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Predicting accurately how chemotherapy will work on breast cancer patients is important for 

making the best treatment plans, cutting down on side effects that aren't needed, and raising the 

total survival rate. Notwithstanding considerable progress in clinical research, forecasting a 

patient's response to chemotherapy continues to be a formidable challenge owing to the intricacy 

and variability of disease. Conventional predictive models predominantly depend on single-modal 

data, such as clinical or genomic information, frequently neglecting the whole range of patient 

data that could improve forecast precision. To overcome this constraint, we offer OncoPredictNet, 

an innovative multi-modal deep learning architecture that integrates medical imaging, clinical, 

and genomic data to forecast chemotherapy response in breast cancer patients. The core of the 

suggested system is the Multi-Modal Convolutional and Recurrent Network (MM-CRNet), a 

hybrid architecture intended to handle and integrate various data kinds. Convolutional Neural 

Networks (CNNs), which are particularly successful in extracting spatial characteristics from 

medical pictures, are utilized in the process of analyzing imaging data: mammograms, magnetic 

resonance imaging (MRI), and computed tomography (CT) scans. Convolutional Neural Networks 

(CNNs) analyze tumor attributes including dimensions, morphology, and texture, which have been 

demonstrated to correlate with therapeutic results. Clinical data, such as patient demographics 

(age, sex), tumor stage, hormone receptor status, and HER2 status, are incorporated using 

Recurrent Neural Networks (RNNs), specifically Long Short-Term Memory (LSTM) or 

Transformer models, to capture temporal and sequential patterns that may indicate disease 

progression and potential response to chemotherapy. Genomic information, such as gene 

expression profiles or mutation patterns, provide vital information about the tumor's genetic 

makeup and propensity to react to particular chemotherapy treatments. The amalgamation of 

these varied data sources transpires via a fusion layer that integrates features from the CNN 

(image-based) and LSTM/Transformer (clinical and genomic-based) models. The fusion layer 

allows the system to acquire a cohesive depiction of the patient by utilizing complementing 

insights from several data modalities. This comprehensive representation is then processed 

through fully connected layers to forecast the chemotherapeutic response, which can be 

characterized as sensitive, resistant, or partial. Compared to single-modal models, 

OncoPredictNet can produce a more comprehensive and accurate model for predicting 

chemotherapy results by leveraging various data sources. To assess the efficacy of OncoPredictNet, 

we perform a series of experiments utilizing a multi-modal dataset comprising medical pictures 

and clinical records and genetic information from breast cancer patients. Initial findings indicate 

that the model surpasses conventional methods, exhibiting enhanced prediction accuracy, 

sensitivity, and specificity. The amalgamation of imaging data, which delineates tumor form and 

heterogeneity, with clinical and genetic data, augments the model’s capacity to address both the 

biology and visual intricacies of breast cancer. The findings indicate that OncoPredictNet may 
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serve as a significant resource for doctors, facilitating individualized treatment strategies and 

enhancing the probability of favorable chemotherapy effects. In conclusion, OncoPredictNet 

signifies a notable progression in the utilization of artificial intelligence inside oncology. 

Integrating several data modalities into a cohesive deep learning framework enhances the 

understanding of breast cancer biology and chemotherapy response. This method enhances 

predictive accuracy and advances individualized, patient-specific treatment solutions. Future 

endeavors will concentrate on enhancing the model, augmenting the dataset, and verifying the 

system in clinical environments, with the primary objective of optimizing patient outcomes 

through more accurate and personalized chemotherapy protocols. 

Keywords: Chemotherapy response, Breast cancer, Multi-modal deep learning, Convolutional 

Neural Networks (CNN), Long Short-Term Memory (LSTM), Genomic data, Clinical data, Medical 

imaging, Personalized treatment, Prediction model 

 

I. INTRODUCTION 

Breast cancer is among the most common cancers globally, impacting millions of women each year. Chemotherapy is a 

fundamental component of treatment; yet, individual reactions to it can differ markedly due to numerous factors, such 

as tumor features, patient demographics, and inherent genetic abnormalities. Precise forecasting of chemotherapy 

response is essential for enhancing treatment strategies, reducing superfluous side effects, and augmenting overall 

survival rates. Conventional methods for forecasting chemotherapy results depend on singular data categories, including 

imaging, clinical records, or genomic profiles. Nonetheless, these methodologies frequently neglect to account for the 

intricate interconnections among biological, clinical, and molecular aspects that affect therapy response【3】【7】. This 

gap highlights the pressing necessity for sophisticated computational models that can incorporate multi-modal data to 

enhance forecast precision. This study introduces the Multi-Modal Convolutional and Recurrent Network (MM-CRNet), 

an innovative deep learning architecture aimed at integrating and analyzing diverse data sources to predict 

chemotherapy response in breast cancer patients. The system integrates convolutional neural networks (CNNs) for the 

analysis of medical imaging data with long short-term memory networks (LSTMs) for the management of sequential 

clinical and genetic data. MM-CRNet synthesizes spatial information from imaging with temporal patterns from clinical 

and genetic data to produce a holistic representation of each patient's profile. Our results show that our strategy 

outperforms baseline models by 88.6%, with high precision (89.3%), recall (87.5%), and AUC of 92.7%. These findings 

emphasize the significance of multi-modal integration in enhancing personalized therapy. MM-CRNet's system 

architecture tackles significant issues in predictive oncology. Medical imaging techniques, including mammography and 

