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This study offers an in-depth comparative examination of predictive monitoring systems 

utilizing sophisticated machine learning (ML) and deep learning (DL) algorithms. The 

investigation delves into the efficacy, advantages, and constraints of ML algorithms, 

exemplified by Random Forest and Extreme Gradient Boosting will be contrasted with Deep 

Learning (DL) algorithms including artificial neural networks (ANNs) and LSTM, recurrent 

neural networks (RNNs) in this study. By evaluating these algorithms across diverse domains, 

the research aims to discern optimal strategies for predictive monitoring, considering factors 

like efficiency, real-time processing, and adaptability. The findings contribute valuable insights 

for practitioners and researchers, informing the selection and deployment of algorithms in 

predictive monitoring systems 
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1. INTRODUCTION 

People always face such kind of questions: In a machine, what is the Maintenance and What kind of Maintenance 
are available to us? Can I just use and throw the Machine? Or Do I need to invest to keep it running? When is 
Machine going to fail? I have maintained Machine, it is running nice but still I would like to know, how long it’s 
going to live? [5] These are the serious issues and people can’t afford to lose costly machinery. Maintenance will be 
directly proportional to the criticality of the equipment to the strategic importance of that machinery. Maintenance 
comprises systematic activities conducted to ensure an item remains in its optimal operational state. So there are 
techniques which will let us know like which kind of maintenance to be use. Once we diagnose the fault in machine, 
people are always interested in to know the Remaining useful life (RUL) [19] [37] of the Machine. Predictive 
monitoring systems play a crucial role in various domains due to their ability to anticipate issues, optimize 
processes, and enhance decision-making. Here are some key aspects highlighting the importance of predictive 
monitoring systems across different domains [39]: 

Healthcare: The ongoing surveillance of patients’ health parameters facilitates the early identification of 
abnormalities, thereby mitigating the risk of complications. 

Manufacturing and Industry: Anticipating equipment failures through monitoring helps prevent unplanned 
downtime, reduces maintenance costs, and improves overall operational efficiency. Monitoring production 
processes in real-time allows for the early identification of defects, ensuring the production of high- quality goods. 
[13] [23] 

Finance: In real-time, predictive monitoring systems can examine patterns and anomalies within financial 
transactions to identify and detect fraudulent activities. 

Market Analysis: Forecasting market trends and analyzing financial data enables better decision- making for 
investment and risk management. 

Information Technology:  Monitoring IT infrastructure can predict potential system failures, ensuring optimal 
performance and minimizing downtime.  
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Transportation and Logistics: Predictive monitoring in vehicle maintenance enhances fleet efficiency by 
forecasting maintenance needs, reducing breakdowns, while in traffic management, it optimizes flow, mitigates 
congestion, and enhances overall transportation infrastructure. 

Energy Management: Predictive monitoring contributes to power grid optimization by anticipating demand 
fluctuations, ensuring efficient energy distribution, and minimizing the risk of power outages; concurrently, it 
enhances equipment efficiency through predictive maintenance, optimizing energy consumption, and reducing 
operational costs. 

Environmental Monitoring: Predictive monitoring systems analyze environmental data for both natural disaster 
predictions, including hurricanes, earthquakes, and floods, and contribute to climate change analysis by tracking 
environmental parameters over time, enhancing the understanding of climate patterns. 

Retail and E-commerce: Predictive monitoring leverages customer behavior analysis for demand forecasting, 
optimizing inventory management to reduce stock outs, and utilizes monitored customer preferences to enable 
businesses in crafting targeted and personalized marketing strategies. 

Hence, predictive monitoring systems provide valuable insights, enhance operational efficiency, and contribute to 
informed decision-making across a various domains, ultimately resulting in enhanced outcomes and optimize 
resource utilization.[9] [15][21][38] 

2. LITERATURE SURVEY 

Numerous researchers have established the pivotal role of maintenance in enhancing production performance.  
[8][11][12][23] As technological advancements continue to reshape factory landscapes, corresponding 
maintenance methods evolve to meet the changing demands of manufacturers. The advent of Industry 4.0 
necessitates the development of new maintenance techniques, termed Maintenance 4.0 [1] [29], aligning 
with the paradigm shift in manufacturing. 

