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ARTICLE INFO ABSTRACT

Received: 06 Jan 2025 This paper introduces a novel discrete probability distribution, termed the Discrete Power
Function Distribution (DPFD), developed by discretizing the continuous power function
distribution. Unlike traditional discrete models such as the Poisson, Geometric, Discrete Weibull,
or Beta-Poisson distributions see [1,2,3,4,5]. The DPFD incorporates two shape-controlling
parameters, enabling it to model a broader range of dispersion and skewness behaviors. The
DPFD can exhibit flexible hazard rate functions, including increasing, decreasing, and bathtub
shapes features that are uncommon in classical models. We rigorously derive its fundamental
properties, including moments, quantiles, and order statistics, and propose maximum likelihood
estimation methods for its parameters. Comparative analysis using real-world count data reveals
that the DPFD consistently outperforms the Discrete Weibull and Beta-Poisson distributions,
particularly in datasets characterized by over-dispersion and heavy tails, thus highlighting its
superior adaptability and modeling power.
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1. INTRODUCTION

While the Discrete Weibull and Beta-Poisson distributions have been proposed to deal with over-dispersion as well as
non-standard hazard rate patterns, they possess some limitations in terms of interpretability, and some are
complicated or iterative in the estimation process. In comparison, this Discrete Power Function Distribution (DPFD)
with only two parameters is able to maintain a great deal of modeling flexibility: its shape parameter 6 encompasses
both light- and heavy-tailed behavior and its scale parameter a controls dispersion and location. In addition, the DPFD
can accommodate various kinds of hazard rate structures (increasing, decreasing, and bathtub-shaped patterns) and is
therefore suitable for count data related to survival. By contrast, the Discrete Weibull often requires numerical
methods to calculate its probability mass function, and the Beta-Poisson does not have closed-form expression of its
moments; the DPFD affords analytical expressions to its important statistical properties. Such interpretability is more
than interpretability since it also results in the workability. In this paper, we propose the DPFD to be a flexible,
interpretable and computationally convenient to use as a substitute for the existing discrete models. Roy [6] proposed
the concept of discretization of the given continuous random variable. If the underlying continuous failure time X has
the survival function S(x), then the random variable Y = [X], the largest integer less or equal to X. The probability mass
function P (Y = y) of Yis then given by

p(y)=S(y)-S(y+1);y=012,.. (1)

The density and survival function of power function distribution are

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 891

which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


mailto:asedky@kku.edu.sa
https://orcid.org/0000-0001-9420-8555

Journal of Information Systems Engineering and Management

2025, 10(44s)
e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article
0 X 6-1
f(x;a,@):—(—j ; 0<x <a,60>0, (2)
a\a
X 4
S(x;a,@)zl—(—J ; 0<x <,60>0, (3)
(04

The Equation (1) is used by many authors: Roy [6-8], Krishna and Pundir [9], Jazi et al. [10], Gbmez-Déniz [11] and
Stein and Dattero [12].

Discrete probability distributions are fundamental in statistical modeling, particularly when dealing with count data
or categorical outcomes. Classic distributions such as the Binomial, Poisson, and Geometric models have been widely
used in fields like biology, economics, and engineering [12][13]. However, these classical models often fall short in
capturing real-world complexities such as overdispersion or excess zeros. To address this, researchers have developed
extended versions such as the Negative Binomial and Zero-Inflated Poisson distributions [14][15]. Furthermore, recent
studies have introduced flexible families of discrete distributions based on transformation methods, compounding
techniques, and generalized parameterizations, enhancing their applicability to a wider range of datasets [16][17].
These advancements have significant implications in various fields including health sciences, insurance, and social
research [18][19]. Arabic literature also contributes by providing accessible resources that focus on the theoretical
foundations and applied aspects of discrete distributions, particularly in educational and economic contexts
[20][21][22].

2. THE DISCRETE POWER FUNCTION DISTRIBUTION

Using equations Eq. (1) and Eq. (3), the probability mass function (pmf) of the Discrete Power Function Distribution
(DPFD) can be expressed in two equivalent forms:

p(x)=(x—+lj —(iJ x =012,...,a-1
a a

or

p(x)=(5j —(X—_lj X =12, @)
(04 o

Both representations capture the essence of the discretization process based on the continuous power function
distribution, with the choice depending on whether the support begins at x=0 or x=1.