MRI scans, furnish essential spatial data regarding tumor dimensions, morphology, and texture, which are significant 

indicators of chemotherapy efficacy. However, imaging data alone cannot account for dynamic changes in a patient's 

clinical condition or genetic mutations in the tumor over time (10, 12). Clinical data, including patient demographics, 

treatment history, and tumor growth trends, enhance imaging by providing temporal insights. Moreover, genomic data, 

encompassing gene expression profiles and mutation statuses, furnish essential molecular-level insights crucial for 

comprehending tumor behavior and drug sensitivity【18】【20】. By merging different modalities, MM-CRNet 

capitalizes on the advantages of each data type, facilitating more accurate and individualized predictions. Our ablation 

investigation illustrates the individual and combined contributions of these modalities, highlighting the benefits of 

multi-modal data integration. For example, deleting imaging data reduced performance to 84.3% accuracy, showing the 

significance of spatial cues in chemotherapy response prediction. Likewise, excluding clinical or genetic data resulted in 

diminished performance, demonstrating the synergistic relationship between these data sources. These findings show 

that MM-CRNet can handle a variety of complicated patient data with both effectiveness and robustness.  This study 

enhances the existing research on AI-driven customized medicine by overcoming the shortcomings of conventional 

predictive models and establishing a new standard for multi-modal integration. This also creates opportunities for future 

research, including the integration of supplementary data types (e.g., proteomics or radiomics) and the investigation of 

interpretability methods to improve clinical implementation. The subsequent sections delineate the design, deployment, 

and assessment of MM-CRNet, emphasizing its capacity to transform cancer therapy by equipping clinicians with 

dependable, data-driven decision-making tools.  
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II. LITERATURE SURVEY 

Predicting chemotherapy response in breast cancer has emerged as a major field of research, with the potential to 

dramatically influence customized treatment options. Historically, clinical parameters including tumor stage, hormone 

receptor status, and patient demographics have been utilized to inform therapy decisions. Recent research, on the other 

hand, have increasingly combined multi-modal data sources, such as medical imaging, genomic profiles, and clinical 

records, in order to increase the accuracy of their predictions. This is due to the emergence of new technology. Early 

studies, like those by Cireşan et al. (2013), showed that deep convolutional neural networks (CNNs) could be used to 

classify medical images. This was a big step toward using AI in medical imaging [1]. LeCun et al. (2015) advanced this 

research by creating deeper and more intricate CNN architectures, which have since been essential in medical imaging 

applications, such as the evaluation of mammograms and MRI scans to identify tumor characteristics associated with 

chemotherapy response [2]. Imaging-based methodologies that extract characteristics like tumor dimensions, 

morphology, and texture have demonstrated efficacy in forecasting treatment results; however, they frequently lack the 

molecular insights necessary for more individualized forecasts.  Genomic data, offering comprehensive molecular 

profiles of malignancies, has become an essential element in predicting treatment responses. Vasan et al. (2020) 

underscored the significance of amalgamating genomic and clinical data to forecast cancer treatment outcomes, 

asserting that molecular profiling can reveal insights into chemotherapy resistance and sensitivity that imaging alone 

cannot detect [8]. This transition to integrating genomic data corresponds with ongoing initiatives to create more 

comprehensive predictive models that consider both visual and molecular tumor attributes. Liu et al. (2019) integrated 

clinical, genetic, and imaging data to forecast cancer outcomes, demonstrating that multi-modal models significantly 

surpassed single-modal methods in accuracy [10]. The amalgamation of these varied data sources necessitates advanced 

data fusion methodologies to guarantee that each modality contributes optimally to the ultimate forecast. Multi-modal 

data integration has demonstrated potential in breast cancer research, especially in forecasting chemotherapy response. 

Liu et al. (2020) presented a deep learning model that integrates histopathological and genomic data to forecast 

chemotherapy results, highlighting that the amalgamation of these modalities produces more precise predictions than 

utilizing either modality independently [15]. Han et al. (2021) elaborated on this concept by amalgamating 

histopathological and radiological data via deep learning, underscoring the benefits of multi-modal strategies in 

augmenting the prediction efficacy of chemotherapy response models [23]. The capacity to integrate multiple data 

sources has resulted in more precise models that more accurately represent the intricacies of cancer biology. Zhou et al. 

(2020) integrated imaging and genomic data to forecast breast cancer prognosis and treatment response, illustrating 

that radiomic characteristics from medical images, when coupled with genetic data, can markedly enhance predictive 

accuracy [19]. This study highlights the significance of image-derived characteristics and genomic data in 

comprehending chemotherapy resistance, offering a more thorough perspective on the patient's tumor biology. The 

integration of clinical and genomic data with medical imaging is enhanced by advanced neural network architectures, 

including recurrent neural networks (RNNs) and Long Short-Term Memory (LSTM) networks. The ability to handle 

sequential data, such as clinical histories and genomic expression patterns, which change over time and may provide 

crucial information on treatment response, is a capability that these models possess. Zhuang et al. (2020) investigated 

the application of LSTMs to integrate sequential clinical and genomic data for predicting chemotherapy outcomes, 

showing that these models are well-suited to capture temporal dependencies in medical records and molecular data, 

resulting in more accurate predictions [9]. This methodology is especially crucial in predicting chemotherapy responses, 

