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ARTICLE INFO ABSTRACT

Received: 29 Dec 2024  Vehicle make and model recognition is a crucial component in applications such as intelligent

transportation systems, law enforcement, and autonomous vehicles.This paper presents a

comparative analysis of Machine Learning approaches — KNN, SVM and Decision Tree Classifier

Accepted: 27 Feb 2025  which are the first appraoch and three deep learning models—Convolutional Neural Network
(CNN), YOLOVS, and Faster R-CNN— are the second approach for vehicle recognition tasks. The
models were evaluated on a two datasets comprising 197 vehicle classes (dataset1) under various
conditions and the other with was scrapped manually with 17 classes (dataset2), focusing on
metrics such as validation accuracy, inference speed, robustness to occlusion, and computational
efficiency. YOLOv8 emerged as the best-performing model in both the datasets, achieving a mean
Average Precision (mAP) of 95% with dataset1 and 30% with dataset2, with an inference speed of
just 10 ms per image, making it highly suitable for real-time applications. Faster R-CNN
demonstrated exceptional precision and robustness in handling complex scenarios but was
constrained by slower inference speeds with an accuracy of 74% with dataset1 and 65% with
dataset2. In CNN, which is computationally efficient, suffered from significant overfitting, with a
testing accuracy of only 10% with dataset2. Whereas with dataset1 they gave an 78% of testing
accuracy and 90% of training accuracy. The findings of this study emphasize the strengths and
limitations of each model, providing insights into their applicability across various real-world
scenarios.
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I. INTRODUCTION

With the advances in real world applications that require vehicle make and model recognition ranging from
intelligent transportation systems to law enforcement and urban traffic management, vehicle make and model
recognition has become an important component. Due to the importance of vehicles as a key component of today’s
modern infrastructure, vehicles are accurately identified and classified to enable improving safety, efficiency and
automation in such fields. Boston Dynamics controls the motion of the vehicles and its robots through the use of
localization algorithms in continual simulation, operating the drones to follow scripted instructions or to respond to
human commands to perform tasks such as delivering food or supplies to remote locations. In this study, we begin
to understand and compare these three prominent models, emphasizing their suitability for varied real world
scenarios and the possible influence that they will exert on technological development.
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As the intelligent systems adoption in the automotive and public sector grows, there is a growing need for robust and
scalable solutions for vehicle recognition. Although once dominant, traditional image processing techniques have
been found to be inadequate in handling the complexities of modern datasets such as varying lighting conditions,
occlusion, overlapping objects, and great variety in vehicle design. Deep learning has opened this field to revolution
by making models learn hierarchical features directly from data, without relying on hand crafted features. At the
same time, these systems are rendered more fit to the requirement for adaptability to the dynamic character of actual
world circumstances.

The first approach is with Machine Learning Techniques such as KNN, SVM and Decision Tree classifer are
implemented in order to classify the cars. They are implemented on both dataset1 and dataset2. K-Nearest Neighbors
are well known techniques for classification and regression. They are easy to understand and implement. But they do
not perform well for large datasets. SVM (Support Vector Machine) which are known for classification and regression.
They are used for Image Classification, Text Categorization. They are computationally expensive for larger datasets.
Decision Tree Classifier are known for classification. They are prone to overfitting in the case of larger datasets. In
this traditional approach, we train them by extracting the feature manually, whereas in the deep learning models,
they consists of multiple hidden layers which extract the features by themselves.

Convolutional Neural Networks (CNNs) are recognized as one of the most popular vehicle recognition models. CNNs
are particularly tailored for image related task and perform robustly in multi-class classification tasks. CNNs have
the benefit of extracting spatial features from the images through convolutional layers helping them recognize
patterns such as logos, shapes and textures, critically important for making and model identification. This is due to
the simpler nature of architecture when compared to the object detection models which in turn allows computational
efficient performance suitable for scenarios in which classification alone meets demand without the requirement of
localization. But, CNNs are not suited to applications that need object detection and location and their applications
are limited to situations where we have clear and uncluttered data.

CNN s have limitations, however, and object detection models such as YOLOVS fixes this by combining classification
and localization together into one unified framework. Probably the most impressive of the lot is YOLOVS, the latest
YOLO (You Only Look Once) family that is also impressively fast and accurate, making it ideal for real time
applications. YOLOVS is different from other traditional two stage object detection models in that they follow a one
stage approach, considering bounding boxes regression and class prediction at the same time. Rapid inference is
ensured by this architecture, an essential embodiment in dynamic environments such as traffic monitoring and
autonomous vehicles. With occluded and overlapping objects, YOLOV8 can better be applied to congested urban
settings, making it fully reliable!

The alternative to that is Faster R-CNN whose formulation is stronger for high precision scenarios. Compared to
YOLOVS, Faster R-CNN follows a two stage architecture, with first stage generating region proposals and second
stage refining them. Faster R-CNN uses a Region Proposal Network (RPN) for detecting regions of interest that will
help it detect small or partially visible objects. Faster R-CNN is extremely efficient coupled with a backbone network
such as ResNet50 to extract features for complex datasets with high variability. At the expense of less speed, it has
better robustness and precision, making it the preferred architecture for forensic analysis or offline traffic studies.
Nevertheless, the computational expense of Faster R-CNN makes it impractical in real time systems, especially under
constrained resource conditions.

The vehicle recognition process depends critically on the dataset used in this study. There are two datasets, one has
197 different classes and the other with 17 classes, ranging from different car makes and models to modern
automobile designs. Where high resolution images and detailed annotations help the models to learn a diverse set of
features and thereby generalize better. Preparation of this dataset means preprocessing steps like normalization,
resizing to a certain size (uniform) and augmentation (blanking the input and making it come to life again). Real
world variations are simulated by techniques like random flips, random rotations and even random brightness
adjustments, making the trained models robust enough. Finally, the models are tested further, with challenging
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scenarios included such as occlusion and overlapping objects, yielding important practical insights into their true
performance.

Environmental variability has long been a major problem with vehicle recognition. However, lighting, weather, and
camera angle all play major roles in affecting how good the input data is, which severely affects the performance of
the model. CNNs are very good at controlled scenarios but less so when there’s a high level of variability. Since speed
and robustness are the focus of YOLOv8, YOLOVS is better at adapting to these challenges, as the real time application
is the kind that it can address. However, slower because of the region-based interpretation, Faster R-CNN triumphs
over these challenges since it is able to concentrate on selected regions of the image.

Vehicle make and model recognition has many applications across multiple domains. These models are used in
intelligent traffic systems in order to monitor real time traffic and thus assist the authorities in managing congestion
and ensuring compliance with traffic regulations. Such systems allow data from vehicles to help in personalised
customer experiences in the corner of the automotive industry. Vehicle recognition is used by law enforcement to
help track stolen cars, monitor high speed pursuits and enforce parking regulations. Furthermore, these models are
also important components in autonomous vehicles to detect and respond to other road objects to improve safety
and efficiency.

However, many problems remain in deploying vehicle recognition systems. The main limitation is that deep learning
models, especially Faster R-CNN, have a high computational demand that puts demand on high performance
hardware. In edge computing scenarios however, resources are constrained and this challenge is further aggravated.
Therefore, YOLOvVS8 partially mitigates this issue with a tradeoff between the accuracy and computational efficiency
of these systems but we still need further optimizations to make these systems scalable to larger audiences. More
importantly, vehicle recognition systems must be carefully addressed from an ethical standpoint, including privacy
issues and potential misuse, to prevent responsible practice.

The choice of model is delimited by what the application requires. CNN are efficient and straightforward methods for
the tasks that need simple classification. With speed, accuracy and robustness being thirded YOLOVS is the most
versatile option, serving well in real time applications. Although less well suited to time critical scenarios, faster R-
CNN is still the preferred choice when you need high precision, like forensic analysis or very detailed traffic studies.
Analysis between these models is useful for identifying the strengths and weaknesses of each model, allowing us to
choose the model that best fits the use case we are dealing with.