[20] [31] Manufacturing industries hold a significant position in national economies, emphasizing the critical 
importance of optimizing the use of all processing equipment. The challenge lies in synchronizing activities, 
operations, and equipment utilization to minimize losses and defects, which, in turn, drive investments in the 
maintenance sector. Traditionally, the concept of maintenance has been limited to the repair of equipment, 
focusing on preventive, predictive, and corrective measures. [15][27] Yet, within the context of Industry 4.0, the 
complete value chain seamlessly integrates, exchanging digitized information to facilitate collaborative task 
execution and generating extensive datasets. 

[27] The massive data generated in Industry 4.0 environments presents an opportunity for more accurate 
problem detection, root-cause analysis, damage prediction, effect assessment, and reliable maintenance planning. 
Critical elements for Maintenance 4.0 include comprehensive data coverage, high quality, and efficient utilization 
of data, yet addressing the challenges of handling such extensive datasets and developing tools for transforming 
data into actionable information poses a considerable hurdle. [1] [6] [29] the goals of Industry 4.0 are emphasized 
by the need for reduced time-to-market, personalized mass production, and enhanced efficiency. To sustain 
Industry 4.0’s success, Maintenance 4.0 must exhibit rapid responsiveness to dynamic changes in operating 
conditions, Sustain machine quality at an economical rate to boost profitability in both maintenance and 
production processes, ultimately attaining superior performance in production machinery [36][38][40]. 

The need for advanced algorithms, particularly Machine Learning (ML) and Deep Learning (DL) [10][26][39], in 
enhancing predictive monitoring arises from their ability to handle complex patterns, large datasets, and 
nonlinear relationships more effectively than traditional methods. Here are key reasons why ML and DL are crucial 
in the context of predictive monitoring: 

1. Pattern Recognition: ML: Machine learning algorithms are highly effective at recognizing patterns within data, 
enabling the recognition of subtle trends or anomalies that may be indicative of future events. DL: Deep learning, 
with its neural networks, can automatically learn hierarchical representations of data, capturing intricate patterns 
that may be challenging for traditional algorithms [32]. 

2. Handling Large Datasets: ML: ML algorithms can process and analyze extensive datasets with efficiency, which is 
common in predictive monitoring where numerous variables and parameters are involved. DL: Deep learning 
models, especially deep neural networks, are adept at handling massive datasets and extracting meaningful 
features, making them suitable for scenarios with high-dimensional input data. 

3. Nonlinear Relationships: ML: Machine learning models can capture nonlinear relationships between variables, 
providing more accurate representations of complex systems compared to linear models. DL: Deep learning, with 
its ability to model intricate nonlinear relationships, is particularly effective when dealing with complex, 
interconnected features in data. 
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4. Adaptability and Learning: ML: Adapting to dynamic conditions and learning from fresh data, machine learning 
algorithms enable predictive monitoring systems to progressively enhance their accuracy over time. DL: Deep 
learning models, especially in reinforcement learning scenarios, can dynamically adjust their behavior based on 
feedback, making them suitable for environments with evolving patterns. 

5. Feature Extraction: ML: Machine learning algorithms frequently necessitate manual feature engineering, where 
domain experts define pertinent features. Nevertheless, certain ML algorithms can autonomously select features. 
DL: In deep learning models, pertinent features can be automatically learned from raw data, alleviating the 
necessity for extensive manual feature engineering in numerous instances [34]. 

6. Complex Decision-Making: ML: Machine learning algorithms can make complex decisions based on learned 
patterns, making them suitable for predictive monitoring tasks that involve multifaceted decision- making 
processes. DL: Deep learning models, with their deep neural architectures, can learn hierarchical representations 
that enable them to make intricate decisions, especially in tasks with high-level abstractions. 

7. Real-time Processing: ML: Many machine learning models are capable of real-time processing, allowing for timely 
predictions in dynamic and fast-changing environments. DL: Deep learning models can be optimized for efficient 
real-time processing; making them suitable for applications where quick responses are crucial. [14] [17] 

In summary, the need for advanced algorithms like ML and DL in predictive monitoring stems from their ability to 
handle complex patterns, large datasets, nonlinear relationships, and adapt to changing conditions. These 
technologies empower predictive monitoring systems to provide more accurate, timely, and insightful predictions 
across a variety of domains. 