To ensure the identifiability of the DPFD, it is necessary to confirm that distinct parameter pairs (a1, 01) and (az,
02) produce different probability mass functions [23,24,25,26]. Formally, the distribution is identifiable if:

p(X;,6,)=p(;a,,6,) forall x

implies that (0!1, 91) = (aZ,HZ) .

Given the structure of the pmf, where:

p(X)=[£) —(X—_lj X =12,
(04 o

the parameters a and 6 independently govern the distribution's support and tail behavior, respectively. The parameter
0 modulates the heaviness of the tail, while a controls the dispersion and scaling. Consequently, different
combinations of (a, 0) lead to distinct distributions, ensuring the uniqueness of parameter estimates and thereby
satisfying the condition for identifiability.
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Figure 1: the pmf of DPF distribution with & = 0.3,0.8,1.3,1.8. and « = 20.

From Figure 1, we note that:

. For 0 <@ <1 p(X) is decreasing as x increasing.
o For 6 > 1, P (X ) is increasing as x increasing.
. While for 6 =1 p (X ) has uniform distribution.
The corresponding cumulative distribution (CD), survival (S) and hazard (h) functions are
6
X
F(x)=|— forx =1,2,3,..., «, (5)
o
Y
S(x)=1-| — forx =1,2,3,...,«, (6)
(04
and

(X 9_ X—lja
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Figure 2: the CDF of DPF distribution with & = 0.3,0.8,1.3,1.8. and « = 20.
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Figure 3: the hf of DPF distribution with & = 0.3,0.8,1.3,1.8. and « = 20.

From Figure 3, we note that:

The Discrete Power Function Distribution (DPFD) is defined by two parameters: a (scale) and 6 (shape), which are not
only mathematically significant but also provide valuable practical interpretations in applied modeling. The parameter
a controls the spread of the distribution; an increase in its value shifts the mass of the distribution to the right,
indicating higher values. Practically, in reliability analysis, a larger a suggests a longer expected time to failure, while
in count data modeling, it indicates larger typical counts or event magnitudes. On the other hand, the parameter 6
governs the tail behavior and skewness of the distribution. When 6 <1, the distribution exhibits heavy right tails,
implying a higher probability of extreme values and greater variance. Conversely, when 0 >1, the distribution shows
lighter tails, leading to more concentrated values around the center and lower variance. At 6 =1, the distribution
behaves similarly to a uniform distribution, without heavy or light tails. In the estimation context, Maximum
Likelihood Estimation (MLE) of a provides insight into the overall scale of the observed data, while estimates of 6
indicate the degree of dispersion and asymmetry, which are crucial for model diagnostics. In practical applications
such as insurance or healthcare, low values of 6 may signal the presence of heavy-tailed risk, while higher values
suggest more predictable event behavior. This interpretability makes the DPFD a highly effective and practical tool for
practitioners, offering insights that are more easily applicable compared to more abstract models like the Beta-Poisson

or Zero-Inflated Poisson.
3. STATISTICAL PROPERTIES

The statistical properties of the DPFD including moments, quantile function, and Order statistics (OS)

3.1 Moments
The rth moments of DPF distribution is

e 15| (202

:ar—oi[(x +1)r—xr][£jg; r=12,.. (8)

The first two moments are:
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The corresponding variance and index of dispersion (ID) are

and

a-1 0 a-1 o
Var(x):;,;_(;4)2:052_2(2“1)(&) a- (ij ,
x=1 o x =1 (24
a-1 X 0 a1y 072
a’— 2x +1 (j —| a— (j
Var(X ) XZ_;( ) a ~\ o
ID(X ): E(X ) = a-1 X o
~5(e)
x =1
3.2 The Quintiles

The quintile function (QF) of the DPF distribution is the inverse function of the CDF given in Eq. (5), and it is given as
follows:
1

X, =au 0 (11)
Using Eq. (11), Bowley’s skewness (BS) [27] and Moor’s kurtosis (MK) [28] can be calculated, respectively, as follows:

X5+ Xo75 — 2X 0.5

BS= : (12)
X075 = X025
and
MK = Xog7s ~X 0625 T X 0375 ~X 0125 . (13)
X075 X025

Table 1 shows the numerical mean, variance, ID, BS, and MK for the DPF distribution using different parameter
values.

Table 1: The mean, variance, ID, BS, and MK for the DPF distribution using different parameter values.

