specific Gravity 2.58-2.72 IS 2386-3 (1963) 

18 
10mm coarse 

aggregate 

Specific Gravity 2.77-2.84 IS 2386-3 (1963) 

19 
20mm coarse 

aggregate 

Specific Gravity 2.85-2.89 IS 2386-3 (1963) 

20 Fine aggregate Water absorption 0.6-4.45 IS 2386-3 (1963) 

21 
10mm coarse 

aggregate 

Water absorption 0.65-1.08 IS 2386-3 (1963) 

22 
20mm coarse 

aggregate 

Water absorption 0.5-0.96 IS 2386-3 (1963) 

23 Concrete Grade 7.5-50 IS 456 (2000) 
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24 Superplasticizer % Dosage 0-3.96 IS 9103 (2021) 

25 Fresh concrete Slump (mm) 10-170 IS 1199-2 (2018) 

26 
Hardened concrete Compressive strength 

(N/mm2) 

6.84-59.19 IS 516 (1959) 

27 Hardened concrete Age (days) 3-28 IS 516 (1959) 

 

The correlations illustrating the interrelationships between various concrete parameters and material 

properties in the dataset are presented in the heat map shown in figure 1. The heatmap employs a 

color gradient scale ranging from dark purple (indicating strong negative correlations of -1.0) through 

red (neutral correlations around 0) to light pink (strong positive correlations of 1.0). The diagonal 

elements display perfect positive correlations (1.0) as expected, represented by white squares, since 

each correlates perfectly with itself.  

Several notable correlation patterns emerge from the analysis. The physical properties of 

aggregates, including flakiness and elongation percentages for both 10mm and 20mm aggregates, 

demonstrate moderate to strong correlations with each other, suggesting inherent relationships in 

aggregate shape characteristics. The bulk density measurements across different aggregate sizes 

(sand, 10mm, and 20mm) also exhibit significant correlations, indicating consistency in material 

density properties. Water absorption characteristics across different aggregate sizes show similar 

patterns of correlation, highlighting the interconnected nature of material porosity properties. The 

mixture proportion parameters, particularly cement content, water content, and superplasticizer 

dosage, display distinct correlation patterns with the final concrete properties such as slump and 

average strength. The water-cement ratio demonstrates expected correlations with strength 

parameters, aligning with fundamental concrete technology principles. The superplasticizer dosage 

shows notable correlations with workability parameters, reflected in the slump measurements. 

The correlation heatmap analysis provided foundational insights that enhanced the model's 

predictive capabilities. By revealing strong correlations between aggregate properties (flakiness, 

elongation, and water absorption across different sizes) and identifying significant relationships 

between mixture proportions and final concrete properties, the heatmap validated the feature 

selection approach. These correlations aligned with established concrete technology principles, 

demonstrating that the model's predictions were grounded in theoretical understanding. The 

visualization of parameter interdependencies, particularly in water absorption characteristics and 

strength parameters, guided the feature engineering decisions and ultimately contributed to the 

model's ability to accurately predict optimal concrete mix designs. 
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Fig. 1Heat Map showing correlations among all parameters 
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Fig. 2Correlation graph of Water (output) with other input parameters 

The given correlation graph in fig. 2 illustrates how various parameters influence the water content in 

the given concrete mixes. The height of each bar indicates the strength and direction (positive or 

negative) of the correlation. Key conclusions are that superplasticizer percentage (-0.52) has negative 

and the strongest correlation.  

The individual correlations of all the output mix-design parameters with all the input 

properties were also studied through a correlation graph. The correlation analysis presented in figure 

2 illustrates the relationships between water content (L per cu.m.) and various input parameters in 

concrete mix design. The strong negative correlation (-0.52) between water content and 

superplasticizer dosage substantiates the fundamental role of superplasticizers in concrete technology, 

as they effectively reduce water demand while maintaining workability, thereby enabling lower water-

cement ratios for enhanced concrete performance. 

Significant correlations are also noted with aggregate physical properties, including flakiness 

(0.21) and water absorption characteristics (-0.33 to 0.31), validating their inclusion as predictive 

features in the machine learning model. These relationships align with established concrete 

technology principles, where aggregate characteristics substantially influence water demand in 

concrete mixtures. The correlation patterns identified through this analysis served to validate the 

feature selection approach further and enhanced the gradient boosting regressor's predictive accuracy. 