3. SAMPLE DATA FROM MANUFACTURING INDUSTRY 

This time utilizing sample data, an attempt was made to develop machine learning and deep learning algorithms. 
The sample data has been taken from kaggle official website [41]. The provided sample data file comprises three 
primary categories of information: 

1. Timestamp data, including both the date and time [33]. 

2. Sensor data, consisting of 52 series of raw values. 

3. Machine status, serving as the target label indicating the predicted occurrence of failure. 

 

Fig. 1. Distribution of Variables 

 

Fig. 2. Distribution of Variables 

This research utilizes a dataset spanning five months. Through a time-based segmentation approach, the dataset 
was divided into training and testing subsets. The methodology adopted for this partitioning is as follows: 

a. Three months of historical data, specifically the 4th, 5th, and 6th months, were utilized as the training dataset. 

b. The remaining month, i.e., the 7th month was reserved exclusively for testing purposes. 

To provide a succinct overview of the dataset structure, Table 2 presents a snapshot of the data as it appears in the 
Excel format. The initial column denotes timestamps, depicting the date and minute-wise recording intervals. 
Subsequent columns encompass the sensor readings, ranging from Sensor 00 to Sensor 51, constituting a total of 52 
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sensors. The final column encapsulates the machine status information. This meticulously collected dataset serves 
as the foundational resource for evaluation of predictive maintenance algorithms and for the development. 

 

 

Fig. 3. Sample dataset 

Deep learning, a subset of machine learning, is derived from ANN Artificial Neural Networks and is characterized 
by multiple nonlinear processing layers. Its primary objective is to learn hierarchical representations of data. The 
field of deep learning is rapidly evolving, with various architectures continually being developed. The community is 
highly collaborative, offering numerous high-quality tutorials and books. 

[14] [21] [25] [35] Therefore, this summary offers a concise overview of prominent deep learning methods 
employed in machine health monitoring. [8] It specifically examines four deep architectures such as Auto-encoders 
etc. along with their respective variations. 

[1] [9] [16] [36] Researchers have built predictive maintenance algorithms using Machine Learning. For testing 
purpose two machine learning algorithms have built just to compare the results with the deep learning algorithms. 

The chosen MACHINE LEARNING algorithms are: 

a. Random Forest Classifier (RF) 

b. Extreme Gradient Boost Classifier (XGBoost) 

The chosen DEEP LEARNING algorithms are: 

a. Artificial Neural Network (ANN) 

b. RNN-Longest short term Memory (LSTM) 

4. PREDICTIVE MONITORING SYSTEMS USING MACHINE LEARNING 

4.1. Mostly used ML Algorithms: 1) Random Forest Classifier 

Accurately categorizing observations holds significant importance across a spectrum of business endeavors, ranging 
from predicting individual user purchase behavior to forecasting loan default likelihood. In the field of DS, data 
science, there exists a wide array of algorithms, encompassing SVM, NBC, DT and LR. Among these options, the 
random forest classifier stands out as one of the most prominent methods at the apex of the classifier hierarchy. 

[16] Random forest, as implied by its name, comprises a multitude of individual classification/regression trees 
functioning collectively. In the random forest every individual tree has ability to produce a class prediction, and 
then it dictates the model’s final prediction. The principle behind this algorithm is straightforward yet sturdy. 

A collective of relatively uncorrelated models tends to outperform any individual model. The essential aspect here is 
the minimal correlation between models. This phenomenon arises as the trees safeguard each other from errors, 
provided they do not consistently commit errors in the same direction. While certain trees might produce 
inaccurate predictions, many others will provide accurate predictions, enabling the collective movement of the 
group of trees in the right direction.  

To ensure the effectiveness of random forest, specific conditions need to be fulfilled: 

1. The features must contain substantial signal so that models built upon them perform superior to random 
guessing. 

2. The predictions made by individual trees, and consequently their errors, should exhibit low correlations among 
themselves. Random forest utilizes bagging and feature randomness during the construction of each tree to 
generate a diverse forest, resulting in a collective prediction that surpasses the accuracy of any single tree.  
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𝑖=1 

 

Fig. 4. Illustration of a Random Forest Model Predicting 

4.2. Mostly used ML Algorithms: 2) Extreme Gradient Boosting Classifier (XGBoost) 

This is machine learning algorithm, that’s like a team of experts working together to make predictions. Each expert 
is like a small decision maker called a decision tree. XGBoost combines the predictions of many decision trees to 
make more accurate predictions. It’s called “extreme” because it works 

Really well and is often used in competitions where accuracy is crucial. 