Future developments possible for vehicle recognition systems will try to reduce the shortcomings in the current
models. These results may open up the applicability of Faster R-CNN in real time applications without sacrificing its
precision. Another possible result for the integration of ensemble methods, which combine the strengths of multiple
models, may be developed: YOLOVS is fast like YOLOv8 and Faster R-CNN is precise like Faster R-CNN. Also,
hardware acceleration, including Al specific chips and GPU optimization, is expected to drive the efficiencies of these
systems.

Training deep learning models without a focus on quality of dataset is pointless. Modeling performance, however,
can still be further improved by expanding the dataset to contain more vehicle classes, more difficult scenarios, and
a wider range of environmental conditions. Synthetic data, however, can be included as well — created using
advanced techniques such as Generative Adversarial Networks (GANs) in order to simulate conditions that are
difficult to record in 'real world' scenarios. These advances will continue to make vehicle recognition systems
successful in more complex and dynamic operating environments.

With demand for intelligent and automated systems across industries, it is likely that such systems to adopt vehicle
make and model recognition systems will grow strongly in the years to come. These systems will become more integral
to our everyday life as they grow increasingly integrated, their influence will grow on safety, efficiency and
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convenience. With approaches to confront the current limitations and find the new possibilities, vehicle recognition
systems can offer even higher accuracy and benefit to intelligent transportation systems and related areas.

II. LITRETURE SURVEY

In [1], it focuses on deep transfer learning and Support Vector Machines (SVM) integration for vehicle make and
model recognition to overcome the variation problems in achieving high accuracy for a variety of environments. This
research used a pretrained CNN as a feature extractor for SVM based classification. Thanks to transfer learning, the
authors could overcome a common obstacle to deep learning: it didn't need extensive training sets to run. The study
was held as a success-filled measure as with the proposed system classifying vehicle makes and models under varying
conditions including that of changes in lighting and angles. Compared to traditional methods, which are usually based
on handcrafted features and inflexible to various datasets, the system achieved a classification accuracy above that.
This approach had the advantage of having reduced training time as the pretrained CNN models came with a strong
feature representation that could be easily fine tuned. The comparative analysis was also a key highlight of the
research, in which it showed that transfer learning based approach performed better in accuracy and could also
benefit the computational efficiency compared to the conventional CNN architectures. Unfortunately, such
dependence on SVM is not inherently scalable to large datasets, limiting real time applications. The importance of
dataset diversity was also called out in the study, with the authors calling for more work on obtaining larger, more
diverse datasets to improve generalization. The research offers useful insights into the ability to fuse deep learning
with traditional machine learning techniques resulting in a hybrid approach. This work has implications beyond
vehicle recognition, and it shows promise for other resource constrained applications via the use of transfer learning.

In [2], the author has proposed a novel make and model recognition approach for vehicles using the Residual
SqueezeNet architecture. The challenge was to optimize real time performance without sacrificing accuracy as the
current deep learning models are computationally constrained. The author integrated residual connections into the
lightweight SqueezeNet architecture, achieving a system that provides high speed of inference while keeping the
classification precision. Specifically, the Residual SqueezeNet architecture was designed to reduce the model size and
computation overhead so that the architecture can be successfully deployed on edge devices with very limited
resources. This innovation was particularly useful for applications in developing regions where such high
performance hardware is not well suited to. The model achieved an accuracy of 92% for a benchmark dataset at a 10
millisecond per image inference speed. It’s this balance of speed versus accuracy that really made this highly suitable
for real world applications. The authors also underscored the significance of dataset augmentation to help the model
be more robust to challenging conditions — e.g., under different illumination and during occlusion. A strength for
the model is in distinguishing visually similar vehicle models, but it still faced problems with distinct vehicle models.
The authors suggested that such system performance could be further enhanced by incorporating multimodal data
amounting to license plate recognition and color detection. Additionally, the study recommended standardized
datasets for vehicle recognition so as to enable the benchmarking and model comparison. In particular, this work
significantly advances the state of the art toward practical implementations of vehicle recognition systems in resource
constrained environments. This work demonstrates the feasibility of using lightweight architectures to provide real
time performance in deep learning applications.

In [3], the use of Convolutional Neural Networks (CNNs) to recognize vehicle make and model, focusing on the
capability of CNNs to automatically learn the hierarchical features in raw image data. The problem of handcrafted
features is addressed, as most current methods are restricted by the requirements of a large number of handcrafted
features, and they do not perform well in generalizing to real world scenarios. The proposed CNN model was trained
using a dataset consisting of images taken under different angles, lighting scenarios and environmental factors and
was benchmarked against a dataset which was created by randomly resizing each test image by 6 different factors
using the ground truth values as the training data. In controlled as well as dynamic environments, the study was able
to beat traditional approaches by 93 percent accuracy. Key contribution was demonstration of the CNN's handling of
complex visual features, e.g. differentiate between similar vehicle models. Another strength of the study was in
analysing the effectiveness of different hyperparameters to the model, in the form of learning rates and batch sizes.
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This analysis helped to better optimize CNNs for given applications. The authors stressed that data augmenting is
essential for model robustness because there is less training data available in many cases. Nevertheless, the research
identified issues with the computational burden of CNNs for training. The authors found that these challenges could
be mitigated through using transfer learning or pruning techniques. The study also encouraged the development of
standardized metrics for assessing vehicle recognition systems for the purposes of comparison across studies. This
work emphasizes the tremendous benefit of CNNs for vehicle recognition, as they are capable of generalizing to
diverse datasets and represent complex visual features. The wide range of applications in which its findings have
implications include traffic monitoring to autonomous vehicle systems.

In the study [4], they have built a real time vehicle make and model recognition system tradeoff between accuracy
and computational efficiency. In dynamic environments, the approach integrated deep learning with conventional
image processing methods to improve performance. The proposed system was evaluated in real time scenarios,
including traffic monitoring and parking management, where inference must be fast. With an average inference time
of 0.5 seconds per image, an accuracy of 92.8% was achieved. For this performance, we were able to optimize the
architecture of the deep learning model, and use efficient image processing techniques for preprocessing. The key
innovation of the research was that domain specific knowledge was integrated into the system design. For example,
the authors increased classification accuracy by using vehicle specific features, such as logos and shapes. For real
time applications, they also implemented a multi-threaded processing pipeline to deal with these high volumes of
data. The system worked well, but failed to deal with occlusions and thus highly overlapping vehicles, which are a
common density in reality based scenarios. However, the authors suggested that these limitations could be overcome
by applying the advanced object detection methods, such as Faster R-CNN or YOLO. They also indicated that more
robust systems require larger and more diverse datasets. The result of this research significantly improves the vehicle
recognition field, strongly showing the feasibility of real time systems for practical applications. It provides a road
map for subsequent studies that seek to blend accuracy and efficiency in deep learning based systems.

In [5], it had focused on building a detailed dataset to aid vehicle make and model recognition systems. At the end of
the day, they pointed out that existing datasets were not diverse enough and that was the limitation to be addressed
for developing robust generalizable deep learning models. To tackle this we curated a dataset comprising vehicles
with a wide array of makes, models and environmental conditions (diverse lighting, angles, occlusions, etc.) since
this was found to be useful in learning effective representations. The annotations for multiple vehicle attributes like
make, model, and color in the dataset were rich enough to serve as the base for fine grained classification tasks. The
authors then used a structured annotation process to guarantee accuracy and consistency in the dataset. Moreover,
they used images from real world situations such as urban traffic, parking lots and highways to represent the real
world complexities of practical applications. To their study the authors used the data to train a CNN and show very
good accuracy in the classification compared to the models trained from a less diverse dataset. They also
demonstrated that adding in diverse environments improved the robustness of the model to lighting and occlusions.
In the paper they stressed the need for dataset diversity in order to tackle the generalization gap typically present in
deep learning models. However, the computational bottlenecks of training rendered the dataset difficult to solve. The
hardware and training techniques required to train on the dataset were advanced because of the large size of the
dataset. The authors then proposed future work on lightweight models and efficient training algorithms for making
better use of such comprehensive datasets. This work is critical for developing vehicle recognition systems as we show
that good dataset quality is necessary for achieving high performance and generalizability in a vehicle recognition
problem.