as treatment protocols and patient variables change continuously. CDespite the significant potential of multi-modal deep 

learning models, obstacles persist, especially regarding data integration and model interpretability. Ching et al. (2018) 

examined the challenges of applying deep learning in clinical settings, including data heterogeneity and the requirement 

for extensive, annotated datasets for model training. Moreover, model interpretability is a critical issue, as doctors 

necessitate transparency in predictions to guarantee the reliability of AI-generated choices [11]. Notwithstanding these 

challenges, the amalgamation of multi-modal data—encompassing medical imaging, clinical data, and genomic 

profiles—has markedly enhanced the precision of chemotherapy response prediction. Yu et al. (2020) demonstrated how 

merging genomic and radiological data using AI models might lead to a more thorough knowledge of chemotherapy 

resistance, emphasizing the promise of multi-modal deep learning in cancer [24]. As the discipline advances, these 

models are anticipated to assume a progressively crucial position in customizing chemotherapy regimens and enhancing 

patient outcomes.  In summary, the advancement of deep learning models that amalgamate imaging, clinical, and genetic 
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data presents a potential strategy for forecasting chemotherapy response in breast cancer. By integrating the advantages 

of each modality, these models yield a more precise and comprehensive forecast compared to conventional single-modal 

approaches. Nonetheless, obstacles concerning data quality, model interpretability, and data fusion methodologies 

persist. Subsequent research will concentrate on enhancing these multi-modal models, augmenting datasets, and 

verifying them in clinical environments to ascertain their relevance and effectiveness in practical oncology applications.  

III. RELATED WORKS 

Research on predicting chemotherapy response in breast cancer patients has advanced considerably with the 

development of machine learning (ML) and deep learning (DL) techniques. Initial studies primarily relied on clinical 

and histopathological data to identify markers that could indicate how patients might respond to chemotherapy. These 

conventional methods used statistical models and clinical scoring systems to assess treatment outcomes based on tumor 

characteristics, patient demographics, and prescribed treatment regimens. However, such approaches often lacked the 

precision necessary for personalized treatment strategies. 

The introduction of advanced medical imaging technologies has led to the widespread adoption of convolutional neural 

networks (CNNs) for analyzing radiological images, including mammograms, MRIs, and ultrasound scans. CNN-based 

models have demonstrated impressive performance in detecting critical tumor features such as shape, texture, and 

density, which are key indicators of chemotherapy effectiveness. By automating the extraction of imaging features, deep 

learning models have reduced human bias and improved prediction accuracy. Moreover, integrating imaging data with 

other data modalities has enhanced the robustness and reliability of predictive models. 

At the same time, the role of genomic and molecular data in understanding chemotherapy response has gained 

significant attention. High-throughput genomic sequencing technologies have made it possible to investigate genetic 

mutations, gene expression patterns, and molecular markers associated with chemotherapy resistance and sensitivity. 

Machine learning algorithms, such as support vector machines (SVMs) and random forests, have been applied to 

genomic datasets to identify critical biomarkers that predict treatment outcomes. Combining imaging data with genomic 

information has led to the development of multi-modal predictive frameworks, offering a more holistic view of tumor 

biology and patient-specific responses. 

Recent advancements have focused on deep learning models that integrate diverse data sources—such as medical 

images, clinical records, and genomic data—to improve prediction accuracy. Recurrent neural networks (RNNs) and 

long short-term memory (LSTM) networks are particularly effective in analyzing sequential data, capturing temporal 

trends in patient health records, and monitoring treatment responses over time. These models provide valuable insights 

into the progression of a patient’s response to chemotherapy, enhancing personalized treatment planning. 

Despite these promising developments, several challenges persist. Integrating heterogeneous data sources remains 

complex, as aligning and extracting meaningful features from different modalities can impact model performance. 

Additionally, the opaque nature of deep learning models, often referred to as the "black-box" problem, raises concerns 

about transparency and trust among healthcare professionals. To address these issues, researchers are increasingly 

focusing on explainable AI (XAI) techniques to improve model interpretability and support clinical decision-making. 

In conclusion, the field of chemotherapy response prediction for breast cancer has evolved from traditional statistical 

methods to sophisticated ML and DL models. The integration of multi-modal data—encompassing imaging, clinical, and 

genomic information—has paved the way for more accurate and personalized predictions. However, overcoming 

challenges related to data fusion, model interpretability, and clinical adoption is essential to fully harness the potential 

of AI-driven precision oncology. 

IV. PROPOSED SYSTEM 

The suggested method for guessing how treatment will work in people with breast cancer uses a brand-new multi-modal 

deep learning algorithm known as Multi-Modal Convolutional and Recurrent Network (MM-CRNet). This methodology 

incorporates Convolutional Neural Networks (CNNs) for feature extraction from imaging data and Recurrent Neural 

Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, to capture sequential dependencies from 

clinical and genomic data. The integration of these two complementing methodologies facilitates a more thorough 

comprehension of the patient's situation, hence enhancing the prediction of treatment response.  
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System Synopsis: 

The MM-CRNet system is designed to handle three key data modalities: medical imaging, clinical information, and 

genetic data. Its architecture consists of two main components: (1) an image-processing module that employs 

convolutional neural networks (CNNs) to extract features from medical images, such as mammograms or MRI scans, 

and (2) a sequential data-processing module that leverages recurrent neural networks (RNNs) and long short-term 

memory (LSTM) networks to analyze clinical and genetic information. The outputs from both components are then 

combined to produce a final prediction regarding the patient’s response to chemotherapy. 

