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Solar power generation is a critical metric for energy management, grid stability, and renewable 

energy optimization. Predictive analytics offers promising solutions to improve generation 

efficiency through machine learning models that analyze environmental and generation data. 

This study focuses on developing machine learning algorithms to predict solar power generation 

accurately, addressing challenges like data variability, temporal alignment, and feature selection 

that influence energy forecasting and system reliability. The research employs supervised 

machine learning algorithms, including linear regression, random forests, and gradient boosting. 

Weather sensor data and generation records are preprocessed to align time-series data and 

identify key features influencing power output, which are then used to train and test the models. 

Evaluation metrics for the models include mean squared error (MSE), accuracy, and 

interpretability. Preliminary findings indicate that machine learning models, particularly 

Random Forests and Gradient Boosting, can effectively predict solar power generation with 

moderate to high accuracy, improving renewable energy management by optimizing grid 

stability. Random Forests emerged as the most reliable model, capturing non-linear 

relationships between variables such as ambient temperature and daily yield, while Gradient 

Boosting provided competitive performance but required more complex parameter tuning. 

Linear Regression, though less effective, highlighted opportunities for refining feature selection. 

The study emphasizes the importance of addressing data quality and variability through rigorous 

preprocessing and model validation. Findings underscore the predictive value of ambient 

temperature and daily yield in determining energy output, guiding strategies for efficient plant 

operation. By showcasing the integration of machine learning in renewable energy, this research 

highlights its potential to enhance solar power efficiency, optimize resource use, and contribute 

to more sustainable and resilient energy systems. 
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INTRODUCTION 

Solar power generation plays a crucial role in the global transition toward renewable energy, directly impacting grid 

stability, resource allocation, and energy efficiency. Accurate predictions of solar power output are essential for 

optimizing energy management, ensuring consistent supply, and minimizing reliance on non-renewable sources. 

With the increasing availability of weather and generation data, combined with advancements in machine learning, 

predictive analytics offers new opportunities to enhance the reliability and efficiency of solar power systems. 

Recent studies emphasize the transformative potential of machine learning in renewable energy management. Smith 

et al. (2021) demonstrated the effectiveness of ensemble models in forecasting solar power generation, achieving 

significant improvements in prediction accuracy and operational efficiency. Similarly, Zhao et al. (2023) highlighted 

the integration of deep learning techniques with weather sensor data, enabling real-time adjustments to energy 

distribution and grid stability. Furthermore, Kumar and Lee (2024) explored the importance of feature engineering 

in predictive analytics, showing how variables like ambient temperature, solar irradiance, and cloud cover influence 

generation patterns. However, challenges remain in addressing data variability and ensuring model scalability, as 
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noted by Wang et al. (2023), who stressed the need for robust preprocessing techniques to handle temporal and 

spatial inconsistencies in data. 

This study investigates the application of machine learning models for predictive analytics in solar power generation, 

focusing on developing algorithms that address challenges such as data variability, feature selection, and temporal 

alignment. By leveraging predictive models, this research aims to enhance renewable energy management, optimize 

resource utilization, and contribute to building more resilient and sustainable energy systems. 

METHODOLOGY 

This study explored the application of machine learning techniques to improve the accuracy of predictive analytics 

for solar power generation. Data was sourced from a solar power plant, encompassing weather sensor readings such 

as ambient temperature and solar irradiance, alongside generation records, including daily yield. These data points 

formed the foundation for the analysis, revealing the interplay between environmental factors and energy output. By 

analyzing these variables, the study aimed to uncover patterns that influence solar energy production. The findings 

from the machine learning models were used to optimize forecasting, ultimately improving efficiency in energy 

management. 

A. Data Preprocessing 

 

Figure 1. Orange Data Mining connection setup for Data Preprocessing. 

The data underwent preprocessing to ensure quality and consistency, adhering to contemporary practices described 

in recent studies, such as those by Smith et al. (2020) and Zhao and Li (2021). This step addressed missing values, 

aligned time-series data, and mitigated anomalies that could compromise model accuracy. The dataset was 

subsequently split into training (80%) and testing (20%) subsets to support model development and validation. 

B. Model Selection and Training 
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Figure 2. Orange Data Mining connection setup for Model Selection and Training. 

Three machine learning models were implemented to predict solar power generation: linear regression, random 

forests, and gradient boosting. Linear regression served as a baseline, offering simplicity and straightforward 

interpretability, as emphasized by Jones et al. (2022). Random forests, noted for their robustness in modeling non-

linear relationships, were selected for their capacity to handle complex data interactions, as evidenced by Kim and 

Park (2023). Gradient boosting was included for its strength in refining predictions through iterative optimization, 

aligning with findings by Gupta and Singh (2021). 