In [6], the author improved their YOLO based framework for vehicle recognition. Thus, this model is divided with
residual connections to prevent vanishing gradient problems and to improve the feature extraction. The goal of the
study was to improve recognition accuracy with regard to both model and vehicle make while maintaining real time
performance. To make the model cope with a lot of different environment settings, we trained the RES-YOLO on a
set of dataset with various lighting and weather. These residual connections helped the model keep the important
features across layers and distinguish between visually similar vehicle models. Classification accuracy achieved was
94.5%, exceeding the classification accuracy obtained by standard YOLO models and inference speed. The authors
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emphasized the need to develop a model architecture which optimizes both speed and accuracy. Transitioning to
Using Transfer Learning: They also emphasized using transfer learning by loading pre-trained weights for faster
convergence and better performance for smaller datasets. The study also checked how robust the model was by
comparing precision and recall curves and confusion matrices illustrating that the model can reduce false positives
and negatives. The study was limited by having high quality annotations, and errors in the dataset annotation could
significantly impact performance. Finally, the authors recommended future work on automated annotation tools and
multimodal data (e.g. lidar and radar), which would increase robustness. Finally, they show through this research
that there is potential for YOLO based architectures to perform better with vehicle recognition.

In [7], PCANet and CNN were combined in their proposal of a novel architecture for vehicle model recognition. Initial
features were extracted using a lightweight framework termed PCANet, and further refined by a CNN for
classification. The hybrid approach sought to achieve high accuracy with low computational complexity which
enabled real time application. On a diverse dataset of vehicles captured across a range of conditions, the system was
evaluated. It was demonstrated that the hybrid model provides better classification performance than either a
perceptron or a network when there is insufficient training data. The robust features extracted by the PCANet
component combined well with the CNN component to further boost the model’s ability to classify similar vehicle
models. The authors noted the efficiency of the proposed architecture, whose computational requirements were
substantially less than that required for conventional deep learning models. Such efficiency also made it appropriate
to deploy it on edge devices like traffic cameras and embedded systems. Specifically, at 91% accuracy, low latency and
high energy efficiency, the system achieved. Related to these challenges were the sensitivity of the model to occlusions
and viewpoint variation. As a means of increasing robustness in real world scenarios, the authors suggested
integrating object detection frameworks, such as Faster R-CNN. They also mentioned the relevance of dataset
augmentation in handling the class imbalance problem, more specifically when we are dealing with underrepresented
vehicle models.

[8] In this work, Dehghan et al. proposed a view independent approach to vehicle recognition in the face of varied
viewpoints and occlusions. A convolutional neural network (CNN) trained on a large, diverse dataset for
simultaneously recognizing vehicle make, model, and color was used for the study. A multi task learning framework
was used to make the model efficient and improve its performance. They demonstrate high accuracy on all tasks using
the proposed system, especially highly robust to extreme angles and partial occlusions. The multi task framework
was able to learn shared features between tasks, lower the overall computational cost and improve generalization.
The use of synthetic data generation to expand the training dataset was a key innovation of the study. This scope of
scenarios helped the model deal with the real world complexities nicely. Synthetic data was shown to significantly
improve model performance on classes that are under represented and on extreme conditions. The model was capable
of achieving high accuracy, but struggled when highly similar vehicle models with small differences were given, where
fine grained classification was required. Finally, the authors suggested future work on integrating attention
mechanisms to attend to critical regions of the image and increase performance. This research demonstrates the
ability to view independent methods for vehicle recognition for extremely dynamic and complex environments.

The paper [9] focuses on a problem of great importance for vehicle make and model recognition systems — that of
distinguishing highly similar vehicle models — Avianto et al. successfully addressed this challenging problem. To
enhance the system's discriminative capabilities, they suggested a multi task learning plus a Convolutional Neural
Network (CNN) approach. The development of the multi task framework allowed us to predict vehicle make, model,
and other features (e.g., body type) simultaneously to fine tune the granularity of our classification. For the focus on
visually similar vehicle models the authors curated a dataset with such representation in terms of different angles,
neighbouring occlusions and light. A more diverse training data was created using these techniques that include
geometric transformations and contrast adjustment. This took care of the robustness of the model especially to the
edge cases. On the one hand, we showed that advantages of the multi task learning approach include fewer examples
overfitting and better generalization by sharing feature representations across tasks. To extract features from subtle
variations of grille designs or headlight shapes, we optimized a CNN architecture with residual connections. We show
that the system achieves 94% accuracy in classification, outperforming single task models both in accuracy and
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robustness. However, the study also faced an inherent limitation, which arises from the computational complexity of
the problem during the training step. The real time application requirement for the authors necessitated efficient
inference techniques. Future work could explore lightweight CNN architectures or knowledge distillation techniques
to reduce computational burden, they said. The ability for multi-tasking learning to solve fine grained classification
problems is illustrated through this research which contributes to the field of vehicle recognition.

In paper [10], Jahan et al. take a specific approach by building a real-time system for vehicle classification using CNN,
but with an expected application in traffic monitoring and automated toll systems. The study was done to achieve
this by balancing out the trade off between accuracy and inference speed as it’s vital to real time deployment in high
throughput environments. The authors used a streamlined CNN architecture with respect to computational
efficiency. It was trained on a diverse dataset — images taken under different lighting conditions and angles to
guarantee robustness. They included data preprocessing techniques for increasing image quality such as
normalization and cropping, getting rid of the noise and improving feature extraction. In the system, we obtained a
93% accuracy with an average inference time of 15 ms per image. The model's lightweight design allowed for
deployment on edge devices like surveillance cameras that also enabled this performance. Further, the research
involved evaluation of scalability of the system, which showed that it can work with large data sets and provide
consistent performance. An issue listed in the study was that the model experienced high sensitivity to occlusions
often misclassifying. The authors proposed to do this by integrating object detection frameworks such as YOLO or
Faster R-CNN. Additionally, they argued that real time data augmentation techniques are advantageous to increase
robustness during inference. Jahan et al.'s work also significantly enhances practical vehicle classification systems
through a scalable solution for real time applications in intelligent transportation.

In the work of Wang et al. [11], a novel vehicle make and model recognition approach using YOLOv5 is proposed
which targets cost effectiveness and accuracy without sacrificing one for the other. The applications in focus are
resource constrained such as small scale traffic management systems and urban surveillance. Derived from yolo v5,
the authors optimized YOLOv5 with fine-tuned hyperparameters as well as custom anchor boxes for vehicle datasets.
In addition, the model was also integrated with a post processing step to further refine detections and reduce false
positives for improved model precision. The training set contained diverse vehicles and environmental conditions
which tested the models ability to generalize. The research found that the system is able to reach a 95% accuracy and
12 milliseconds inference time per image, making it appropriate for real time applications. In the cost side, the
authors showed that the system can be used with mid tier hardware that can reduce the implementation cost
significantly over the deep learning models. Some challenges were the model's lack of ability to differentiate between
essentially identical vehicle models. This limitation was suggested by the authors to be removed by the use of
additional data modality such as color and texture information. In addition they advocated for ongoing model updates
ensuring that the models continue to adapt to new vehicles designs and trends. The potential of YOLOv5 in terms of
creating cheap and cost efficient solutions for vehicle recognition is identified by this research, providing practical
feasibility for deployment in resource limited settings.