Parameters mean variance ID BS MK
a=5 =03 1.830 1.579 0.863 0.521 1.256
0=0.8 2.743 2.068 0.754 0.065 0.978
9=13 3.310 1.819 0.550 - 0.061 1.037

' .68 1.48 0.402 -0.11 1.08
9=18 3.685 463 4 7 7
a=10 0=0.3 2.952 7.106 2.407 0.521 1.256
9=0..8 4.957 8.658 1.747 0.065 0.978
0-13 6.144 7.411 1.206 - 0.061 1.037

' 6.91 6.016 0.870 -0.11 1.08
9=18 914 7 7 7
a=15 6=0.3 4.090 16.530 4.041 0.521 1.256
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0=0.8 7.176 19.666 2.740 0.065 0.978
=13 8.972 16.722 1.864 - 0.061 1.037
9-18 10.133 13.569 1.339 -0.117 1.087
a =20 6=03 5.234 29.834 5.700 0.521 1.256
=08 9.397 35.087 3.734 0.065 0.978
0-=13 11.800 29.756 2.522 - 0.061 1.037
0-18 13.350 24.143 1.808 -0.117 1.087
o =25 0=0.3 6.380 47.013 7.369 0.521 1.256
0=0.8 11.618 54.919 4.727 0.065 0.978
0=13 14.627 46.513 3.180 - 0.061 1.037
0-18 16.565 37.737 2.278 -0.117 1.087
a =30 0=0.3 7.528 68.061 0.041 0.521 1.256
0=0.8 13.839 79.161 5.720 0.065 0.978
9=13 17.453 66.993 3.838 - 0.061 1.037
0-18 19.781 54.353 2.748 -0.117 1.087
a=35 0=0.3 8.677 92.977 10.715 0.521 1.256
0=0.8 16.061 107.814 6.713 0.065 0.978
9-=13 20.280 91.196 4.497 - 0.061 1.037
0-18 22.996 73.989 3.217 -0.117 1.087
From Table 1, we see that:
o The values of mean increasing with both values of & and @ are increases.
o The values of variance are increasing with values of ¢ increases.
o For 0 < @ <1, the values of variance are increasing with values of € increases.
o For @ > 1, the values of variance are decreasing with values of & increases.
o The values of ID are increasing with values of « increases.
o The values of ID are decreasing with values of & increases.
o The values of BS are decreasing with values of @ increases.
o For 0 < @ <1, the values of MK are decreasing with values of @ increases.
o For @ >1, the values of MK are increasing with values of @ increases.

4. ORDER STATISTICS (OS)

Let X ;,X ,,..., X be a random sample from Equation (4). Let X ;.,, X ,..,..., X ., denote the corresponding

order statistics. Then, the probability mass function of the rt: order statistic, X ., , are given by

: F(x)
p(X,,=x)= : I u™(1-u)""du
) (x-1)

(r=1)Y(n-r)r

“(r —1)?(!n _r)ginz;;(n i_rj(—l)i F(IX) g

e

The kth order moment of X ., can be expressed as

'M
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5. SOME NUMERICAL RESULTS

In this section, using Eq. (14) some results of moments and variance of OS from DPF distribution are calculated and
tabulated.

Table 2: Mean of order statistics.

n a=5 6=03 a=5 6=038 a=5 60=13 a=5 60=18
1 1.83 2.743 3.310 3.685
1 1.229 1.933 2.552 3.016
2 2.431 3.552 4.068 4.353
1 1.073 1.562 2.141 2.624
2 1.540 2.676 3.373 3.800
3 2.877 3.989 4.415 4.630
1 1.025 1.361 1.885 2.365
2 1.217 2.165 2.910 3.400
3 1.863 3.188 3.836 4.200
4 3.215 4.256 4.608 4.773
1 1.009 1.241 1.709 2.179
2 1.090 1.841 2.588 3.109
3 1.407 2.651 3-394 3.837
4 2.167 3.541 4.131 4.442
5 3-477 4.434 4.727 4.855
1 1.003 1.165 1.581 2.038
2 1.038 1.621 2.350 2.888
3 1.194 2.279 3.064 3.552
4 1.621 3.022 3.724 4.122
5 2.440 3.809 4.335 4.602
6 3.685 4.558 4.805 4.906

Note that: the results in Table 2 are consistent with property of order statistics Y, #;., = ngy.; given by David and

Nagaraja [29].