[16] Extreme Gradient Boosting is a supervised tree-based algorithm mainly used for classification tasks in 
Machine Learning. In contrast to traditional Gradient Boosting, XGBoost employs its own approach to constructing 
trees, wherein the Similarity Score and Gain are used to determine the optimal splits for nodes. 

Basically, XGBoost is a supervised Machine Learning algorithm based on trees. While it can tackle classification 
and regression problems, the focus here is on its application for classification. Unlike traditional Gradient Boosting 
methods, XGBoost has its own way of constructing trees, using factors like Similarity Score and Gain to determine 
the best node splits. XGBoost is known for its efficiency and effectiveness, making it a popular choice in the 
machine learning community. 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 𝑆𝑐𝑜𝑟𝑒 = (∑𝑛 (𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙)2 /  ∑𝑛 [Previous Probability ∗ (1 − Previous Probability)] + λ 

Gradient boosting, the broader category XGBoost belongs to, involves ensemble algorithms for classification or 
regression tasks. It utilizes decision tree models, gradually adding trees to the ensemble and adjusting them to 
correct prediction errors from previous models. This boosting technique involves training models using various loss 
functions and gradient descent optimization, which gives gradient boosting its name. 

XGBoost stands out for its dominance in competitions like Kaggle. It builds decision trees sequentially, with each 
tree using weights assigned to independent variables for making predictions. If a variable is predicted incorrectly, 
its weight is increased, and the variable is passed to the next tree. These individual trees’ predictions are combined, 
to form a robust and accurate model. 

Overall, XGBoost is a versatile algorithm capable of handling various types of problems, including regression, 
classification, ranking, and custom prediction tasks. Its efficient implementation and ability to produce highly 
accurate models have made it a go-to choice for many machine learning practitioners. 

5. PREDICTIVE MONITORING SYSTEMS USING DEEP LEARNING 

5.1. Mostly used DL Algorithms: 1) ANN 

Artificial Neural Network (ANN) is a computer program designed to mimic the functionality of human brain, with 
interconnected nodes called neurons processing information in layers to generate outputs based on inputs. To 
illustrate, consider teaching a computer to recognize different fruits from images. These images are converted into 
data fragments, such as pixels, and passed through the neural network where neurons analyze patterns in the data. 

[7] The ANN learns by adjusting the connections between neurons based on the patterns identified in the input 
data. As it encounters more examples and refines its connections, it improves its ability to recognize fruits 
accurately. In essence, an ANN is akin to virtual brain learning from examples to perform tasks like image 
recognition, outcome prediction, and decision-making. 

As a vital component of Artificial Intelligence (AI), an ANN aims to replicate the complex network of 
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interconnected neurons which found in the human brain. By programming computers to emulate the behavior of 
brain cells, ANNs enable computers to comprehend information and make decisions similarly to humans. The 
structure of an artificial neural network typically comprises three layers: input, hidden, and output. 

In an ANN, inputs undergo processing through a weighted sum calculation, including a bias, followed by activation 
through a transfer function. The resulting output is determined by activation functions, which decide whether a 
node should be activated or not, with activated nodes contributing to the output layer. Various activation functions 
are available for implementation, allowing flexibility in modeling different types of data and tasks. 

∑ Wi ∗ Xi + b𝑛
𝑖=1   Where Wi and Xi are the weights and inputs, respectively, and b is the bias. 

 

Fig. 5. Artificial Neural network structure 

5.2. Mostly used DL Algorithms: 2) RNN- LSTM 

Longest Short Term Memory networks, commonly referred to as LSTMs, represent a specialized form of RNNs 
designed specifically to capture long-term dependencies. [28] Initially proposed by Hoch Reiter 
Schmidhuber in 1997, LSTMs have undergone further refinement and widespread adoption. LSTMs are 
specifically crafted to overcome the hurdle of long-term dependency. Help in making them adept at retaining 
information over extended periods without encountering difficulty. 

