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In the study, a discrete distribution is proposed by considering the Poisson distribution as a base 

distribution and the Lindley distribution as a parametric distribution which is named as Poisson 

extended Lindley distribution (PELD). The new distribution is known as the Poisson extended 

Lindley distribution. Its density function, as well as its survival and hazard rate curves are shown 

graphically. The study presented the Moment generating function and its related measures such 

as moments about the origin and mean, coefficient of variation, skewness, and kurtosis. To 

calculate the distribution parameters, distinct estimating strategies are employed. In order to 

compare and draw conclusions about the performance of the different estimators, a thorough 

numerical analysis was done. Here, a real data set on the COVID-19 mortality rate was examined 

to show how adaptable and practical the suggested distribution is. 

Keywords: Poisson extended Lindley distribution (PELD), Survival analysis, Maximum 

likelihood, Method of Moments, COVID-19, Mortality. 

 
1.1 INTRODUCTION 

Probability distributions are a very practical and helpful tool for explaining and forecasting a variety of real-world 

occurrences that are documented in a variety of applied disciplines. On the other hand, a substantial amount of 

research and studies have been done to develop distributions that are more flexible and able to pull out all of the 

information from the data. 

In this respect, there have been substantial efforts made to build the classical distributions, which rely on various 

operations such as the addition of parameters, transformation, composition, and compounding of random variables. 

Generalized probability distributions have emerged as a result of the widespread availability of the method for adding 

parameters. This approach improves the quality of expressing data relating to natural events and also increases the 

accuracy of characterizing the tail shape of distributions. Numerous areas, including medical, finance, 

bioengineering, and statistics, may benefit from the employment of contemporary numerical methods. Lastly, 

numbers play a vital part in our everyday lives. A great deal of statistical analysis is premised on the existence of a 

probability model or distribution. 

The application of statistical models and probability distributions to analyze mortality data has seen growing 

prominence in public health and epidemiology. 

Age-at-death distributions have emerged as a significant focus area. Aliverti1 et al. developed a dynamic model 

leveraging mixtures of skewed distributions to analyse age-at-death data, advocating for more sophisticated 

approaches to mortality analysis (Aliverti1 et al, 2022). Similarly, Mazzuco2 et al. proposed a model combining half- 

normal and generalized skew-normal distributions to handle diverse mortality patterns effectively (Mazzuco2 et al., 
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2018). These approaches underscore the necessity of adaptable statistical frameworks that can account for the 

intricate nature of mortality trends. 

The COVID-19 pandemic spurred the development of innovative statistical methods tailored for mortality analysis. 

Muse et al. introduced a modified log-logistic tangent (LLT) distribution to model COVID-19 mortality in Somalia, 

highlighting its advantageous statistical attributes (Lukas3 et al., 2021). In a related effort, Nagy4 et al. designed a 

novel discrete distribution to analyze COVID-19 mortality rates, showcasing how statistical tools can address 

emerging health crises (Nagy4 et al., 2021). These advancements demonstrate the importance of customized models 

in responding to novel public health challenges. 

Regression-based methods are another widely explored area in mortality modeling. Prescott5 et al. examined 

regression-based assessments in the Veterans Affairs Healthcare System, emphasizing the trade-off between model 

complexity and interpretability (Prescott5 et al., 2022). Similarly, Dashti6 et al. developed simplified models for 

predicting hospitalization and mortality risks in COVID-19 patients, achieving predictive accuracy comparable to 

more complex methods (F). These studies highlight the importance of balancing sophistication and usability in public 

health applications. 

The Gompertz distribution, a longstanding tool in mortality modeling, remains widely used. Dey7 et al. examined 

its statistical properties and application in survival analysis, demonstrating its capacity to model exponentially 

increasing failure rates (Dey7 et al., 2018). This distribution's utility is further supported by studies such as Baldi's8 

analysis of the gender gap in youth mortality using an Age-Period-Cohort framework (Baldi's8, 2023). The robustness 

of the Gompertz model ensures its relevance across various demographic studies. 

Spatial analysis has also become integral to mortality research. Andrade9 et al. utilized a Poisson probability 

distribution model alongside spatial techniques to examine COVID-19 mortality patterns across Brazil (Andrade9 et 

al., 2020). Hallisey10 et al. further emphasized the significance of geography in mortality research, using interpolation 

methods to analyze mortality counts across regions (Hallisey10 et al., 2017). These spatial approaches highlight the 

importance of integrating geographic factors to enhance the understanding of mortality trends. 

