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This paper introduces a novel discrete probability distribution, termed the Discrete Power 

Function Distribution (DPFD), developed by discretizing the continuous power function 

distribution. Unlike traditional discrete models such as the Poisson, Geometric, Discrete Weibull, 

or Beta-Poisson distributions see [1,2,3,4,5]. The DPFD incorporates two shape-controlling 

parameters, enabling it to model a broader range of dispersion and skewness behaviors. The 

DPFD can exhibit flexible hazard rate functions, including increasing, decreasing, and bathtub 

shapes features that are uncommon in classical models. We rigorously derive its fundamental 

properties, including moments, quantiles, and order statistics, and propose maximum likelihood 

estimation methods for its parameters. Comparative analysis using real-world count data reveals 

that the DPFD consistently outperforms the Discrete Weibull and Beta-Poisson distributions, 

particularly in datasets characterized by over-dispersion and heavy tails, thus highlighting its 

superior adaptability and modeling power. 

Keywords: Discretization of continuous distribution - power Function distribution – Maximum 

Likelihood Estimation – Order statistics – Moments 

 

1. INTRODUCTION 

While the Discrete Weibull and Beta-Poisson distributions have been proposed to deal with over-dispersion as well as 

non-standard hazard rate patterns, they possess some limitations in terms of interpretability, and some are 

complicated or iterative in the estimation process. In comparison, this Discrete Power Function Distribution (DPFD) 

with only two parameters is able to maintain a great deal of modeling flexibility: its shape parameter θ encompasses 

both light- and heavy-tailed behavior and its scale parameter α controls dispersion and location. In addition, the DPFD 

can accommodate various kinds of hazard rate structures (increasing, decreasing, and bathtub-shaped patterns) and is 

therefore suitable for count data related to survival. By contrast, the Discrete Weibull often requires numerical 

methods to calculate its probability mass function, and the Beta-Poisson does not have closed-form expression of its 

moments; the DPFD affords analytical expressions to its important statistical properties. Such interpretability is more 

than interpretability since it also results in the workability. In this paper, we propose the DPFD to be a flexible, 

interpretable and computationally convenient to use as a substitute for the existing discrete models. Roy [6] proposed 

the concept of discretization of the given continuous random variable. If the underlying continuous failure time X has 

the survival function S(x), then the random variable Y = [X], the largest integer less or equal to X. The probability mass 

function P (Y = y) of Y is then given by 

( ) ( ) ( )1 ;  0,1,2,...p y S y S y y= − + =      (1) 

 The density and survival function of power function distribution are  
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x
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

   


 
= −    

 
     (3)

 

The Equation (1) is used by many authors: Roy [6-8], Krishna and Pundir [9], Jazi et al. [10], Gómez-Déniz [11] and 

Stein and Dattero [12]. 

    Discrete probability distributions are fundamental in statistical modeling, particularly when dealing with count data 

or categorical outcomes. Classic distributions such as the Binomial, Poisson, and Geometric models have been widely 

used in fields like biology, economics, and engineering [12][13]. However, these classical models often fall short in 

capturing real-world complexities such as overdispersion or excess zeros. To address this, researchers have developed 

extended versions such as the Negative Binomial and Zero-Inflated Poisson distributions [14][15]. Furthermore, recent 

studies have introduced flexible families of discrete distributions based on transformation methods, compounding 

techniques, and generalized parameterizations, enhancing their applicability to a wider range of datasets [16][17]. 

These advancements have significant implications in various fields including health sciences, insurance, and social 

research [18][19]. Arabic literature also contributes by providing accessible resources that focus on the theoretical 

foundations and applied aspects of discrete distributions, particularly in educational and economic contexts 

[20][21][22]. 

2. THE DISCRETE POWER FUNCTION DISTRIBUTION 

 Using equations Eq. (1) and Eq. (3), the probability mass function (pmf) of the Discrete Power Function Distribution 

(DPFD) can be expressed in two equivalent forms: 

1
( ) ; 0,1,2,..., 1

x x
p x x

 


 

+   
= − = −   
   

 

or  

1
( ) ; 1,2,...,

x x
p x x

 


 

−   
= − =   
   

                         (4) 

 Both representations capture the essence of the discretization process based on the continuous power function 

distribution, with the choice depending on whether the support begins at x=0 or x=1. 