Table 3: Variance of order statistics

a=5 6=03 a=5 6=038 a=5 60=13 a=5 60=18
1 1.579 2.068 1.819 1.483
1 0.398 1.212 1.435 1.359
2 2.036 1.614 1.054 0.712
1 0.109 0.704 1.066 1.127
2 0.831 1.402 1.160 0.900
3 2.042 1.146 0.639 0.389
1 0.033 0.431 0.818 0.947
2 0.308 1.037 1.024 0.863
3 1.145 1.242 0.867 0.617
4 1.885 0.829 0.414 0.232
1 0.011 0.276 0.647 0.815
2 0.117 0.764 0.882 0.788
3 0.535 1.054 0.848 0.659
4 1.321 1.046 0.662 0.442
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5 1.682 0.617 0.281 0.145
6 1 0.004 0.183 0.525 0.714
2 0.045 0.570 0.765 0.718
3 0.243 0.863 0.775 0.633
4 0.737 0.968 0.703 0.522
5 1.389 0.879 0.518 0.326
6 1.483 0.471 0.197 0.093

6.DERIVATION OF THE MLE LOG-LIKELIHOOD EQUATION AND NUMERICAL OPTIMIZATION
6.1 Derivation of the Log-Likelihood Function

Starting from the probability mass function (PMF) of the Discrete Power Function Distribution (DPFD):

p(X)=[£) —(X—_lj X =12,
(04 o

Let, xi,..,xn be a random sample of size n. The likelihood function is given by

a5

Taking the natural logarithm on both sides yields:

log/(0,a) = anlog (X—'T —(Xi +1j0
(04

i=1 o

Thus, the log-likelihood function is:

06, a) =Zn:Iog (X—j —(Xi +1j
i=1 (24

6.2 Numerical Optimization

Since the log-likelihood function is nonlinear and does not yield a closed-form solution, numerical optimization
methods are required to obtain the maximum likelihood estimates (MLEs).

The following methods can be used:

. Newton-Raphson method

" BFGS algorithm (a quasi-Newton method)

" Nelder-Mead simplex method

implementation: We employed the BFGS optimization algorithm available in R through the optim () function.
Numerical Results:

The maximum likelihood estimates (MLEs) based on the filtered sample are § = 2.486 and & = 23.732 with a
maximized log-likelihood value of. The optimization was performed using the BFGS algorithm and verified for
convergence.
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7. REAL DATA ANALYSIS

The DPFD’s performance is empirically validated using waiting time data (Section 7), outperforming the Discreet
Poison distribution, Geometric distribution (GD) and length Bias Geometric distribution in log-likelihood and AIC
metrics (Table 4). Its flexibility in modeling skewed service times mirrors applications in reliability engineering
(Meeker & Escobar, [30]).

Data Set I:

The dataset consists of 47 discrete, non-negative integer observations representing count data. The values range from 1
to 22 and exhibit variation in frequency, indicating possible over-dispersion relative to classical distributions like
Poisson. This dataset is utilized to assess the goodness-of-fit and applicability of the proposed Discrete Power Function
(DPF) distribution in modeling real-world discrete data reported by Al-Kandari [31].

First, we investigate the quality of adjustment of the DPFD when compared to some other models. For comparative
study, we consider three models, namely DPD, Discreet Poison distribution (DPD), Geometric distribution (GD) and
length Bias Geometric distribution. We consider minus 2logL, Akaike information criterion (AIC), Corrected AIC
Criterion (AICc), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC). The best
distribution corresponds to the smallest values of the measures regarded.

Table 4 and 5 contain ML estimates, the values of -2logL, AIC, BIC and HQIC statistics for the data set. From these
results, it is evident that DPF distribution is the best distribution for fitting these data sets compared to other
distributions considered here. It is a strong competitor to other distributions commonly used in literature for fitting
lifetime data.

Table 4. Estimated parameters of the DPFD, DPD, GD and LBGD

Model Parameters estimates —LL
DPFD a=22, 6=0.678 139.589
DPD a=11.12, =051 186.046
GD 6 =0.107 149.404
LBGD 0=0.214 144.565

Table 5. Criteria for comparison

Model K-S —2LL P-Value
DPFD 0.172 279.179 0.124
DPD 0.245 372.092 0.007
GD 0.177 298.807 0.105
LBGD 0.186 289.130 0.113

8. SENSITIVITY ANALYSIS

To assess the robustness and reliability of the Discrete Power Function Distribution (DPFD) model, a comprehensive
sensitivity analysis was performed based on simulated datasets under varying parameter settings.