In [12], Ghoreyshi et al. presented a unified framework for the simultaneous vehicle detection and classification from
deep YOLO networks. The aim of the study is to reduce computational overhead as well as the real time performance
by integrating detection and classification tasks into a single model. The dataset used for training the YOLO-based
framework was populated with the samples of different vehicle makes and models in addition to different
environmental conditions such as weather and lighting variations. To extend its performance for fine grained
classification tasks, the authors proposed modifications to the YOLO architecture based on custom loss functions and
anchor box adjustments. This system achieved an accuracy of 93.5% and detection speed of 10 frames per second,
making it ideal for use in applications where real time processing is required, e.g. traffic monitoring or automated
parking systems. The unified approach took away the need for different detection and classification models,
simplifying deployment and reducing latency. Although the study uncovered challenges with handling overlapping
vehicles and occlusions, at times resulting in reduced detection accuracy. Future work on multi frame processing and
the use of attention mechanisms are proposed to address these issues by the authors. And, they discussed other
potential data sources to integrate to increase robustness under complex scenarios, like lidar or radar. The efficiency
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of unified frameworks for vehicle recognition in helping to simplify system architectures and increase real time
performance is revealed throughout this research.

In [13], an improved Faster R-CNN model specifically for vehicle type recognition, presented by Bai et al., they tried
to both improve accuracy and processing speed. A study is presented that focuses on applications in real world such
as intelligent traffic systems and urban surveillance with precision and scalability requirements. Several architectural
enhancements were incorporated into the proposed model to address the limitations of standard Faster R-CNN.
Optimized anchor generation for improved vehicle detection with varying scales and viewpoints, as well as a region
proposal network fine tuned for the vehicle specific features were part of these. To cope with multi-scale vehicle
recognition, the authors combined a feature pyramid network (FPN) into the model. The dataset was diverse with
regards to vehicles in different weather, lighting and urban scenarios. Baseline models were also outperformed in
precision and recall by the improved Faster R-CNN achieved an accuracy of 96.2%. In addition, it showed significant
reduction in inference time, which allows for near real time implementations. The model was good, but it faced edge
cases where heavily occluded vehicles and overlapping instances in dense traffic presented problems. The authors
propose integrating temporal information from video sequences to better performance in such situations. They also
stressed the need for an expanded dataset so newer vehicle models as well as some atypical conditions like extreme
weather can be added. The results of this research demonstrate the potential of enriched Faster R-CNN architectures
for vehicle recognition on a fully deployed auto-service network, offering resulting practical insights for direct
deployment in intelligent transportation systems.

In [14], this work, Mittal et al. suggested EnsembleNet, a hybrid architecture that combines Faster R-CNN's gap and
YOLO's strength in detecting vehicles and estimating traffic density. Our research sought to build a system with
Faster R-CNN’s superior accuracy and YOLO’s speed in a balanced way to be effective for real time traffic monitoring.
Accurate localization and classification of both objects and vessels was undertaken in densely packed vehicles or
across occlusions using EnsembleNet and Faster R-CNN. However, in terms of rapid inference, YOLO was employed
for inference on high volumes of data in real time. A fusion mechanism, which fused the two models' outputs together
to produce an overall system level increase in performance, was used to integrate these models. Results obtained for
a large dataset showed that EnsembleNet achieved 95.4 % accuracy at 20 frames per second. The results of this
performance demonstrated the usefulness of the framework in the intelligent traffic management, automated
systems such as toll systems and congestion monitoring. The study noted challenges to model integration, which
needed to be tuned carefully to find the right balance between Faster R-CNN and YOLO contributions. The authors
proposed future work in automating this through reinforcement learning or neural architecture search. They also
called for additional research into how to handle extreme edge cases including night traffic and poor weather. We
present EnsembleNet that represents a major step forward in hybrid model design for vehicle recognition by serving
as a template for using several deep learning architectures in an ensemble to address complex scenarios.

In [15], authors Satar and Dirik build a deep learning based system for vehicle make and model classification in the
face of fine grained classification challenges, including differences among vehicles that are subtle. The research used
a custom Convolutional Neural Network (CNN) architecture toward high resolution image analysis and feature
extraction. However, the quality of the dataset was crucial, so the study used a pre-curated dataset with high
resolution and detailed annotation. To deal with the class imbalance the authors used data augmentation, including
oversampling classes less represented and applying change techniques like cropping, rotation and contrast
adjustments. Using multiple residual blocks in their CNN architecture, the networks could learn fine grain features
like grille patterns as well as headlights and badges. Once implemented, the system produced an accuracy of 94.7%,
outdoing traditional methods as well as handling these conditions robustly. Since the study required input images of
high quality, it is a key limitation of the study. The authors showed that the inclusion of preprocessing techniques to
improve low quality images and increase classification robustness. Additionally, they proposed future work that
expands the dataset to include newer vehicle models and a wider variation of environmental conditions. This work
indicates the possibilities that specialized CNN architectures have for fine grained vehicle classification and makes
important contributions to the development of such recognition systems.
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The paper [16], proposes a real time system for vehicle make and model recognition which tried to get some sort of
balance between accuracy, speed, and scalability. We study deep learning in conjunction with traditional feature
extraction to achieve high performance for deployment in a real world scenario. A dataset with diverse images, taken
at urban, rural and highway locations under varying weather conditions, was used to train the system. For initial
feature extraction, a deep learning approach was used in combination with traditional classifiers (e.g. Support Vector
Machine, SVM), where the optimal feature space is determined through the combination of the two. The combination
resulted in high accuracy with low overhead in computation. Classification accuracy of 92.8%, and run an average of
0.5 seconds per image. The deployment was successfully done to monitor traffic, in automated parking systems, on
toll collection, etc. The authors also verified the system’s scalability to a large volume of data with a stable
performance.

III. PROPOSED METHODOLOGY

A. Overview:

In this work, we conduct a comprehensive evaluation of three state of the art deep learning models—Convolutional
Neural Network (CNN), YOLOvVS8, Faster R-CNN and Machine Learning Techniques—KNN, SVM and Decision Tree
Classifier that are specifically trained for vehicle make and model recognition on both the datasets. The Machine
Learning Techniques is the first approach but as their results were very less, the research is further expanded with
Deep Learning models as well which our second approach. Firstly, this thesis aims to conduct an extensive
comparative analysis of Machine Learning Techniques which was the first approach and then the analysis were made
with the Deep Learning models as well at presenting their performance on the classification accuracy, computational
efficiency, precision, recall, f1-score, specificity and their robustness in solving the issues of practical scenarios. Such
complexities include lighting condition variation, occlusion, overlapping, and diverse vehicle appearances. A well
curated dataset of 197 distinct vehicle classes which is considered as dataset1, with 196 distinct makes and models
and a background class to cover all classes thoroughly, is used to evaluate. The dataset2 which is scrapped manually
consists of 17 distinct classes is used to evaluate. These two datasets are used for both the Machine Learning and
Deep Learning approaches. A systematic and locally constrained training and validation pipeline was used to
implement and test each model, and evaluate their capabilities under a wide range of conditions. This analysis derives
insights to guide the selection and optimization of deep learning models for practical applications in intelligent
transportation systems, law enforcement, autonomous vehicle technologies, and other areas. The project involves
data collection which is a quite arduous process. So the dataset2 consists of 17 classes. They are scrapped from the
internet. The project involves traditional and deep learning approaches.

B. Dataset Overview and Preparation:

The dataset1 used to run this study was from Roboflow titled Capstone G7 Car Detection. It contains 16,146 high
resolution annotated images with bounding box and class label for 197 vehicle classes, the 196 make/model classes
and the 1 background class. The dataset2 has 17 distinct classes consisting of 6981 images. With its diversity, and in
itself ample coverage of its annotation, the dataset provides a robust foundation for training deep learning models.

B.1. Dataset Statistics:

The dataset1 is partitioned into three subsets:
Training Set: For model learning and optimization, we had 10,816 images (~67%).
Validation Set: Therefore, 969 images (~6%) of this dataset will be used for tuning hyperparameters and
overfitting.

e Test Set: In test the model performance on unseen data with 4,361 images (~27%).