Using Orange Data Mining, the models were trained on the processed data, and their performance was evaluated 

using metrics such as accuracy and mean squared error (MSE). Model evaluation utilized the Test and Score widget 

to compare results, with Random Forests achieving the highest accuracy. 

C. Model Evaluation and Visualization 

 

Figure 3. Orange Data Mining connection setup for Model Evaluation and Visualization. 

Further visualization was achieved by connecting the trained Random Forest model to the Predictions widget and 

generating a scatter plot that demonstrated the correlation between actual and predicted outputs. This step verified 

the model’s ability to generalize predictions effectively, consistent with the approaches described by Chen et al. 

(2020). The scatter plot confirmed that Random Forests produced accurate predictions, with minimal deviation 

between actual and predicted values. 

RESULTS 

This report presents an analysis of solar power generation using three machine learning models: Random Forest, 

Gradient Boosting, and Linear Regression. The analysis focused on the relationship between ambient temperature 

(measured in degrees Celsius), chronological data spanning May to June 2020, and daily solar power yield (measured 

in kWh). Scatter plots were utilized to visualize this relationship, with ambient temperature represented on the x-

axis, time on the y-axis, and daily yield encoded in a color gradient from blue (low yield) to yellow (high yield). The 

following sections detail the observations, insights, and performance of each model. 

A. Analysis of Random Forest Model 
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Figure 4: Scatter Plot of Ambient Temperature vs. Daily Yield (Random Forest) 

The Random Forest model effectively handled the non-linear relationships between ambient temperature, time, and 

daily solar power yield. Higher daily yields were associated with temperatures ranging between 30°C and 36°C, as 

indicated by the prevalence of yellow points in this range. This suggested a strong positive correlation between 

temperature and solar power generation within this range. 

However, at extremely high temperatures (above 36°C), the occurrence of high yields diminished. This pattern 

indicated that excessive heat could impair solar panel efficiency. Conversely, lower temperatures (below 26°C) 

predominantly resulted in lower yields (blue points), reinforcing the dependency of solar generation on optimal 

temperature conditions. 

Chronologically, high-yield points were relatively evenly distributed over the analyzed period, spanning May 17, 

2020, to June 14, 2020. No significant spikes or dips in solar generation were observed, suggesting stable weather 

conditions during this timeframe. 

B. Analysis of Gradient Boosting Model 

 

Figure 5: Scatter Plot of Ambient Temperature vs. Daily Yield (Gradient Boosting). 

The Gradient Boosting model exhibited similar trends to the Random Forest model. It identified an optimal 

temperature range for solar panel efficiency, with higher daily yields clustered between 28°C and 34°C. Temperatures 

below 26°C were generally associated with lower yields (blue points), while extremely high temperatures (above 

36°C) displayed fewer instances of high yields, reflecting a decline in efficiency at such temperatures. 

Temporally, the data revealed consistent solar power generation over the timeframe from May 17, 2020, to June 14, 

2020. High-yield points were evenly distributed, with no sharp fluctuations linked to specific dates. Moderate yields 

(green points) clustered on certain days, which might have been influenced by variations in sunlight hours or weather 

conditions. 
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The Gradient Boosting model’s ability to capture non-linear patterns allowed it to provide accurate predictions. This 

capability made it a valuable tool for analyzing the factors influencing solar power generation and identifying trends 

in the data. 

C. Analysis of Linear Regression Model 

 

Figure 6: Scatter Plot of Ambient Temperature vs. Daily Yield (Linear Regression) 

The Linear Regression model captured a general trend of increasing solar power yield with ambient temperature. 

Higher yields were concentrated around the temperature range of 28°C to 34°C, while temperatures below 26°C 

predominantly resulted in lower yields (blue to green points). Temperatures exceeding 36°C were associated with a 

reduced frequency of high yields, suggesting a decline in panel efficiency at extreme heat levels. 

The scatter plot for Linear Regression showed consistent solar generation patterns from May 14, 2020, to June 25, 

2020. High-yield points were evenly distributed over time, indicating stable conditions. However, the model’s linear 

nature oversimplified the relationship between temperature and yield, failing to capture the non-linear dependencies 

observed in the data. 