Beyond these methodologies, innovative models have been proposed for demographic forecasting. Aliverti1 et al. 

emphasized the importance of age-at-death distributions in mortality modeling, presenting skewed distribution 

functions as powerful tools for analyzing demographic shifts (Aliverti1 et al., 2021; 2022). Li11 proposed the Poisson 

common factor model, which builds on the Lee-Carter method by incorporating sex-specific factors, enhancing 

mortality projections for different genders (Li11, 2012). This model’s ability to handle count data, such as death 

numbers, underscores its utility in public health. 

Coherent ensemble averaging methods have been explored to improve the reliability of mortality rate forecasts. 

Chang12 & Shi12 demonstrated how combining multiple mortality models can produce age-coherent forecasts, 

minimizing the risks of overfitting while ensuring accuracy over extended timeframes (Chang12 & Shi12 2022). This 

method is particularly relevant for applications in life insurance and pension planning. 

Cairns13 et al. introduced a two-factor model for stochastic mortality, addressing parameter uncertainty and 

randomness in mortality data (Cairns13 et al., 2008). Meanwhile, Basellini and Camarda proposed a relational model 

linking observed adult age-at-death distributions to a standard reference, enhancing the predictive power of mortality 

models (Basellini14 & Camarda14, 2019; 2020). Their three-component framework provides insights into mortality 

patterns across different life stages. 

Finally, maximum entropy models have emerged as an innovative tool in mortality forecasting. Pascariu15 et al. used 

statistical moments to predict mortality, demonstrating the adaptability of these models in scenarios where 

traditional parametric approaches may falter (Pascariu15 et al., 2019). This, the diverse range of statistical models and 

distributions developed for mortality analysis reflects their importance in both theoretical and applied research. 

From traditional methods like the Gompertz distribution to novel approaches such as maximum entropy models, 

these tools are invaluable for improving demographic forecasts, informing public health strategies, and supporting 

actuarial science. 
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This article focuses on the introduction of a new statistical distribution, the Poisson Extended Lindley Distribution 

(PELD), as an effective tool for modelling over-dispersed mortality data. Derived through a compound distribution 

framework, PELD integrates the Poisson distribution with the Extended Lindley distribution, enabling a more precise 

representation of mortality patterns. 

1.2 Objectives 

 To develop Poisson Extended Lindley distribution (PELD) and its properties. 

 To find out the application of Poisson Extended Lindley distribution (PELD). 

1.3 Materials & Method 

In this study, the Poisson distribution with parameter  as base distribution and Lindley distribution with parameter 

 combine these parameter together then obtain a distribution called Poisson Extended Lindley Distribution 

(PELD). 

1.4 Proposed Distribution 

1.4.1 Poisson Extended Lindley Distribution (PELD) 

Let X follows Poisson distribution with parameter  again the parameter  follows Extended Lindley distribution 

with parameter  having probability density function (pdf) 

f ,  
 2 

1 
2 1   e 

 

 ;   0,  0 (1.1) 

Then the Poisson Extended Lindley distribution (PELD) can be obtained by the method of compound distribution as 
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(1.3) 

cumulative distribution function (CDF) of PELD can be obtained as 
 

F  X  x   P  X  t 
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(1.4) 

 2 x  1
2 
 t 1  3 

 2 2 
 3   x 1 

F  X  x  
1    2   1 

t 2 
 1 1    2 

 1 
x2 (1.5) 

 

t 0    

x 

http://www.jisem-journal.com/


Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 
https://www.jisem-journal.com/ Research Article 

66 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

The PELD is formulated by combining the Poisson distribution (parameter λ) with the Extended Lindley distribution 

(parameter θ). The derived expressions for the PMF, CDF, and other distributional properties establish PELD as a 

flexible model for count data. 

1.5 Distributional Properties 

1.5.1 Behaviour of PMF and CDF 

The behaviour and nature of PMF of PELD for the different values of  , is depicted in Fig-1. 1. It can be seen that the 

value of PMF is decreasing as the value of variable increases for the fixed values of parameter  while PMF decreases 

for the increasing values of parameter  at fixed values of random variable X. The behaviour of CDF of PELD for 

varying value of parameter  has been shown graphically in Fig-1.2. 