 

Convolutional Neural Network-based Medical Imaging Component: 

The MM-CRNet framework is designed to analyze three core types of data: medical images, clinical records, and genetic 

information. Its structure includes two key modules: (1) an image analysis module that applies convolutional neural 

networks (CNNs) to identify and extract features from medical images like mammograms and MRI scans, and (2) a 

sequential data module that utilizes recurrent neural networks (RNNs) and long short-term memory (LSTM) networks 

to process clinical and genetic data. The insights generated from both modules are then integrated to deliver a 

comprehensive prediction of chemotherapy response. 

 

Sequential Data Component (RNN/LSTM-based)  

The sequential data component manages clinical and genetic data, which are intrinsically temporal and sequential. The 

patient's tumor biology and treatment response over time can be better understood by analyzing clinical data, such as 

the patient's medical history, treatment timelines, and chemotherapy regimens, as well as genomic data, such as gene 

expression profiles, mutation data, and copy number variations. RNNs and LSTMs are employed to represent sequential 

dependencies, enabling the system to comprehend how clinical and genomic variables develop and affect chemotherapy 

responses during the treatment process. LSTM networks, a specialized kind of RNNs, are particularly effective in 

capturing long-range dependencies and alleviating problems such as vanishing gradients that may arise with extended 

sequences. Each clinical and genomic data point is processed through an LSTM layer, which analyzes the data in a time-

series manner to capture the temporal dynamics and correlations across various factors. 

 Fusion Layer: Following the feature extraction from both image and sequential data components, the MM-CRNet 

system utilizes a fusion layer to integrate the outputs of the CNN and LSTM networks. This fusion layer is intended to 

integrate the feature vectors from both components to optimize the advantages of each data modality. The outputs of 

the CNN (image-derived features) and the LSTM (clinical/genomic-derived features) are amalgamated and processed 

through fully connected layers to generate a cohesive feature representation. This representation is then sent into the 

final classification layer, which predicts the treatment response (responders, non-responders, and partial responders).  

Prediction Layer: The final step in the MM-CRNet architecture is the prediction layer, which generates a probability 

distribution that indicates the likelihood of chemotherapeutic response on the patient's part. This layer generally 

comprises one or more fully linked layers succeeded by a softmax or sigmoid activation function, contingent upon the 

type of prediction task (binary or multi-class). Breast cancer patients with established treatment response outcomes are 

used to train the model. Throughout training, the network endeavors to minimize a loss function (e.g., categorical cross-

entropy or binary cross-entropy), modifying the weights to enhance the precision of its predictions.  

Summary of the Algorithm 

 Multi-Modal Convolutional and Recurrent Network (MM-CRNet) 

The MM-CRNet algorithm employs a multi-step methodology to forecast chemotherapy response, synthesizing 

geographical and temporal data from many modalities.  

Input Data Preparation:  

The algorithm initially processes the input data, encompassing medical images (mammograms, MRI scans, 

histopathological images), clinical data (patient demographics, treatment history, chemotherapy regimen), and genomic 
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data (gene expression, mutations, and copy number variations). The data types are pre-processed and standardized to 

guarantee uniformity.  

Feature Extraction through CNN: Medical images are input into a CNN architecture that autonomously learns to extract 

significant spatial information pertinent to tumor morphology. Multiple convolutional layers encapsulate these 

information, progressively constructing higher-level representations of the tumor's morphology.  

Sequential Modeling with LSTM: Clinical and genomic data are processed using an LSTM network that learns temporal 

patterns and correlations across multiple time points. This stage is essential for documenting the progression of the 

patient's health condition and tumor biology, which affect the treatment response over time.  

Feature Fusion: The outputs from the CNN and LSTM components are integrated at a fusion layer, where the spatial 

features from pictures and the sequential features from clinical/genomic data are concatenated into a cohesive feature 

vector. This integration enables the network to utilize both data types concurrently, improving overall predictive 

accuracy.  

The integrated feature vector is sent through completely connected layers and a concluding output layer, which forecasts 

the chemotherapeutic reaction. The result may be a binary classification (responders versus non-responders) or a multi-

class classification, contingent upon the individual task.  

Training and Optimization 

 The MM-CRNet system is trained on a dataset with established chemotherapy responses utilizing a backpropagation 

method. The loss function is optimized by gradient descent methods, including Adam, to reduce prediction errors. 

Regularization methods, like dropout and L2 regularization, can be utilized to mitigate overfitting.  

Benefits of MM-CRNet 

 Multi-Modal Integration. MM-CRNet integrates imaging, clinical, and genetic data to encompass the complete range of 

information pertinent to predicting chemotherapy response. This integration guarantees that both structural tumor 

attributes (derived from imaging) and molecular tumor traits (obtained from clinical and genomic data) are incorporated 

into the predictive process.  

Sequential Data Processing 

 The system can describe the temporal evolution of clinical and genomic data by using LSTMs, which is crucial for 

comprehending the long-term effects of chemotherapy on the tumor.  

 

Enhanced Prediction Accuracy 

By combining CNN-extracted spatial characteristics with LSTM-extracted temporal features, MM-CRNet can make 

more accurate predictions than models that only use one data modality.  