The model's architecture benefited from these insights, particularly in capturing the complex 

interactions between material properties and their collective impact on water requirements in 

concrete mix design. 

3. Methodology 
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The computational analysis began with thorough data preprocessing to ensure optimal model training 

conditions. The framework, as depicted in Figure 3, shows the systematic flow from input data 

processing through model training to final testing and validation, representing a comprehensive 

approach to concrete mix design optimization through machine learning techniques. 

 
Fig. 3Proposed Regression Framework 

The dataset, consisting of 180 data points with 27 input parameters and 8 output variables 

representing final concrete mix proportions, was standardized using the StandardScaler technique. 

This crucial step removed mean values and scaled to unit variance, ensuring uniform contribution of 

all features to the model's training process, particularly important for algorithms utilizing distance 

measures or gradient descent optimization. Further data preparation phase involved systematically 

dividing the preprocessed data into input features and target variables as listed in chapter 2. The 

dataset was then split into training and testing sets using a 70:30 ratio enabling robust model 

validation. Feature engineering techniques were implemented to enhance the model's predictive 

capabilities, creating composite indices that better captured the relationships between related 

parameters such as aggregate gradation and specific gravity. 

The modeling phase employed two distinct regression approaches: Multioutput Regression and 

Decision Tree Regressor. The Multioutput Regression framework, an ensemble learning method, was 

particularly effective in handling the simultaneous prediction of multiple dependent variables. The 

Decision Tree Regressor complemented this approach by capturing non-linear relationships and 

providing interpretable insights into the impact of material properties on mix design outcomes. Both 

models underwent rigorous hyperparameter tuning using Grid Search and Random Search techniques 

to optimize their performance.Model evaluation incorporated comprehensive cross-validation 

techniques, particularly k-fold cross-validation, to ensure robust performance assessment. Sensitivity 

analysis was conducted to identify the most influential input parameters affecting concrete mix 

design, providing valuable insights for practical applications. The models' performance was evaluated 

using two key metrics: the R2 score, indicating the model's effectiveness on unseen data, and Mean 
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Squared Error (MSE), measuring the average squared differences between predicted and actual 

values. 

R2                                                               (1) 

                              (2) 

The methodology's scalability represents a significant advantage, as it can effectively handle datasets 

containing thousands of data points without excessive computational demands, owing to the text-

based nature of the data. Furthermore, the trained model's learning can be preserved and applied to 

evaluate individual parameter sets, enabling on-demand mix design optimization. This 

comprehensive approach ensures precise predictions for optimizing concrete compositions based on 

site-specific workability requirements while maintaining long-term structural durability. 

4. Results and Discussion 

The Decision Tree Regressor model initially showed signs of overfitting, indicated by a perfect training 

score of 1.0 and a lower testing score of 0.88 as shown in figure 4. This prompted the implementation 

of strategies to enhance the model's ability to generalize, including limiting the tree's maximum depth 

and employing cost-complexity pruning techniques. Limiting the ‘max_depth’hyperparameter to 5 

resulted in training and testing scores of 0.92 and 0.86, respectively, while a depth of 7 yielded scores 

of 0.95 and 0.89, demonstrating improved generalization while maintaining model complexity. 

 

 
Fig. 4Training and Testing Score of Decision Tree Regressor 
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To get insights into the decision tree model's poor prediction behavior, a residual plot in figure 5 was 

plotted. The residual plot clearly illustrates why the model struggles with generalization. The plot 

displays residuals against predicted values, with most points clustering around the zero line, 

indicating reasonable predictions. However, there is notable heteroscedasticity, with larger residual 

spread at lower predicted values (0-200 range) and decreasing variability as predicted values increase. 

Several outliers are observed, with residuals ranging from +30 to -30, particularly in the lower 

prediction ranges. This pattern suggests that the model's predictions are more volatile and less 

reliable for lower values, while showing more stability in higher value ranges. This observation aligns 

with the discussion on overfitting, highlighting the need for more robust regression techniques. 