The dataset2 is partitioned into two subsets:
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e Training Set: For model learning and optimization, we had 5,124 images (~73%).
o Test Set: In test the model performance on unseen data with 1,857 images (~27%).

This allocation takes care of the balanced distribution so that every predictive target can be evaluated
comprehensively while having enough data for training and validation. The class distribution of the dataseti is
analyzed and as one can see from Figure 1, and the same for dataset2 in Figure 2, diversity of the class exists
substantially across the vehicle categories.

Class Distribution of Vehicle Dataset {All 196 Classes)

Figure 1: Class Distribution in the dataset1
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Figure 2: Class Distribution in the dataset2
B.2. Preprocessing and Augmentation:

To enhance the robustness and generalization capabilities of the models, a series of preprocessing and augmentation
techniques were applied:

i) Normalization: Input to all models was standardized by scaling pixel values to [0,1].
Resizing: The input requirements from the model were matched with the required size of the images.
o CNN: 64x64 pixel efficient multi class classification.
YOLOVS: Precise object detection is done at 640x640 pixels.

e Faster R-CNN: To retain spatial detail, region proposals are downsampled to 1024x1024 pixels.

ii) Augmentation: To simulate real world variations and to expand the dataset, the following transformations were
used:
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Flip: Simulating variations in vehicle orientation: horizontal flipping

Rotation: Rotation around random axes up to +20 degrees, mimicking a variety in different viewing angles.
Brightness and Contrast Adjustments: Increasing resistance to various lighting conditions.

Blur and Noise Addition: Replicating challenging scenarios, such as motion blur and sensor noise.
Shear Transformations: Perspective distortion shearing for horizontal as well as vertical. In the case of
Machine Learning, the images are actually converted to grascale values and are stored in the csv file. These
are preprocessed before training them. Preprocessing techniques such as removal of null values, replacing
the null values, removal of outliers, etc.

Model Preparation and 7
Training
Deep learning models CNN, YOLOwvE, and

Data Collection Annotation Analysing the best model

Twe types of datasets are collected for The dataset with 17 classes are The models’ perfarmance metrics were

analysis. One with 197 classes sourced manually annotated with bounding compared and assessed in order to

Faster R-CNN, along with machine learning
models KNN, 5VM, and Decision Tree

Classifier, were selected.

ERNLINENCNONEN

from Roboflow and the other with 17 boxes The other dataset with 197 | determine which model performed

classes through web scrapping. classes were pre-annotated. better when deployed on both datasets

Preprocessing Splitting Validation and Testing Deployment
The images are augmented, The dataset with 17 classes was splitted The trained model is evaluated for The model that performed
resized, normalized in order to for training and validation. Whereas the testing. The metrics such as training, well with both the datasets
improve its performance other with 197 classes were splitted for validation accuracies, losses, mAP, is deployed for prediction.
training, testing and validation. etc.
L]
L] * L

iii) Annotation Formats:
The dataset annotations were formatted to suit the requirements of each model:

CNN: If multi class classification, we encoded the labels one-hot.
YOLOvVS8: Bounding box coordinates and class labels were provided in the annotation, reflecting the unified
detection framework of the model.

e Faster R-CNN: Bounding box proposals and corresponding class probabilities from the Region Proposal
Network (RPN) were annotated.

Preprocessing and augmentation strategies put these in place to make the data ready to train these models that will
be able to handle a variety of situations in the real world. Robust augmentations improve the models’ flexibility of
generalizing, with annotation formats naturally conforming to each architecture’s needs.

C. Model Architectures:

The architecture for all the three deep learning models and machine learning models are demonstrated below. The
architecture is same for both the datasets. The flow of the project is demonstrated below.

C.1. Machine Learning Technique:

The first approach was with the traditional Machine Learning approach, which involves conversion of the images into
grayscale values. They are stored in a csv file. The pixel values are extracted for each image of a particular class which
is known as feature extraction. These are then preprocessed and are trained for further classification. The same
process is implemented for testing too. Figure 3 represents its architectural diagram. The second approach was with
the deep learning models, which are discussed below.
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C.2. Convolutional Neural Network (CNN):

The proposed CNN model was aimed at vehicle classification with focus on efficiency and scalability. It had an
architecture of 3 convolutional layers with filter sizes of 32, 64 and 128, implemented in order to learn hierarchical
spatial features in input images. Each convolutional layer was followed by max pooling layers to reduce
dimensionality with the important features remaining. These output feature maps were flattened and fed into two
fully connected layers with ReLU activation, with dropout regularization in order to prevent overfitting. Probabilities
across the vehicle classes for both the datasets were produced by a softmax classifier. This model was trained using
Adam optimiser along with categorical cross entropy loss, using 20 epochs with batchSize of 32. Figure 4 represents
the architectural diagram for dataseti.

C.3.YOLOVS:

A state of the art object detection model, YOLOvS, was fine tuned to simultaneously detect and classify vehicles.
Bounding box regression and class prediction were combined into a single detection pipeline. To optimize the
detection for different vehicle dimensions, predefined anchor boxes were employed. The Box regression loss,
classification loss and DFL were utilized for the model's loss function improvement of epochs on YOLOvVS8 using it’s
high inference speed, YOLOvV8 could be used for real-time applications with a batch size of 16. Figure 5 represents
the architectural diagram.

C.4. Faster R-CNN:

The vehicle detection and classification framework with a robust base was provided using Faster R-CNN using the
ResNet50 backbone. The architecture consisted of a Region Proposal Network (RPN) for generating bounding box
candidates, and then refined by the ResNet50 feature extractor. For class probability prediction and bounding box
regression, a set of fully connected layers was passed over the features. To complete this task, a combined
classification and losses for bounding box regression. We train Faster R-CNN with a batch size of 8 using SGD
optimizer. While computationally complicated, it showed astounding robustness to complex scenarios like occluded,
or overlapping vehicles. Figure 6 represents the architectural diagram.

Converting the Extracting the pixel values Storing them in a R
images to grayscale from each image csv file —| Preprocessing

Training through
READEEY
Model

Figure 3: Machine Learning Architecture Diagram

L Conm e o Con e S ]
st Rebimage) | fiters, Sabemel| |64 fiters, 3 emel| | 125 ilers, 3 hemed s .

Figure 4 : CNN Architecture Diagram for dataset1(custom layers)

Figure 5: YOLOv8 Architecture Diagram
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Figure 6: Faster R-CNN Architecture Diagram

D. Training and Evaluation Pipeline:
The training and evaluation pipeline was designed to provide a rigorous assessment of the models:

1. Preprocessing: For each model, images were resized, normalized and annotated to specific requirements for
both the datasets.
2. Training: We train each model independently, keeping track of validation metrics at every epoch to make
sure it would converge and not overfit.
3. Evaluation:
o CNN: Training and validation accuracy (loss) curves.
o YOLOVS: For box regression, classification and DFL, we compute mean Average Precision (mAP),
along with loss components.
o Faster R-CNN: Classification and bounding box regression loss curves.
4. Testing: Confusion matrices and bounding box visualizations were generated to assess performance on
unseen test data, for 197 vehicle classes (dataset1) and as well as for the 17 classes (dataset2) using the models.

E. Model Comparisons:
The models were evaluated based on accuracy,inference speed, and robustness:

1. Accuracy: In terms of performance, with the first approach (ML) KNN yields training accuracy of 25%, SVM it
yields training accuracy of 32% and Decision Tree Classifier of 35% as accuracy for dataset2. Dataset2 was chosen in
Machine Learning Techniques as they have lesser no.of classes. Training with larger dataset with machine learning
models would be complicated. So they are implemented on lesser no.of classes first. Then they are analysed with deep
learning models such as CNN exhibited a slight over fit with a training accuracy of 90% and testing accuracy of 78%
whereas, YOLOvS8 achieved a mean Average Precision (mAP) of 95% , and Faster R-CNN demonstrated classification
accuracy of 74% and robust detection capabilities, albeit at a slower inference speed. In the case of dataset2, CNN
exhibited a significant overfitting with a training accuracy of 76% and testing accuracy of 70%, YOLOvS8 achieved a
mean Average Precision (mAP) of 30% and Faster R-CNN of 65% respectively. For dataset1, the training and the
validation loss were decreasing for each epoch which is a good sign. This requires a lot of training, which is tiring
process. It almost took 18 hours for training.