 

The Multi-Modal Convolutional and Recurrent Network (MM-CRNet) offers a comprehensive and adaptable framework 

for forecasting chemotherapy responses in breast cancer patients through the integration of medical imaging, clinical, 

and genetic data. By utilizing the advantages of CNNs for image feature extraction and LSTMs for sequential data 

modeling, MM-CRNet provides a more thorough and precise approach to tailored cancer therapy recommendations.  

V. SYSTEM DESIGN AND ARCHITECTURE  

The MM-CRNet (Multi-Modal Convolutional and Recurrent Network) is designed to leverage both spatial and temporal 

data to predict chemotherapy response in breast cancer patients. The system is built to handle three distinct modalities 

of data: medical imaging, clinical data, and genomic data, integrating them into a unified architecture that outputs an 

accurate prediction of chemotherapy response. Below is a detailed description of the system design and architecture, 

covering the key components and how they interact. 
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System Architecture Overview 

The MM-CRNet architecture consists of multiple interconnected modules, each designed to handle a specific data 

modality and perform different tasks in the prediction pipeline.  

1. Data Preprocessing and Input Layer 

Data preprocessing is a crucial step in any machine learning system, especially when dealing with heterogeneous data 

from different sources. In MM-CRNet, the input data includes medical imaging, clinical data, and genomic data, all of 

which must be appropriately processed before being fed into the model. 

Medical Imaging 

The images (mammograms, MRI scans, or histopathology slides) are pre-processed to standardize their size and 

resolution. This may include resizing, normalization (scaling pixel values to a range), and augmentation (such as 

rotations, flips, and noise addition) to improve the generalization ability of the model. Additionally, image segmentation 

techniques may be applied to isolate the tumor from the background for more accurate feature extraction. 

Clinical Data 

Clinical data, such as patient demographics (age, gender, etc.), treatment history, chemotherapy regimens, and tumor 

markers, is typically structured data. Preprocessing steps include normalization, handling missing values, and encoding 

categorical variables. Temporal clinical data (e.g., chemotherapy regimen over time) is handled by LSTMs in the 

subsequent stages of the network. 

Genomic Data 

Genomic data, such as gene expression profiles, mutation status, and copy number variations, is pre-processed by 

standardizing expression levels, encoding mutations into numerical values, and normalizing the gene expression data to 

a common scale. Temporal genomic data (if available) is also processed for sequential analysis. 

Once pre-processed, the data is ready to be fed into the system for further analysis by the individual components. 

2. Medical Imaging Component (CNN-based) 

The medical imaging module within MM-CRNet leverages Convolutional Neural Networks (CNNs) to identify and 

extract key features from tumor images. CNNs are well-suited for image analysis tasks due to their ability to 

automatically learn spatial feature hierarchies without manual intervention. 

Input Layer: Pre-processed tumor images, resized to a standardized dimension (e.g., 224x224 pixels), are introduced 

into the input layer of the CNN. 

Convolutional Layers: Multiple convolutional layers are employed to apply filters that detect fundamental image 

features such as edges, textures, and corners. These layers are typically followed by activation functions like ReLU, which 

introduce non-linearity, enhancing the model’s ability to learn complex patterns. 

Pooling Layers: To reduce the spatial dimensions and computational complexity, pooling layers—commonly max 

pooling—are applied after convolutional operations. This process helps the model concentrate on the most critical 

features while minimizing redundant information. 

Fully Connected Layers: The output from the convolutional and pooling layers is flattened and passed through fully 

connected layers. These layers transform the extracted features into higher-level representations, capturing intricate 

tumor characteristics. 

Output: The final output is a feature vector that encapsulates important tumor attributes, including shape, size, texture, 

and other radiomic features, which are essential for further predictive analysis.  

3. Clinical and Genomic Data Component (LSTM-based) 

The clinical and genomic data module of MM-CRNet employs Recurrent Neural Networks (RNNs), with a focus on Long 

Short-Term Memory (LSTM) networks, to analyze sequential data that changes over time. This module plays a critical 
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role in capturing temporal dynamics in clinical and genomic datasets, which are essential for understanding breast 

cancer progression and patient responses to chemotherapy. 

Input Layer: Temporal clinical and genomic data, such as treatment history (e.g., chemotherapy cycles, drug 

administration schedules) and genomic alterations over time (e.g., mutation status or fluctuations in gene expression), 

are input into the LSTM network. 

LSTM Layers: LSTM networks are specifically designed to manage sequential data, effectively capturing long-term 

dependencies within the dataset. They feature memory cells that retain information over extended sequences, addressing 

the vanishing gradient issue often seen in standard RNNs. Patient clinical records and genomic data are processed 

through these LSTM layers, which identify temporal patterns and interdependencies critical for predicting treatment 

outcomes. 

Output: The LSTM layers generate a series of feature vectors that represent the temporal progression of clinical and 

genomic characteristics. These outputs provide valuable insights into tumor development over time and the effectiveness 

of chemotherapy, contributing to more informed predictive modeling. 

4. Feature Fusion Layer 

The feature fusion layer serves as the integration point for outputs from the CNN-based imaging module and the LSTM-

based clinical/genomic data module. This layer is essential because it merges distinct types of information—spatial 

features derived from medical images and temporal patterns from clinical and genomic data—enabling the model to 

develop a comprehensive understanding of the tumor and its response to therapy. 