 

 
Fig-1.1: -Behaviour of probability mass function (PMF) of Poisson Extended Lindley distribution (PELD) 
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Fig-1.2: Behaviour1of cumulative density function (CDF) of Poisson Extended Lindley distribution (PELD) 
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1.6 Mathematical Properties 

Moments of PELD 

1.6.1 Raw Moments of PELD 

The rth raw moment about the origin of PELD can be obtained as 
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Putting r  1, 2, 3, 4, one can obtain the raw moments of PELD and further can be used to obtain the central 
moments. Hence 
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1.6.2 Coefficient of Dispersion, Skewness and Kurtosis 

The coefficient of variation (CV) of the distribution can be obtained as the ration of standard deviation by its 
mean 
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The Pearson’s coefficients have been calculated to obtain the expression of skewness as kurtosis 
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Using (1.14) and (1.15), one can calculate the values of skewness and kurtosis. From the Table 1.1, it can be seen that 

the PELD distribution is over dispersive as its variance is greater than mean. The value of mean and variance are 

decreasing for increasing value of parameter  , while coefficient of variation (CV) is increasing in nature as the value 

of parameter increases. The skewness of PELD increases as the value of parameter increases, it a positive skewed 

distribution as the value of skewness is positive for all the values of parameter. As well as, the values of kurtosis 

increases as the value of parameter increases but all the values are positive hence it can be said that is leptokurtic 

distribution and suitable for peaked over dispersive datasets. 

1.7 Moments and Descriptive Statistics 

The moments about the origin and the mean, variance, skewness, and kurtosis of the PELD are derived. The model 

is characterized by positive skewness and leptokurtic behaviour, making it suitable for peaked, over-dispersed 

datasets. As shown in Table 1, increasing values of the parameter θ lead to decreasing mean and variance but 

increasing skewness and kurtosis, indicating an adaptable model for diverse mortality data. 

Table 1: - Values of descriptive statistics of Poisson Extended Lindley distribution (PELD) for various values of 

parameter 


Value of  Mean Variance CV Skewness Kurtosis 

0.1 19.009 218.027 0.77678 1.43325 3.05591 

0.2 9.03226 58.0957 0.84387 1.47786 3.19537 

0.3 5.73141 27.0789 0.90793 1.5349 3.38794 

0.4 4.10256 15.7972 0.9688 1.59652 3.61355 

0.5 3.14286 10.4082 1.02651 1.65818 3.85915 

0.6 2.51701 7.40617 1.08122 1.71741 4.11677 

0.7 2.08089 5.55995 1.13315 1.77301 4.38203 

0.8 1.7623 4.34309 1.18255 1.82457 4.65295 

0.9 1.52112 3.4987 1.22968 1.87211 4.92894 

1.0 1.33333 2.88889 1.27475 1.9159 5.21006 
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
1.8. Reliability Characteristics 

1.8.1 Survival Function 

The survival function S  x of random variable T at any point x defined as 

S  x  P T  x; x  0,1, 2,... (1.16) 

can be calculated as 

S  x  P T  x P T  x  P T  x

 P T  x P T  x

Hence 
  2  1

2 
 t 1

S  x  
1    2  

 1 
t 2   P T  x



t  x 

  

  

 2 
 2 2 

 2  x 1  2  1
2 
 x 1

 
1    2  1

x1 
 

1    2 


 
 1

x2 


 (1.17) 

 
 3 

 2 2 
 3   x 1 

1    2  1
x2 

;  0, x  0,1, 2,... 

 

From the Fig 1.3 it is seen seen that the survival of Poisson Extended Lindley distribution (PELD) rapidly decreases 

as the value of parameter  increases also it is decreases in same manner as the value of random variable increases. 
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Fig 1.3: - Behavior of survival function of Poisson Extended Lindley distribution (PELD) 
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               



 
1.8.2 Hazard Rate or Mortality rate 

The hazard rate is the measure of failure or mortality in indefinite small time interval and defined as the conditional 

probability that the system may fail in a very small time interval given that it was at surviving stage at the starting 

time point of that time interval. It can be calculated as 
 P  X  x

h  x 
S  x

 2 

; x  0,1, 2,... 

 
 1

2 
 x 1

1    2 



 1

x2  (1.18) 

 
 

 
hence 

 

 3  2 2  3   x 1 

1    2  1
x2 

 

 2  1
2 
 x 1

h  x  ;  0, x  0,1, 2,... 
 3  2 2  3  x 1 

 

 

 

 

 

 

(1.19) 

From the Fig 1.4 is can be observed that Poisson Extended Lindley distribution (PELD) has increasing hazard rate or 

mortality rate for any value of parameter. As the value of parameter increases, the hazard rate increases rapidly 
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Fig 1.4:- Behavior of hazard rate of Poisson Extended Lindley distribution (PELD). 