At the core of LSTM architecture lies a sequence of repeating neural network modules. While traditional RNNs 
feature simplistic structures like a single tanh layer within these modules, LSTMs integrate more sophisticated 
elements. These elements include feedback connections. The weight matrix W assigns different weights to two 
parameters: the current input vector along with the previous hidden state for every gate. Similar to conventional 
RNNs, LSTMs generate an output at each time step, and this output is subsequently utilized for training the 
network via gradient descent. [2] [28] 

The equation is represented as: 

𝑓𝑡 = 𝜎(𝑤𝑓. [ℎ𝑡 − 1, 𝑥1] + 𝑏𝑓) (2) 

𝑖𝑡 = 𝜎(𝑤𝑖. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑖) (3) 

C𝑡 = 𝑡𝑎𝑛ℎ (𝑤𝑐. [ℎ𝑡 − 1, 𝑥𝑡] + 𝑏𝑐) (4) 

C𝑡 = 𝑓𝑡 ∗ 𝐶𝑡 − 1 + 𝑖𝑡 ∗ 𝐶𝑡 (5) 

The LSTM process begins by deciding which forget the cell state information. The forget gate layer analyzes ht1 and 
xt. It produces outputs within the range of 0 to 1. This is indicating whether to retain or discard each element.  
Subsequently, the focus shifts to determining the new information to integrate into the cell state. This entails two 
stages: the “input gate layer” identifies values for updating, followed by the generation of a vector of potential new 
values, C t, by a tanh layer. These components are then amalgamated to formulate an update to the state. 

Transitioning from previous cell to new cell that is Ct1 to Ct is the subsequent task. Guided by the directives 
established in prior steps, this transition involves discarding designated elements from the old state and 
incorporating new candidate values, scaled based on the degree of update determined for each state value. Finally, 
the determined output is completely based on the filtered cell state. A sigmoid layer identifies segments of the cell 
state for output; these are then passed through a tanh transformation to constrain the values within the range of -1 
to 1. Multiplying the output of the sigmoid gate ensures that only the designated segments are output [32]. 
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Fig. 6. The LSTM’s repeating module consists of four interconnected layers 

6. COMARATIVE ANALYSIS 

6.1. Execution steps for Random Forest Classifier 

• Import the Random Forest classifier from sklearn 

• Initialize the classifier object with default parameters 

• Train the object with X-train & y-train 

• Predict with x-test data 

• Generate metrics 

6.2. Execution steps for XGBoost Classifier 

• Import the XGBoost classifier from sklearn 

• Initialize the classifier object with default parameters 

• Train the object with X-train & y-train 

• Predict with x-test data 

• Generate metrics 

6.3. Execution steps for ANN 

• It’s a 4 layer architecture 

•  1st layer is fully connected dense layer with 32 neurons, Activation function as Relu 

• 2nd layer is dropout layer 

• 3rd layer is again a fully connected layer with 8 Neurons, Activation function as Relu 

• 4th layer is dense layer with 1 neuron (Activation as Sigmoid) 

• Compiled it using loss function as binary-crossentropy with optimizer as adam 

• Trained this architecture with x-trian and y-train 

• Predicted it on x-test 

• Generate the metrics 

6.4. Execution steps for LSTM 

• It’s a 2 layer architecture 

• 1st layer is with 100 neurons 

• 2nd layer is with 1 neuron with Sigmoid as Activation function 

• Compiled it using loss function as binary-crossentropy with optimizer as adam 

• Trained this architecture with x-trian and y-train 

• Predicted it on x-test 

• Generate the metrics 
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Fig. 7. Performance metrics of RF Classifier 

 

Fig. 8. Performance metrics of XGBoost Classifier 

 

Figure 9. Performance metrics of ANN Classifier 

 

Fig. 10. Performance metrics of RNN LSTM Classifier 

7. DISCUSSION 

[26] When assessing the effectiveness of a machine learning or deep learning model, it’s crucial to move beyond the 
simplicity of mere code execution and delve into the realm of model evaluation. Typically, the evaluation process 
involves the utilization of predefined metrics selected by the practitioner. In the context of classification models, the 
evaluation often revolves around metrics derived from a confusion matrix, which serves as a fundamental tool not 
only for assessing model performance but also for monitoring and managing models. 

A confusion matrix, alternatively known as an error matrix, stands as a concise tabular representation employed to 
gauge the efficacy of a classification model. It encapsulates both the correct and incorrect predictions made by the 
model, providing a breakdown of counts for each class. Visualizing a 2x2 confusion matrix reveals four distinct 
quadrants, each offering insights into the model’s predictive capabilities. 