2. Inference Speed: Inference was the fastest for YOLOvS in both the datasets, making it an ideal solution for real
time scenarios. Region proposal mechanism increases computational resources needed in Faster R-CNN.

3. Robustness: In complex scenarios involving occluded or overlapping vehicles, YOLOv8 demonstrated
exceptional performance due to its speed and robustness, while Faster R-CNN excelled in precision and accurate
detection. In contrast, CNN was computationally faster but struggled with generalization and performed adequately
only in simpler tasks with minimal classification complexities.

IV. RESULTS AND DISCUSSION

A. Overview:
In this section, we evaluate a categorically exhaustive evaluation of the three machine learning and deep learning
models, namely, KNN, SVM and Decision Tree Classifier with machine learning; Convolutional Neural Network
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(CNN), YOLOvVS8 and Faster R-CNN with deep learning on Vehicle make and model recognition tasks with two distinct
datasets, one from the roboflow and the other was collected through manual web scrapping. Using critical
performance metrics such as accuracy, loss trends, precision, fi-score, specificity, recall, inference speed and
robustness the analysis is based. By comparing bounding box outputs of YOLOv8 and Faster R-CNN, we further
demonstrate the detection capabilities of the models, demonstrating their ability to accurately identify and localize
vehicles in challenging scenarios. In the case of traditional approach, they involve machine learning concepts such as
KNN (K-Nearest Neighbor) and SVM (Support Vector Machine). This approach uses the dataset2 initially as they
have lesser no.of classes. The images are stored based on their classes. They are converted into grayscale values using
OpenCV. These grayscale values for each image is stored in the csv file. This csv file is now utilized for training the
machine learning model. These csv file consists of pixel values for each class. Each image from the class is broken
into 10000 pixels. The classes are binary encoded. After all the necessary pre-processing are done, the SVM model is
trained. They yield an accuracy of 25%, which is not acceptable for a machine learning model. In the case of KNN,
with the same dataset they yield an accuracy of 32% which is really bad. In the case of Decision Tree Classifier So the
machine learning approach which is a traditional method, did not yield a good accuracy. The project involves the
models that have failed in giving us the better accuracy too. The confusion matrix and the other performance metrics
are represented below. The dataset1 consists of 197 classes, which would be very useful when they are used in deep
learning models. But here, the machine learning models cannot handle those complex patterns and structures of the
images. Segregating the classes based on the pixel values is not a convincing approach. So, the machine learning
approach takes only the dataset that has 17 classes, their distribution is shown in Figure 2. They can also be trained
with 197 classes but based on the results of dataset2 which has lesser no.of classes, it was not able to perform well.
So, training further with large amount of data will be a time consuming process.

B. Model Performance and Metrics:
B.1. Convolutional Neural Network (CNN):

The CNN model exhibited clear signs of overfitting during the training process with dataset2. While it achieved a high
training accuracy of 76%, its validation accuracy is 67%, and the testing accuracy which significantly dropped to 10%
indicating poor generalization to unseen data. This discrepancy highlights the model's inability to handle the
complexity and variability of the dataset2, instead memorizing the training data. This disparity underscores the
overfitting issue, where the model fails to adapt effectively to validation data. In the case of dataset1, they yield a
training accuracy of 90% , validation accuracy of 10%, and a testing accuracy of 78%. Table 1 summarizes the
performance of the model in both the datasets. Figure 7 shows the training and validation accuracy and loss trends
of the model for dataset1, whereas Figure 10 shows the training and validation accuracy and loss trends of the model
for dataset2.

Table 1: Performance of CNN on both the datasets

Metrics Value (Dataset1 - 197 Value (Dataset2 -Manual

Classes) Scrapping with 17 classes)
Testing Accuracy 78% 10%
Validation 10% 67%

Accuracy
Training Accuracy 90% 76%
Validation Loss 0.90 0.32
Training Loss 0.20 0.24
Robustness to 10% 60%
Occlusion (%)
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Figure 7: For dataset1 (CNN)

Train accuracy increases steadily and reaches around 85-90%, but the validation accuracy initially increases slightly
but significantly decreases after 12th epoch yielding a maximum of 20%. Whereas in the loss trends, train loss
decreases with the increase in epochs but the validation loss increases which denotes that the model is performing
extremely well with the training data, but fails with the validation data. They do suffer from overfitting, but not as
severe as with dataset2 as they yield a test accuracy of 78%. Which clearly states that the model is good with unseen
data. Since the validation set is too small results with this problem.

ROC-AUC Curve for CNN Model
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Figure 8: ROC-AUC Curve for CNN with dataset1

0.8

True Positive Rate
e
o

o
>

02

0.0 0.2 04 0.6
False Positive Rate

Figure 8 shows the ROC-AUC curve for CNN model for dataset1, which shows that the model has AUC values mostly
above 0.75 and some closer to 1.0. The model is learning features properly as they have lots of data for training, it can
learn the features and distinguish between the classes properly. They have more data and better inter-class
separation. Figure 9(a), 9(b), 9(c) and 9(d) shows the predictions of CNN model with dataset1. All the predictions
made by the model are valid and has the confidence score above 0.9 which denotes that the model is performing
extremely good. As the dataset has substantial number of classes with high-resolution images, the model was able to
extract the rich features which enabled them to provide good results. As mentioned, they do have slight overfitting
which made the model to be over confident with some classes.
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Predicted: Mercedes-Benz Sprinter Van 2012 (1.00 confidence)

Figure 9(a): CNN’s classification for dataset1

Predicted: Chevrolet Camaro Convertible 2012 (0.94 confidence)

Figure 9(b): CNN’s classification for dataset1

Predicted: Chrysler Crossfire Convertible 2008 (0.97 confidence)
i | EE

Figure 9(c): CNN’s classification for dataset1

Predicted: Ford Ranger SuperCab 2011 (0.99 confidence)

Figure 9(d): CNN’s classification for dataset1

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 443

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management

2025, 10(44s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/

Research Article

Model Accuracy

Model Loss

~— Train Accuracy
Validation Accuracy

—— Train Loss
validation Loss

e

0 20 4 60 80 100 120 40
Epoch

0 20 4 60 80 100 120 140
Epoch

Figure 10: For dataset2 (CNN)

Train accuracy gradually increases to 75% over epochs, whereas validation accuracy fluctuates significantly which
indicates that the model is not stable. As they have high inter class similarities, they do suffer from severe overfitting
as they yield a test accuracy of 10%.
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Figure 11: ROC-AUC Curve for CNN with dataset2

Figure 11 shows the ROC-AUC curve for CNN with dataset2, which clearly depicts that most of the classes have AUC
values between 0.44 and 0.56. Hence, the CNN model for dataset2 is a random classifier. The model is not able to
distinguish between the classes effectively which is due to high intra class variations. Figure 12(a) and 12(c) shows
the predictions of the CNN model with dataset2, in which it misclassifies the car model as they suffer from significant

overfitting and lesser AUC values which causes them to predict the classes randomly.

In Figure 12(b) and 12(d), the model’s prediction is correct but with lesser confidence.
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Figure 12(d): CNN’s classification for dataset2

B.2. YOLOVS:

The object detection tasks were outperformed by the other models with an mAP of 95% by YOLOvVS for dataset1. In
the case of dataset2 it gave the mAP of 30% . Even though they had less mAP for dataset2, they were able to classify
the images accurately as they have classification loss of 32% with varying confidence levels. However, as they dataset
has high inter-class similarities they are were able to predict certain classes with lower confidence scores and some
were also misclassified as well. It offers high speed of inference and the model was demonstrated to have very efficient
loss stabilization during training especially in box regression and classification components. YOLOVS8 yields the poor
performance with dataset2.