1.8.3 Second Rate of Failure 

The hazard rate defined in (1.19) is bounded and hence cannot be convex also it is not additive for series system. The 

second rate of failure (SRF) defined as SRF (x)  logS  x S  x 1 was introduced by Roy (2002) (also used by 

Xie et al, 2002) to overcome these inherent problems of the failure rate. For discrete Poisson Extended Lindley 

distribution (PELD) 
 

  S  x     x   xe 1  e   2 1 

SRF (x)  log    log  

S x 1  x   x   1 e 1  e   2 1 e 
(1.20) 
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 

n 

1.9 Parameter Estimation 

1.9.1 Method of Moments 

In this method, one makes the equation of sample moments and population moments and solve for the estimates of 

parameters. For Poisson Extended Lindley distribution (PELD), equating the sample mean equals to population 

mean to get the moments estimator,   of parameter , 

 

 

E  X   x 
2   2 

 
 

 1  2 



(1.21) 

x   2 
 3   2     2 

 3 
x   x 1 2 

  x 1  2  0 
2 

 

Solving the equation (1.22), one can get the moment estimator   of parameter . 

1.9.2 Method of Maximum Likelihood 

 
 
 

 
(1.22) 

The method of maximum likelihood consists of maximizing the likelihood function to get the estimator of parameter. 

For the given sample x1, x2 ,..., xn of size n , the Likelihood function of the parameter of Poisson Extended Lindley 

distribution (PELD) is as follows 

 

L  P(xi , ) 
i1 

n  2  1
2 
 x 1 (1.23) 

   i 

i1 1    2 

  1
xi 2 





Taking log both side for log likelihood function 
 

log L  n log
 

 
 

n log 1
2 
 x 1

n 

 x  2log 1  (1.24) 
 
1  2 


i1 

i i 

i1 

 

Differentiating equation (1.24) w.r.t  and equating equals to zero can get the log likelihood equation 

 

 2n  n 1 2  n   2  2    
xi  2

      i1   0 (1.25) 
 1    2 i1 

  1
2 
 x 1   1 

 i 

Solving the non-linear equation (1.25), one can get the ML estimate of the parameter  . 

2 

n 
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2.0 APPLICATION OF THE MODEL 

As Poisson Extended Lindley distribution (PELD) is an over-dispersed model, so it can be used for the modelling of 

over-dispersed data. The applicability of Poisson Extended Lindley distribution (PELD) has been compared with 

Poisson-Exponential distribution (PED) which is a well-known over-dispersed distribution. The chi-square 

distribution has been used to test the significance of goodness of fit. From Table 1.2 it can be observed that PELD is 

better fit than PED, hence it can be used for the modelling of over-dispersed data. 

Table 1.2- Observed and expected distribution of families according to the number of child deaths in Northeast 

Libya. 

 

Number of 

Child Deaths 

Observed 

Frequency 

Expected frequency 
   

Poisson- 

Exponential 

Poisson- 

ELD 

0 805 807.2 806.12 

1 306 300.73 308.19 

2 93 95.4 91.9 

3 36 33.55 35.52 

4 7 10.56 8.42 

5 2 3.98 3.87 

6 1 1.17 1.12 

7 2 0.73 1.44 

ML estimate  1.9027 2.1467 

Chi-square 
 

4.76 1.41 

p-value 
 

0.313 0.842 

 

 
3.0 DISCUSSION 

PELD's ability to model over-dispersed mortality data is evident from its performance against PED. The positive 

skewness and leptokurtic nature of the distribution align with the characteristics of the dataset. Additionally, the 

model's flexibility in capturing varying mortality patterns exponentiates its potential for broader applications in 

demographic and public health research. 

 

 
4.0 CONCLUSION 

This study presents the Poisson Extended Lindley Distribution (PELD) as a robust model for over-dispersed mortality 

data. The derived distributional properties, combined with practical parameter estimation methods, highlight its 

utility in analyzing complex datasets. The application to child mortality data in North-East Libya demonstrates its 

effectiveness compared to existing models. PELD's adaptability and accuracy make it a valuable tool for mortality 

analysis, public health planning, and demographic forecasting. 
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