Concatenation: The feature vectors produced by the CNN and LSTM components are merged into a single, unified 

vector through concatenation. This combined vector encapsulates both spatial characteristics from imaging data and 

temporal dynamics from clinical and genomic information, offering a richer dataset for analysis. 

Fully Connected Layer: The integrated feature vector is then processed through one or more fully connected layers. 

These layers are designed to learn optimal ways to synthesize the multi-modal features, enhancing the model’s ability to 

accurately predict chemotherapy response. 

5. Prediction Layer 

The prediction layer utilizes the fused features from the previous layer to determine the patient’s chemotherapy 

response. This prediction can be framed as either a binary classification problem (distinguishing between responders 

and non-responders) or a multi-class classification task (such as complete response, partial response, stable disease, or 

disease progression), depending on the specific requirements of the study. 

Fully Connected Layers: The unified feature vector is fed into one or more fully connected layers. These layers are 

responsible for learning the relationships between the combined spatial and temporal features and mapping them to the 

corresponding chemotherapy response categories. 

Activation Function: To generate the final predictions, the model applies an activation function in the output layer. 

For multi-class classification, a softmax activation function is used to produce probability distributions across the 

different response categories. For binary classification tasks, a sigmoid activation function is employed to output the 

probability of a patient being a responder or non-responder. 

6. Output Layer 

The output layer generates the final prediction. For a binary classification task, the output is a probability value 

between 0 and 1, indicating the likelihood of a positive chemotherapy response. For a multi-class classification, the 

output is a vector representing the probabilities for each class (e.g., complete response, partial response, stable disease, 

progression). The class with the highest probability is chosen as the predicted chemotherapy response. 

7. Training and Optimization Module 

The MM-CRNet model is trained on a labeled dataset that includes medical images, clinical records, genomic 

information, and corresponding chemotherapy response outcomes. The training process employs the 
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backpropagation algorithm, combined with optimization techniques like Adam or Stochastic Gradient Descent 

(SGD), to minimize the chosen loss function. The selection of the loss function depends on the classification task: 

categorical cross-entropy is used for multi-class classification, while binary cross-entropy is applied to binary 

classification tasks. 

Loss Function: The model aims to reduce prediction errors by optimizing the appropriate loss function. Categorical 

cross-entropy is typically utilized for multi-class classification tasks, whereas binary cross-entropy is suitable for 

binary classification problems. 

Regularization: To enhance the model's generalization capability and prevent overfitting, regularization 

techniques such as dropout and L2 regularization are implemented during training. 

 

Fig 1: Flowchart representation of architecture 

The MM-CRNet architecture integrates Convolutional Neural Networks (CNNs) for spatial feature extraction from 

medical images and Long Short-Term Memory (LSTM) networks for processing temporal clinical and genomic data. The 

fusion of these two components enables the model to make accurate and personalized predictions of chemotherapy 

response in breast cancer patients. By utilizing multi-modal data, the system provides a comprehensive view of the 

tumor’s characteristics, behavior, and response to treatment, making it a valuable tool for personalized oncology. 

 

Mathematical Derivation 

1. Convolutional Neural Network (CNN) for Image Data 

Let the input image be represented by I, a matrix of size H×W×C (height, width, and number of channels). The output 

of the convolution layer can be computed as: 

𝑂𝑖𝑗 = ∑ ∑𝐼(𝑖 + 𝑚 − 1)(𝑗 + 𝑛 − 1) ⋅ 𝐾𝑚𝑛

𝒌

𝒏=𝟏

𝒌

𝒎=𝟏

 

here: 

• Oij is the output at position (i,j)(i, j)(i,j). 

• I(i+m−1)(j+n−1) is the image pixel value at the position (i+m−1,j+n−1). 

• Kmn is the kernel/filter at position (m,n)(m, n)(m,n). 

• k is the kernel size (e.g., 3×33 \times 33×3). 

This convolution operation is repeated across the entire image to produce the feature map OOO. Pooling (e.g., max 

pooling) follows to reduce the size of OOO by summarizing spatial regions. 
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2. Recurrent Neural Network (RNN)/LSTM for Sequential Data 

Let xt  be the input at time step ttt, which could represent clinical or genomic data. The hidden state hth_tht of the LSTM 

can be calculated as: 

ℎ𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ𝑡 − 1) 

This process models the temporal dependencies in the data. The LSTM contains multiple gates (input, forget, and output 

gates), but simplifying: 

• Forget Gate: Decides which information to discard. 

• Input Gate: Updates the memory state. 

• Output Gate: Decides the output for the current time step. 

At each time step, the LSTM updates its hidden state hth_tht based on the current input xt  and the previous hidden 

state ht−1. 

3. Feature Fusion Layer 

After feature extraction from both CNN and LSTM components, we concatenate the feature vectors fcnn  from the CNN 

and flstm  from the LSTM: 

𝑓𝑓𝑢𝑠𝑖𝑜𝑛 = [𝑓𝑐𝑛𝑛, 𝑓𝑙𝑠𝑡𝑚] 

Where: 

• fcnn  is the feature vector from the CNN (image features). 

• flstm  is the feature vector from the LSTM (temporal/clinical/genomic features). 

• ffusion is the concatenated feature vector, combining both modalities. 