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 445
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management

2025, 10(44s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

B.3. Bounding Box Outputs

YOLOVS can detect and classify vehicles with very high confidence, and bounding box outputs from this on real world
scenarios illustrate this. Figure 13(a), 13(b), 13(c) and 13(d) demonstrates YOLOvS8's fine localization and
classification of vehicles for dataset1. Figure 14(a), 14(b), 14(c), 14(d) demonstrates YOLOv8's fine localization and
classification of vehicles for dataset2. Table 2 shows the performance metrics for both the datasets. YOLOVS easily
handles varying perspective, background complexity, and vehicle orientation as evidenced in this output.

For high accuracy and real time vehicle detection, YOLOv8 with small bounding box regression can perform with
high precision of bounding box regression which results in minimum overlap or incorrect localization. As for
producing precise bounding boxes, Faster R-CNN is good, but since inference is much faster with YOLOVS, it becomes
more useful in dynamic situations like traffic monitoring and surveillance systems. Those outputs highlight the vital
role of robust vehicle recognition models for making vehicle recognition systems more useful and applicable.
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Figure 13(a): YOLOVS Classification for Dataset1 - Ferrari 458 Italia Convertible 2012
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Figure 13(b): YOLOvVS8 Classification for Dataset1 - Mitsubishi Lancer Sedan 2012
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Figure 14(b) : YOLOVS Classification for Dataset2 - Honda Accord 1996
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Figure 14(d) : YOLOVS Classification for Dataset2 - Toyota Innova

Figure 15(a), 15(b), 15(c), 15(d), 15(e) represents the performance metrics for dataset1. Figure 16(a), 16(b), 16(c),
16(d), 16(e) represents the performance metrics for dataset2. Since YOLOVS is performing well, their performance
metrics alone are displayed for both the datasets as they perform extremely well in both the datasets when compared
to the other models.

Figure 15(b): F1-Confidence Curve for Dataset1
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Figure 15(d): Recall-Confidence Curve for Dataset1
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Figure 15(e): Precision-Recall Curve for Dataset1
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Figure 16(a): Confusion Matirx for Dataset2
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Figure 16(b): F1-Confidence Curve for Dataset2
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Figure 16(e): Precision-Recall Curve for Dataset2

Table 2: Performance of YOLOvS8 on both the datasets

Metrics Value (Dataset1 - 197 Value (Dataset2 - Manual
Classes) Scrapping with 17 classes)
mAP 95% 30%
Box Regression Loss 0.10 0.20
Classification Loss 0.15 0.31
Inference Speed 10 ms 10 ms
Robustness to Occlusion (%) 90% 50%
B.4. Faster R-CNN:

The results showed that we can achieve better robustness across overlapping and occluded cases compared to the
Faster R-CNN baseline. By using the model, a classification accuracy of 74% was reached for dataset1, and 70% in
dataset2. However, due to its 150 ms per image inference speed, its application in real time scenarios is limited. When
combined with attention, Faster R-CNN may work well offline or in environments that need high precision that aren’t
complex. In Table 3, we present Faster R-CNN's performance metrics for both the datasets and the training and
validation loss curves for dataset1 are visualized in Figure 17 and the same in Figure 18 for dataset2. Figures 19(a),
19(b) represents the Faster R-CNN’s fine localization and classification of vehicle make and model for dataset1. Figure
20(a) and 20(b) represents for dataset2.

Training and Validation Loss Over Epochs

Figure 17: Training and Validation Loss for dataset1 (Faster R-CNN)

Training and Validation Loss Over Epochs

o184
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Figure 18: Training and Validation Loss for dataset2 (Faster R-CNN)
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Audi TTS Coupe 2012 (82.5%)

Figure 19(a): Faster R-CNN classification for dataset1

—
Buick Rainier SUV 2007 (69.7%)

Figure 20(b): Faster R-CNN classification for dataset2
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Table 3: Faster R-CNN Performance Metrics

Metrics Value (Dataset1 - 197 Value (Dataset2 - Manual
Classes) Scrapping with 17 Classes)
Classification Accuracy 74% 70%
Validation Loss 0.35 0.40
Inference Speed 150 ms 150 ms
Robustness to Occlusion (%) 60% 55%

B.5. Machine Learning Techniques:

The first approach with Machine Learning involves KNN, SVM and Decision Tree classifier. These methods does not
yield a good accuracy at all. So this approach involves just the implementation with the dataset2 which has 17 distinct
classes. The machine learning approach is not implemented on the dataset1. It would be a time consuming process,
as the machine learning model is not providing good accuracy with 17 classes then implementing on 197 classes will
definitively fail. So the machine learning approach will never be able to recognize the make and model of the car. The
confusion matrix of the KNN, SVM and Decision Tree classifier are represented in Figure 21(a), Figure 21(b), and
Figure 21(c) respectively. The grayscale images are shown in Figure 22.

KNN yields training accuracy of 25% with 0.24 as precision, 0.20 as recall and 0.18 as fi-score. In the case of SVM it
yields training accuracy of 32% with 0.22 as precision, 0.22 as recall and 0.21 as f1-score and Decision Tree Classifier
of 35% as accuracy, 0.23 as precision, 0.25 as recall and 0.28 as f1-score. So the Machine Learning which is traditional
approach can never be used for object detection / image classification. They can perform well with the structured
numerical / tabular values, smaller or moderate in size, where training and computational time is limited. Thus, the
first approach with Machine Learning has failed, which is actually an improper technique, but implemented to
observe the results. So, we move towards Deep Learning models to get better results.

Confusion Matrix for KNN
cnlb 14 4 3 7 s 3 5 [N nu
-7 zzn 4 2 101 0 0 3 2 8 12
0 9NN 3 o M5 3 o 1 1 4 8 16
9 21 4 481 5 1 1
0

7
0
1

1 14 4 18 4 0 3
nENs 5 ¥4 5 5 1 “
1

4
0
o 17 @ |
1
1

2 [le s Il 2 el 4 - 40

1 @81 0 2 2 8 3 5 1 3

True Labels

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
9
o

4
3 3
BETEGE s 5 7 3 1 2 6 3/m s a3 1
0 3 5 3 17 3 6 0
1 0
1

An)s 2z 1
16 > o 2
1 4 6 12 zvn 3. 2 10
2 0 2 3 48 0o 6 0
0 5

s B o 2 I

O-Ww W B =N o=k

7 8 9 10 11 12 13 14 15 16
Predicted Labels

Figure 21(a): Confusion Matrix for dataset1 (KNN)
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Figure 22: Grayscale Images - Machine Learning Approach

B.6. Comparative Analysis

Table 4 provides a comparative analysis of CNN, YOLOvS8, and Faster R-CNN across key metrics, highlighting
YOLOVS as the best-performing model for both the datasets. YOLOv8 achieves an optimal balance between speed,
accuracy, and robustness, making it highly suitable for real-world and real-time applications such as traffic
monitoring and autonomous systems. In comparison, Faster R-CNN excels in precision and robustness but is
hindered by its computational demands and slower inference speed, limiting its use to offline or high-accuracy tasks
in both the datasets. In the case of dataset1, CNN provides better training and testing accuracy. In dataset2, it suffers
from significant overfitting and poor generalization, making it the least effective among the three models for the
dataset2. But the computational costs varies depending on the no.of classes, trainable and non-trainable parameters,
etc. Hence, YOLOVS stands out as the most versatile and practical model, achieving a mean Average Precision (mAP)
of 95% and an inference speed of just 10 ms per image for dataset1. For dataset2, it has less mAP but still it is able to
classify the images properly. Its ability to handle occlusions and overlapping objects further enhances its robustness,
making it the ideal choice for dynamic, real-time scenarios. Faster R-CNN, while precise, is better suited for offline
analysis due to its slower inference speed. In the case of dataset1, YOLOvS8 performs better than Faster R-CNN and
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CNN as they have more no.of classses that made each model to learn the complex features well and were able to
significantly classify them. In the case of dataset2, Faster R-CNN was better when compared to all others. Figure 23
shows the performance of each model with both the datasets.