While Linear Regression offered interpretability and highlighted general trends, its inability to model complex 

relationships made it less accurate compared to Random Forest and Gradient Boosting. The model provided a 

foundational understanding but required further refinements, such as incorporating polynomial features or 

switching to non-linear algorithms, to improve its predictive capabilities. 

D. Models Synthesis 

The analysis demonstrated that Random Forest and Gradient Boosting models outperformed Linear Regression in 

capturing the non-linear relationships between ambient temperature and solar power yield. Both models identified 

an optimal temperature range for maximizing efficiency, emphasizing the importance of maintaining conditions 

within 28°C to 34°C. While Linear Regression provided valuable insights into general trends, its simplicity limited 

its effectiveness for complex datasets. Future work should explore additional features, such as solar irradiation and 

module temperature, to further enhance predictive accuracy and operational insights. 

E. Test and Score Result 

The evaluation of machine learning models for predicting solar power generation was performed using the Test and 

Score widget. The widget provided various performance metrics, including Mean Squared Error (MSE), Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and the R² 

(Coefficient of Determination). These metrics offered insights into the accuracy and reliability of each model. The 

following sections summarize the comparative analysis of the models, accompanied by a screenshot of the results for 

reference (Fig. 7). 



Journal of Information Systems Engineering and Management 
2025, 10(43s) 
e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

1101 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Figure 7. Test and Score Result in Orange Data Mining Program. 

The Mean Squared Error (MSE) and Root Mean Squared Error (RMSE) were used to assess the average squared and 

root squared differences, respectively, between predicted and actual values. The lower these values, the better the 

model's accuracy. Similarly, the Mean Absolute Error (MAE) measured the average absolute difference between 

predictions and true values, while the Mean Absolute Percentage Error (MAPE) provided a percentage-based error 

assessment. Lastly, the R² score indicated the proportion of variance in the target variable explained by the model, 

with values closer to 1 reflecting a better fit. 

Linear Regression showed the poorest performance, with an R² score of 0.366, indicating that it poorly explained the 

variability in the target variable. The error metrics, including MSE, RMSE, and MAE, were high, confirming that the 

model struggled to capture the underlying patterns in the data accurately. 

Random Forest outperformed all other models with the highest R² score of 0.809. Its RMSE (1280.797) and MAE 

(727.005) were the lowest among the models, indicating superior accuracy and predictive performance. The model 

demonstrated its ability to effectively handle complex, non-linear relationships in the data. 

Gradient Boosting ranked second in terms of performance, achieving an R² score of 0.614, which was better than 

Linear Regression but lower than Random Forest. Its error metrics, including an RMSE of 1821.351 and MAE of 

1421.775, were higher than those of Random Forest, indicating less precise predictions. However, the model still 

provided a reasonable level of accuracy. 

F. Score Overall Interpretation 

Random Forest emerged as the most effective model for predicting solar power generation, achieving the highest 

accuracy and the lowest error metrics. Gradient Boosting, while performing better than Linear Regression, lagged 

behind Random Forest in terms of accuracy and error minimization. Linear Regression, on the other hand, exhibited 

significant limitations, making it unsuitable for this dataset. 

DISCUSSION 

The transition to renewable energy systems has underscored the importance of solar power generation in ensuring 

grid reliability, efficient energy distribution, and sustainable resource management. Predicting solar energy output 

with accuracy is critical for enhancing energy planning and reducing dependence on conventional power sources. The 

proliferation of weather and generation data, coupled with advancements in machine learning, has opened new 

possibilities for improving the accuracy and efficiency of solar power forecasts. 

Recent studies have demonstrated the capabilities of machine learning techniques in addressing challenges in solar 

power prediction. For instance, ensemble models have proven effective in capturing complex relationships among 

weather parameters, such as temperature, solar irradiance, and cloud cover, leading to improved forecast accuracy. 

Additionally, deep learning approaches have enabled dynamic energy management and real-time adjustments to 

optimize grid stability. Nevertheless, challenges persist in handling data inconsistencies and modeling non-linear 

interactions, which are essential for reliable predictions. This study explores the application of machine learning 

models to overcome these limitations, focusing on identifying ideal temperature conditions and enhancing the 

operational efficiency of solar power generation systems. 
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A. Random Forest Model Findings 

The Random Forest model effectively handled the non-linear relationships between ambient temperature, module 

temperature, and the daily solar power yield. It demonstrated that higher daily yields occurred predominantly within 

an optimal temperature range. Specifically, daily yields were most prominent when ambient temperatures ranged 

between 30°C and 36°C, as shown by the clustering of yellow points in this range. Similarly, module temperatures 

between 40°C and 55°C contributed to peak yields. Beyond this range, the yield began to diminish, highlighting the 

adverse impact of excessive heat on solar panel efficiency. 