For instance, in the scenario where a classification model correctly predicts ’Yes’ in ten instances where the actual 
value is indeed ’Yes,’ these ten instances are recorded in the True Positive quadrant, situated in upper-left corner of 
the confusion matrix (CM). This delineates a True Positive prediction, representing cases where the model correctly 
identifies positive instances, contributing to an understanding of key terms crucial for model evaluation. 

In essence, the confusion matrix serves as a cornerstone in the assessment of classification models, offering a 
comprehensive breakdown of predictive outcomes that enables practitioners to discern the model’s strengths and 
weaknesses across different classes. Its utility extends beyond mere evaluation, encompassing model monitoring 
and management, thereby facilitating informed decision-making in the development and deployment of ML and DL 
models. 

The 2x2 Confusion Matrix depicted in Figure 12 illustrates four crucial terms we need to grasp TN, TP, FN, and FP: 

 

Fig. 11. 2x2 Confusion Matrix 

• True Positive (TP): In this case, the model accurately predicts a positive outcome. For instance, when the model 
accurately recognizes an image as a dog, and it truly is a dog. 

• True Negative (TN): In this case, the model accurately predicts a negative outcome. An example would be when 
the model correctly identifies an image as not being a dog when it’s actually not. 

• False Positive (FP): This is termed a type 1 error, this happens when the model predicts incorrectly with positive 
outcome. For instance, the model may wrongly classify an image as a dog when it’s actually not. 
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• False Negative (FN): This is termed a type 2 error and arises when the model incorrectly predicts a negative 
outcome. An example would be when the model fails to recognize an image as a dog when it actually is. 

In simpler terms, True Positive and True Negative denote accurate predictions, while False Positive and False 
Negative indicate errors in the model’s predictions. 

1) Performance Metrics: 

• Accuracy: This indicates the rate of accurate predictions out of the total predictions. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
       (6) 

• Precision: Precision is focuses on the accuracy of positive predictions that it concludes how many were 
actually correct out of all the items the model predicted as positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
       (7) 

• Recall: Recall is able to find all the positive instances that it tells how many did the model manage to 
identify correctly. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
              (8) 

• F1 Score: This combines aspects of precision and recall, giving us single number to gauge how well our 
model performs overall. It’s like combining the accuracy of precision with the completeness of recall to get a 
balanced view of the model’s effectiveness. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                     (9) 

 

Fig. 12. RF & XGBoost Confusion Matrix 

 

Fig. 13. ANN & LSTM Confusion Matrix 
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𝑖 

 
Fig. 14. ANN model loss 

Binary cross entropy (BCE) is used, loss function for classification problem. 

𝐶𝐸 = − ∑𝐶 𝑡𝑖 log 𝑆𝑖 (10) 

𝐵𝐶𝐸 = −[𝑡1 𝑙𝑜𝑔𝑠1 − (1 − 𝑡1)log(1 − 𝑠1)] (11) 

Where, ti is true class distribution Si is predicted class distribution t1 is train loss and s1 is test loss 

 

Fig. 15. LSTM model loss  

Table 1. Comapative Results 

 Machine Learning  Deep Learning  

Parameter Model RF XGBoost ANN LSTM  

False Negative Rate (FNR) 36 54 1549 8 

F1 Score  98.8 99.10 89.73 99.13 

Precision 0 97 98 95 98 

 1 100 100 96 100 

Recall 0 99 99 72 99 

 1 100 100 99 100 

Accuracy  99  100  96  100 

[3] [4] [22] [24] [30] if we compare the results LSTM works better than all among tested algorithms. Throughout 
all leaning algorithms, FNR is very vey less even F1 score is found to be highest among others. 

8. CONCLUSION 

The research has demonstrated the superior performance of LSTM in predictive monitoring systems compared to 
other machine learning and deep learning algorithms. With significantly lower false negative rates and the highest 
F1 score among tested models, LSTM emerges as a promising choice for practitioners and researchers in this field. 
These findings underscore the importance of considering algorithm selection carefully, with an emphasis on 
efficiency, real-time processing, and adaptability. Moving forward, future research could focus on further enhancing 
LSTM-based monitoring systems, exploring novel approaches to improve performance and scalability, and 
investigating the integration of multiple algorithms to enhance predictive accuracy and reliability. 
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