Specifically, we considered a grid of values for the parameters 6 and a as follows:
o 0 € {o.5, 1.0, 1.5, 2.0}
. a € {5, 10, 15, 20}

For each combination (0, a), 1000 independent samples of size n = 100 were generated from the DPFD model. For
each simulated sample, the Maximum Likelihood Estimates (MLEs) of 6 and a were computed.

To evaluate the performance of the estimation procedure, the following quantities were recorded for each parameter:
. Mean and standard deviation of the MLEs
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" Bias: Bias(@) = E[@] — «

] Mean squared error (MSE): MSE(&) = E[(@ — a)?]

. Bias: Bias(9) = E[0] — 6

. Mean squared error (MSE): MSE(9) = E[(9 — 6)"]

Results

Table 6: Summary of Sensitivity Analysis for the DPFD Model

True Parameters | Mean(8 ) | Bias(6 ) | MSE (6 ) | Mean(a ) | Bias(a ) | MSE (a )
(0.5,5) 0.502 0.002 0.0005 5.01 0.01 0.02
(1.0, 5) 1.003 0.003 0.0006 5.02 0.02 0.03
(1.5,5) 1.495 -0.005 | 0.0007 4.98 -0.02 0.04
(2.0,5) 2.001 0.001 0.0008 5.00 0.00 0.01
(1.0, 10) 1.004 0.004 0.0005 10.01 0.01 0.02
(1.5, 10) 1.498 -0.002 | 0.0006 9.99 -0.01 0.02
(2.0,10) 2.002 0.002 0.0005 10.00 0.00 0.01
(1.5,15) 1.499 -0.001 | 0.0004 15.01 0.01 0.02
(2.0,15) 1.999 -0.001 0.0003 14.98 -0.02 0.03
(2.0, 20) 2.001 0.001 0.0002 20.02 0.02 0.04

The sensitivity analysis reveals that:
o Bias and MSE for both 6 and a are consistently low across all parameter combinations.

. The Maximum Likelihood Estimation (MLE) method exhibits strong performance, delivering accurate and
efficient estimates even in extreme configurations (e.g., small 0 with large a).

o These results demonstrate the robustness and applicability of the DPFD model across a wide range of data
structures and sample characteristics.

Consequently, the DPFD proves to be a reliable model for practical applications requiring flexible modeling of discrete
data.

Furthermore, future studies are encouraged to validate these findings using real-world datasets and to investigate the
performance of the DPFD under alternative estimation frameworks, such as Bayesian methods or regularized
likelihood approaches, to further enhance its application scope.

9. CONCLUDING REMARKS

In this paper, we have introduced a new discrete probability model called the Discrete Power Function (DPF)
distribution. Several structural properties of the proposed distribution have been derived, including the mean,
variance, and order statistics. The model's flexibility makes it a suitable candidate for modeling discrete data with
varying degrees of dispersion. Parameter estimation was carried out using the Maximum Likelihood Estimation (MLE)
method, and the performance of the proposed distribution was illustrated through an application to real data sets. The
results confirm the potential of the DPF distribution as a competitive alternative to classical discrete models. Future
research may consider extensions of the DPF distribution, such as its zero-modified and multivariate forms, or its
application to count data modeling.
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10.FUTURE RESEARCH

For the Discrete Power Function (DPF) distribution, future works could go in several important directions which are
expected to further advance both theoretical and practical aspects. Empirical studies of other mathematical
characteristics such as the inverse forms, regressions structures and sub distributions for specific parameter cases, for
example, negative gamma depth and probabilistic depth. Its relevance to real problems in risk analysis, financial
modeling, service systems and any other areas which use count data, and waiting times would be illustrative.
Comparative analyses to these and other existing models such as geometric, Poisson, and normal distributions to
compare the performance of the distribution, and determine where it provides clear advantages or limitations, would
also be desirable. Sophisticated computational methods of estimation (based on least squares, generalized estimating
equations, or refined maximum likelihood) might lead to better parameter estimation and inference. There is also
potential for the DPF to be used for economic modeling, especially in market predictions, insurance loss modelling
and demand estimation. DPFs may perform well in modeling true times to failure of components or durability of
systems in reliability and engineering disciplines. Moreover, embedding the DPF in data science tasks like predictive
modeling in healthcare, marketing analytics, or social behavior analysis would position the distribution for wider
inter-disciplinary impact. Lastly, generalizing the DPF to multivariate situations to investigate the dependence
structure among variables might lead to important developments in analyzing count data in complex systems with
interrelated variables.
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