At temperatures exceeding 36°C (ambient) or 55°C (module), fewer instances of high yields were observed. This 

indicated a saturation effect, where excessive temperatures hindered the performance of solar modules. Conversely, 

at lower temperatures (below 26°C), the model consistently recorded reduced yields, reinforcing the dependency of 

solar power generation on achieving optimal operating conditions. 

B. Gradient Boosting Model Findings 

The Gradient Boosting model exhibited similar trends, identifying an optimal temperature range for maximizing 

yields. It effectively captured the complex, non-linear dependencies between temperatures and solar generation. 

High yields were again concentrated within the ranges of 28°C to 34°C for ambient temperature and 40°C to 55°C 

for module temperature. 

Chronologically, the Gradient Boosting model showed stable solar generation over the analyzed period from May 17, 

2020, to June 14, 2020. High-yield points were evenly distributed, and no significant fluctuations or outliers were 

noted. This suggested that weather conditions remained relatively consistent throughout the observation window, 

supporting stable energy production. 

C. Random Forest Model Findings 

The Linear Regression model, on the other hand, captured only the general trend of increasing solar power yield with 

rising temperatures. While it effectively identified an approximate temperature range for higher yields (28°C to 34°C 

ambient), it oversimplified the relationship between temperature and yield due to its linear nature. Non-linear 

dependencies, such as the diminishing returns at higher temperatures, were not accurately modeled. Consequently, 

the Linear Regression model offered limited predictive accuracy compared to Random Forest and Gradient Boosting 

models. 

D. Summary Finding 

 

Figure 8. Scatter Plot of Module vs Ambient Temperature over Daily Yield 

The relationship between module temperature, ambient temperature, and daily yield highlighted the critical role of 

temperature in optimizing solar power generation. A strong positive correlation was observed between module and 

ambient temperatures, with module temperature increasing proportionally as ambient temperature rose. This 

relationship aligned with physical expectations, as higher external temperatures naturally elevated module surface 

temperatures. 
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The ideal temperature range for achieving maximum daily yields was found to be between 30°C and 36°C for ambient 

temperature and between 40°C and 55°C for module temperature. Within these ranges, the solar panels operated at 

peak efficiency, as indicated by the clustering of yellow and green points, which represented higher yields. 

However, extreme heat (module temperature >55°C and ambient temperature >36°C) caused a decline in 

performance, with fewer high-yield points observed. This saturation effect underscored the importance of 

maintaining temperatures within an optimal range to prevent efficiency losses. Conversely, at lower temperatures 

(ambient <26°C and module <35°C), the yields were consistently lower, demonstrating the strong dependency of 

solar power generation on appropriate thermal conditions. 

The findings emphasized that effective thermal management of solar panels is essential for maximizing energy output 

in solar power plants. The Random Forest model, along with module temperature as a key parameter, was particularly 

valuable in capturing the intricate non-linear relationships between temperature and yield. These insights informed 

operational strategies, such as cooling mechanisms or adjustments in system configurations. By ensuring solar panels 

operated within optimal temperature ranges, power plants could significantly enhance their energy generation 

efficiency, contributing to the broader goals of sustainable energy management and grid stability. 

CONCLUSION 

The transition to renewable energy systems has emphasized the importance of solar power for grid reliability, efficient 

energy distribution, and sustainable resource management. Accurate prediction of solar energy output is key to 

improving energy planning and reducing reliance on conventional sources. This study evaluates the relationship 

between ambient temperature, module temperature, and solar power yield using machine learning models, aiming 

to identify the optimal temperature range for efficiency and understand the impact of extreme temperatures on solar 

panel performance. 

Advancements in weather data and machine learning have enhanced solar power forecasting, with ensemble models 

improving accuracy by capturing complex weather relationships. However, challenges remain in addressing data 

inconsistencies and non-linear interactions. This study explores how machine learning models can overcome these 

challenges, focusing on ideal temperature conditions to improve solar power generation efficiency. 

The analysis using Random Forest, Gradient Boosting, and Linear Regression models revealed that solar panels 

perform best at ambient temperatures between 30°C and 36°C and module temperatures between 40°C and 55°C. 

The Random Forest model outperformed others, effectively capturing the non-linear temperature-solar yield 

relationship. The findings highlight the need for thermal management in solar plants to prevent performance loss, 

with future work incorporating additional environmental factors to improve predictive accuracy and operational 

strategies. 
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