Comparison of Model Accuracy Across Two Datasets
95%

Datasetl
Dataset2

50 78%

67% 67%

45%

Accuracy (%)

40

10%

CNN Faster R-CNN YoLOVS

Model

Figure 23: Performance of all three models with both the datasets

Dataset Metrics CNN YOLOVS Faster R-CNN
For object classification,a | On a dataset from | On a dataset from the
custom CNN model with | roboflow and the other | roboflow and the other
manually inserted layers | through manual web | through web scrapping,
Method was trained with | scrapping, the model is | the model is trained with
preprocessed images for | fine-tuned for | prepossessed images
both the datasets without | classification using | using  bounding  box
bounding box | bounding box | annotations.
annotations. annotations.
Dataset 1 -
With 197 Test Accuracy 78% 95%(mAP) 74%
classes (%)
Precision 0.80 0.85 0.18
Recall 0.80 0.85 0.37
F1-Score 0.80 0.85 0.25
Specificity 0.90 0.85 0.95
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Achieved moderate | Achieved excellent | Achieved moderate
accuracy and  good | accuracy and | performance compared to
performance in | performance. The model | the others. The model was
Remarks classifying the images. | outperformed even | able to get trained
Since the dataset has | though the dataset had | properly with decreasing
more no.of classes and | more no.of classes with | loss values on each epoch.
better intra-class | high intra-class variation | Due their localization
variations for training, the | as the other metrics show | tasks the other
model was able to learn | that they are good in | performance metrics gets
and extract lot of features | classification. lesser values. They were
for better prediction. able to identify True
Negatives (TN) clearly but
lesser precision, recall and
fi-score which is due to
imbalance in the dataset.
Test Accuracy 10% 30% (MAP) 70%
(%)
Precision 0.06 0.44 0.65
Dataset 2 - Recall 0.06 0.38 0.67
With 17
classes
F1-Score 0.07 0.48 0.65
Specificity 0.07 0.60 0.75
Suffers from significant | Performs good and the | Achieved very less
overfitting with poor | model is able to classify | accuracy as the dataset
performance in | the cars properly. But due | has less images with high
classification of images. | to high inter-class | inter-class  similarities.
Remarks They had good validation | similarities, the features | Since the Faster R-CNN
and training accuracy. | gets overlapped which | concentrates on
However, the | affects the mAP. localization as well, the
performance metrics other metrics decreases in

plays a vital role. The
model is a random
classifier, which is due to
high inter-class
similarities. The model
struggles to predict the
class.

their performance. So
evaluation is not done just
on classification but also
localization.

C. Discussion:

So the thesis consists of analysis of two approaches, the traditional approach such Machine Learning models and
Deep Learning models with 2 datasets in order to analyse their performance with different constraints such as one
dataset having more no.of classes and the other with less no.of classes. In conclusion, YOLOv8 outperforms in both

Table 4: Comparative Analysis of all three models (DL)

the datasets. The findings highlight the strengths and limitations of the three models:
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1. CNN: CNN is not bad at object detection and it is not robust when objects are overlapping or when it only has
partial appearance of the desired object.

2. YOLOVS: It offers an ideal speed, accuracy and robustness combination for real time applications like traffic
surveillance and autonomous driving.

3. Faster R-CNN: It shows exceptional precision and robustness, especially in complex scenes, but its inference
speed is slow, making it unsuitable for high time sensitivity environments. But when the no.of classes increases they
improve their training and validation accuracy and the loss decreases which is a good sign. When the epochs are
increased, they may have the chance of improving their accuracy levels.

4. Machine Learning Techniques: Their training and validation accuracy, and other performance metrics
drastically goes down. They can never be used irrespective of no.of classes for training and testing. In general, Faster
R-CNN can be used for tasks in which high precision is important, while YOLOvS is the sharpest of all models for
real world applications. As a second step, future work may try to optimize Faster R-CNN for real time.

V. CONCLUSION

The comparative analysis of CNN, YOLOvVS8, Faster R-CNN and Machine Learning Techniques for vehicle make and
model recognition revealed significant differences in performance across key metrics. Machine Learning approaches
can never be used in terms of image classification / object detection so the first approach fails. In the second approach
with Deep Learning models, YOLOvV8 was identified as the best model, achieving a mean Average Precision (mAP) of
95% for dataset1, and mAP of 30% with dataset2. Its inference speed was just 10 ms per image. Its ability to handle
occluded and overlapping vehicles, combined with its computational efficiency, makes it ideal for real-time
applications such as traffic surveillance and autonomous driving systems. Even though they had very less mAP with
dataset2 they were still able to classify most of the images properly but with comparatively lesser confidence with
than dataset1.

Faster R-CNN excelled in precision and robustness, achieving a validation accuracy of 74.8% with dataset1 and 70%
with dataset2. However, they had poor performance with dataseti and its slower inference speed and higher
computational requirements limit its use in real-time environments. On the other hand, CNN exhibited significant
overfitting, with a test accuracy of only 10%, with dataset2 and 78% with dataset1 rendering it unsuitable for complex
classification tasks. Despite its computational efficiency, CNN's poor generalization restricts its applicability to
simpler scenarios.

This study highlights deep learning model’s superior balance of speed, accuracy, robustness, and the other
performance metrics like precision, recall, f1-Score, specificity. This would help in positioning it as the most versatile
model for real-world deployment. Future work may explore optimizing Faster R-CNN for real-time applications or
integrating ensemble techniques to combine the strengths of multiple models for enhanced performance. With
dataset2, in the case of CNN it had poor performance in classification and the performance metrics are very less as
well. Whereas Faster R-CNN, the performance in classification and metrics were not bad. With dataset1, in the case
of CNN it had a better performance with classification tasks, and they also have excellent performance metrics when
compared to the Faster R-CNN which had lower performance since they depend on the localization tasks as well, i.e.,
they try to output bounding boxes as well.

VI. FUTURE SCOPE

The contribution to vehicle make and model recognition domain which was made by this analysis contains several
opportunities for further research and development. Better system acceleration could also be achieved by
optimization of the Faster R-CNN model at the inference stage such that it balances the trading off between
generalization and inference speed. The effectiveness of the scheme in handling complex detection scenarios implies
that it would still be applicable in real time systems, while such optimizations would make it more applicable.
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Another promising direction is ensemble models’. Hybrid architectures could combine the speed and efficiency of
YOLOvVS8, with the robustness and precision of Faster R-CNN, which would greatly complement each other. In
complex environments, these ensemble models may be especially useful applications where the performance needs
insight into real-time and high accuracy.

A second path is to increase the dataset through the addition of further vehicle classes, environmental variations, and
difficult situations, including low light or adversarial weather. This is an enhancement which would help to make the
models more resilient to real world variations and have a more generalization capability.

Further, these models can be integrated into end to end systems for real time applications like traffic monitoring,
autonomous vehicles and law enforcement. The models are deployed to the edge device or cloud platform for
scalability and efficiency in large scale deployment. Additionally, advanced post processing methods to improve
performance in bounding box refinement and classification accuracy further improves the performance of these
systems. Hardware acceleration on hardware such as GPU optimization and running on dedicated AI chips can
continue to be advantages in computational efficiency and latency. And these advances would enable the deployment
of resource intensive models like Faster R-CNN under time critical scenarios.

However, if these aspects are addressed, the application of vehicle make and model recognition systems will be
extended into different fields.
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