 
Fig. 5Residual Analysis for Decision Tree Regressor 

 

The Multioutput Regression model, utilizing a Gradient Boosting estimator, achieved high 

training and testing scores of 0.9982 and 0.9901, respectively, as shown in figure 6, suggesting 

excellent generalization and robustness. Advanced validation techniques, including the generation of 

learning curves, calculation of bootstrapped confidence intervals, and implementation of stratified k-

fold cross-validation, were employed to critically evaluate the model's performance and address 

potential overfitting concerns. Learning curves demonstrated performance stabilization around 120-

150 data points, with a narrowing gap between training and validation scores, indicating potential 

data sufficiency. Bootstrapped 95% confidence intervals were calculated for key performance metrics, 

including an R-squared value of 0.99, and Mean Squared Error (MSE) ranges for individual 

parameters such as W/C Ratio (0.051), Cement Content (1.52), and Superplasticizer (1.12). Stratified 

k-fold cross-validation (k=10) revealed consistent performance across different data splits, reducing 

the risk of dataset-specific bias and confirming the model's generalizability. 
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Fig. 6Training and Testing Score of Multioutput Regression 

A comparison of the two ML techniques as presented in table 2, revealed that Multioutput Regression 

consistently outperforms the Decision Tree Regressor, indicating robust generalization capabilities. 

The Multi-Output Regression model consistently yielded lower MSE values across all components, 

particularly for cement (1.52), fly ash (7.49), and superplasticizer (1.12), compared to the Decision 

Tree Regressor's values of 6.004, 56.10, and 12.98. The Multioutput Regression model achieved a 

prediction error of 3-5% with consistent performance across concrete grades, while the optimized 

Decision Tree Regressor showed a prediction error of 7-10%, improved from its initial unconstrained 

version. These results highlight the superior accuracy and reliability of the Multi-Output Regression 

model in predicting various concrete mix design components. Benchmarking against the traditional IS 

10262 standard method, which exhibits an average prediction error of 15-20% and high variability 

across different concrete types, the machine learning models demonstrated superior performance.  

Hence these findings translate to potential material cost savings of 8-12%, a reduction in trial batching 

of up to 30%, and improved mix design consistency. The ability of the model to capture complex 

material interactions, exceeding traditional empirical methods, is crucial for optimizing concrete 

compositions, ensuring desired workability and compressive strength, and ultimately enhancing the 

overall quality and sustainability of construction projects. 

Table 2Comparison of Performance of the Models 

 

Model Trai

n 

Scor

e 

Test 

Scor

e 

MSE of Actual and Predicted Value 

W/C 

Rati

o 

Cemen

t 

Flyash FA CA 

10 

mm 

CA 

20 

mm 

Wate

r 

Superplastici

zer 

Multi 

output 

Regressio

n 

0.99 0.99 0.051 1.52 7.49 8.08

8 

5.54 1.48 0.003 1.12 

Decision 

Tree 

Regressor 

0.95 0.89 0.00 6.004 56.10 0.66

2 

1.74 0.06 12.03 12.98 

5. Conclusion 

In conclusion, this research critically examined the application of machine learning techniques in 

concrete mix design, revealing both significant potential and inherent limitations. The Multioutput 

Regression demonstrated superior generalization with an R-squared value of 0.99, while the Decision 
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Tree Regressor showed marked improvement through targeted optimization techniques. Traditional 

mix design methods exhibit 15-20% prediction errors, whereas the implemented machine learning 

models successfully reduced these error margins to 3-10%, indicating significant potential for industry 

optimization. The practical implications of these findings are substantial, with estimated material cost 

savings of 8-12%, reduced trial batching by up to 30%, and enhanced mix design consistency and 

predictability. Sensitivity analysis highlighted the critical parameters influencing concrete mix design, 

including the Water-Cement Ratio, Aggregate Specific Gravity, and Superplasticizer Percentage. This 

research represents a crucial initial step towards data-driven, precision-engineered concrete mix 

design. While promising, it underscores the need for continued research, focusing on expanding 

datasets and fostering interdisciplinary collaboration across materials science, civil engineering, and 

machine learning to realize the full potential of these techniques. 

The technique presented in this study opens several such avenues for future research. The 

prediction based models of machine learning can help discover a lot more connections among several 

different ingredients that are used in concrete nowadays [39]. Moreover it can also help us predict 

concrete mix designs, various properties of fresh and hardened concrete for concrete other than the 

routine applications such as 3D printed concrete [40] and various other types of advanced concretes 

[41]. With future advancements and exploration in regression techniques, we could effectively conduct 

a wide variety of research and accurately predict their behavior which can help us cut costs and save 

valuable time. 
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