4. Prediction Layer 

The fused feature vector ffusion  is then passed through one or more fully connected layers with weights W and bias bbb 

to make the final prediction: 

𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ⋅ 𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑏) 

here: 

• W is the weight matrix. 

• b is the bias term. 

• y is the output vector representing the predicted class probabilities (chemotherapy response). 

5. Loss Function 

For training the model, a loss function L is used, such as categorical cross-entropy for multi-class classification: 

𝐿 =∑𝐶𝑦𝑐𝑙𝑜𝑔(𝑦^𝑐)

𝑪

𝒄=𝟏

 

here: 

• CCC is the number of classes (e.g., different chemotherapy responses). 

• ycy_cyc is the true label for class ccc (1 for the true class, 0 for others). 

• y^c\hat{y}_cy^c is the predicted probability for class ccc. 
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The goal is to minimize the loss function during training by adjusting the weights using an optimization algorithm like 

gradient descent. 

In summary, the MM-CRNet combines CNN for extracting spatial features from medical images and LSTM for capturing 

temporal dependencies from clinical and genomic data. The concatenated features are passed through a fully connected 

layer to predict chemotherapy response, with the model trained to minimize the loss function via optimization 

techniques like gradient descent. 

VI. RESULT AND DISCUSSION  

In this section, we present the detailed results of our proposed Multi-Modal Convolutional and Recurrent 

Network (MM-CRNet) for predicting chemotherapy response in breast cancer patients. The system was evaluated 

using a dataset that included medical imaging data, clinical data, and genomic data, and the performance was 

assessed through various evaluation metrics such as accuracy, precision, recall, F1-score, and AUC (Area Under 

the Curve). 

1. Experimental Setup 

The MM-CRNet model was implemented using the PyTorch framework. The dataset consisted of: 

Medical Imaging: Mammogram and MRI scans of breast cancer patients. 

Clinical Data: Patient demographics (age, gender), treatment history, tumor size, and chemotherapy regimen 

information. 

Genomic Data: Gene expression profiles, mutation status, and copy number variations. 

The dataset was split into training (70%), validation (15%), and test (15%) sets. The model was trained for 50 epochs 

with a batch size of 32. We used the Adam optimizer with a learning rate of 0.001 and applied early stopping to 

prevent overfitting. 

Table 1: Experimental Setup 

Data Type Description 

Medical Imaging Mammogram and MRI scans of breast cancer patients 

Clinical Data Patient demographics, treatment history, tumor size 

Genomic Data Gene expression profiles, mutation status, copy number 

Parameter Value 

Training Split 70% 

Validation Split 15% 

Test Split 15% 

Batch Size 32 

Learning Rate 0.001 

Optimizer Adam 

Epochs 50 

2. Quantitative Performance Evaluation 

To evaluate the performance of MM-CRNet, we compared it to several baseline models, including a CNN-based model 

(using only imaging data), a LSTM-based model (using only clinical and genomic data), and a traditional machine 

learning model (such as Random Forest) combining all data modalities in a simplistic manner. 

The evaluation metrics used are as follows: 

Accuracy: Proportion of correct predictions out of all predictions. 
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Precision: Proportion of true positives among all positive predictions. 

Recall: Proportion of true positives among all actual positives. 

F1-score: Harmonic mean of precision and recall, providing a balance between the two. 

AUC (Area Under the ROC Curve): Measures the ability of the model to discriminate between different classes 

(chemotherapy response). 

Table 2 presents the performance of MM-CRNet compared to the baseline models 

MM-CRNet outperforms all baseline models across all evaluation metrics, showing that the combination of CNN for 

imaging data and LSTM for clinical/genomic data results in a better understanding of chemotherapy response. 

The CNN-based model and LSTM-based model performed well but were limited by the modality they used, either 

focusing solely on images or temporal clinical/genomic data. 

Random Forest provided decent performance but did not fully capitalize on the complex relationships between the multi-

modal data sources. 

3. Qualitative Analysis 

In addition to quantitative metrics, we also evaluated the model qualitatively by inspecting the predictions on a subset 

of test images, clinical, and genomic data. Figure 1 shows sample predictions for chemotherapy response, comparing 

the true label and predicted label for individual patients. 

For images, the model accurately predicted the chemotherapy response in patients with both positive and negative 

outcomes based on tumor features such as size, shape, and texture. 

For clinical and genomic data, the model correctly identified patterns in the temporal changes of genomic markers and 

clinical data, such as tumor size reduction or stable disease status, helping to reinforce the prediction. 

 

 

 

 

 

Model 
Accuracy 

(%) 

Precision 

(%) 
Recall (%) 

F1-Score 

(%) 
AUC (%) 

MM-CRNet 

(Proposed 

Model) 

88.6 89.3 87.5 88.4 92.7 

CNN-based 

Model 

(Image Only) 

81.4 80.2 79.0 79.6 85.3 

LSTM-based 

Model 

(Clinical & 

Genomic 

Data) 

84.1 85.4 82.3 83.8 89.2 

Random 

Forest (All 

Modalities) 

85.3 84.0 84.5 84.2 88.5 
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Table 3: Qualitative Analysis 

Evaluation Criteria Observation 

Imaging Analysis 
Accurate response prediction based on tumor size, shape, 

and texture 

Clinical Data Analysis Correct pattern identification in temporal patient data 

Genomic Data Analysis 
Accurate identification of chemotherapy response based 

on molecular changes 

Overall Findings 

 

Metric MM-CRNet (Proposed Model) 

Accuracy Improvement 

(%) 
88.6 - 85.3 = 3.3 

Precision Improvement 

(%) 
89.3 - 84.0 = 5.3 

Recall Improvement (%) 87.5 - 84.5 = 3.0 

F1-Score Improvement 

(%) 
88.4 - 84.2 = 4.2 

AUC Improvement 

 (%) 
92.7 - 88.5 = 4.2 

4. Ablation Study 

To better understand the contribution of each component of the system, we conducted an ablation study, 

systematically removing one modality at a time from the MM-CRNet model. The results are summarized in  

Table4, which shows the performance drop when either medical imaging, clinical data, or genomic data is removed. 

Table 4: summarised result 

Model Accuracy (%) 
Precision 

(%) 
Recall (%) 

F1-Score 

(%) 
AUC (%) 

MM-CRNet 

(All 

Modalities) 

88.6 89.3 87.5 88.4 92.7 

Without 

Imaging 

Data 

84.3 85.1 82.8 83.9 88.1 

Without 

Clinical Data 
85.2 85.7 84.0 84.8 88.3 

Without 

Genomic 

Data 

86.4 86.2 85.0 85.6 89.6 

Without imaging data, the performance dropped, indicating that medical imaging provides critical spatial features 

that are not captured by clinical or genomic data alone. 

Without clinical data, the performance was slightly lower but still good, showing that temporal changes in patient 

history and treatment are important for predictions. 

Without genomic data, the system performed better than without imaging or clinical data, highlighting the 

importance of genomic markers in predicting chemotherapy response. 
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This ablation study shows the value of integrating all three modalities—imaging, clinical, and genomic data—for optimal 

performance. 

The MM-CRNet model demonstrates significant improvements in predicting chemotherapy response 

compared to traditional methods, especially when using multi-modal data. The integration of medical imaging, 

clinical, and genomic data allows the model to learn more comprehensive representations of the tumor and the 

patient's response to chemotherapy. The use of CNN for spatial feature extraction from images and LSTM for temporal 

feature extraction from clinical/genomic data results in a system capable of handling complex and varied data sources. 

The high AUC and F1-score indicate that the model is particularly effective in classifying chemotherapy responders 

and non-responders. The ablation study further confirms the importance of multi-modal data in improving prediction 

accuracy. 

In this study, we proposed MM-CRNet, a novel model for predicting chemotherapy response in breast cancer patients, 

which combines convolutional and recurrent networks to process multi-modal data. Our experimental results show that 

MM-CRNet significantly outperforms baseline models, achieving higher accuracy and better overall prediction 

performance. The results highlight the importance of combining medical images, clinical data, and genomic data for 

making personalized predictions about chemotherapy response, which can assist clinicians in making more informed 

decisions about treatment strategies. The model demonstrates the potential of integrating deep learning techniques with 

multi-modal data sources for improving personalized healthcare outcomes. 

Discussion 

The MM-CRNet model presents a notable advancement in predicting chemotherapy response in breast cancer patients 

by seamlessly integrating multiple data modalities, including medical imaging, clinical records, and genomic profiles. 

The experimental results demonstrate that MM-CRNet outperforms traditional baseline models, achieving superior 

accuracy, precision, recall, and AUC scores. This improvement highlights the model’s capability to extract spatial 

features from imaging data through CNNs while capturing temporal patterns in clinical and genomic data using LSTMs. 

By effectively merging these diverse features, MM-CRNet gains a more comprehensive understanding of chemotherapy 

response, enabling precise and personalized predictions. 

Furthermore, the ablation study reinforces the significance of incorporating all three data modalities, showing that their 

combination leads to a substantial improvement in predictive performance. The model's adaptability to different data 

types underscores its potential for clinical application, making it a promising tool for enhancing decision-making in 

oncology. Beyond its impact on chemotherapy response prediction, MM-CRNet sets a foundation for integrating multi-

modal deep learning in personalized medicine. However, to ensure its broader applicability and reliability in clinical 

settings, further validation with extensive and diverse datasets is necessary. 

VII. CONCLUSION Bottom of Form 

The proposed Multi-Modal Convolutional and Recurrent Network (MM-CRNet) improves chemotherapy response 

prediction in breast cancer patients by combining medical imaging, clinical data, and genetic information. The model 

successfully detects complex, multi-dimensional relationships that conventional approaches frequently miss by using 

long short-term memory (LSTM) networks to capture temporal patterns in clinical and genomic data and convolutional 

neural networks (CNNs) for spatial feature extraction from imaging data. Combining these many data sources improves 

the model's predictive power, resulting in higher accuracy, precision, recall, and AUC than with traditional models. 

By offering a more complete picture of patient health, MM-CRNet shows great promise for practical use and helps 

oncologists make wise treatment decisions. The model’s ability to integrate heterogeneous data sources underscores its 

utility in personalized treatment planning. However, further validation with larger, more diverse datasets is necessary 

to assess its generalizability across broader patient populations. Future research can explore incorporating additional 

modalities, such as proteomics and radiomics, and enhancing model interpretability to increase trust in AI-driven 

medical predictions. By bridging computational advancements with personalized medicine, MM-CRNet has the 

potential to optimize cancer treatment, minimize adverse effects, and contribute to improved patient outcomes. 
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