     To ensure the identifiability of the DPFD, it is necessary to confirm that distinct parameter pairs (α₁, θ₁) and (α₂, 

θ₂) produce different probability mass functions [23,24,25,26]. Formally, the distribution is identifiable if: 

1 1 2 2( ; , ) ( ; , ) for all p x p x x   =  

implies that 1 1 2 2( , ) ( , )   = . 

Given the structure of the pmf, where: 

1
( ) ; 1,2,...,

x x
p x x

 


 

−   
= − =   
   

 

the parameters α and θ independently govern the distribution's support and tail behavior, respectively. The parameter 

θ modulates the heaviness of the tail, while α controls the dispersion and scaling. Consequently, different 

combinations of (α, θ) lead to distinct distributions, ensuring the uniqueness of parameter estimates and thereby 

satisfying the condition for identifiability. 
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Figure 1: the pmf of DPF distribution with 0.3,0.8,1.3,1.8. =  and 20. =  

From Figure 1, we note that: 

• For 0 1  , ( )p x  is decreasing as x increasing. 

• For 1  , ( )p x  is increasing as x increasing. 

• While for 1 = , ( )p x  has uniform distribution. 

The corresponding cumulative distribution (CD), survival (S) and hazard (h) functions are 

( )            for 1,2,3,..., ,
x

F x x






 
= = 
 

       (5) 

( ) 1            for 1,2,3,..., ,
x

S x x






 
= − = 

 
      (6) 

and 

1

( )            for 1,2,3,..., .

1

x x

h x x
x

 



 




−   
−   

   
= =

 
−  
 

    (7) 

 

Figure 2: the CDF of DPF distribution with 0.3,0.8,1.3,1.8. =  and 20. =  
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Figure 3: the hf of DPF distribution with 0.3,0.8,1.3,1.8. =  and 20. =  

From Figure 3, we note that: 

The Discrete Power Function Distribution (DPFD) is defined by two parameters: α (scale) and θ (shape), which are not 

only mathematically significant but also provide valuable practical interpretations in applied modeling. The parameter 

α controls the spread of the distribution; an increase in its value shifts the mass of the distribution to the right, 

indicating higher values. Practically, in reliability analysis, a larger α suggests a longer expected time to failure, while 

in count data modeling, it indicates larger typical counts or event magnitudes. On the other hand, the parameter θ 

governs the tail behavior and skewness of the distribution. When θ <1, the distribution exhibits heavy right tails, 

implying a higher probability of extreme values and greater variance. Conversely, when θ >1, the distribution shows 

lighter tails, leading to more concentrated values around the center and lower variance. At θ =1, the distribution 

behaves similarly to a uniform distribution, without heavy or light tails. In the estimation context, Maximum 

Likelihood Estimation (MLE) of α provides insight into the overall scale of the observed data, while estimates of θ 

indicate the degree of dispersion and asymmetry, which are crucial for model diagnostics. In practical applications 

such as insurance or healthcare, low values of θ may signal the presence of heavy-tailed risk, while higher values 

suggest more predictable event behavior. This interpretability makes the DPFD a highly effective and practical tool for 

practitioners, offering insights that are more easily applicable compared to more abstract models like the Beta-Poisson 

or Zero-Inflated Poisson. 

3. STATISTICAL PROPERTIES 

The statistical properties of the DPFD including moments, quantile function, and Order statistics (OS) 

3.1 Moments 

The rth moments of DPF distribution is 

1

1r r

r

x

x x
E X x

 


 =

 −   
  = = −     

     
  

( )
1

1

      1 ;  1,2,...
rr r

x

x
x x r






−

=

  = − + − =    


     

(8)

 

The first two moments are: 
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and 

( )
1

2

2

1

2 1
x

x
x



 


−

=

 
 = − +  
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

      

(10)

 

The corresponding variance and index of dispersion (ID) are 

( ) ( ) ( )

2
1 1

2 2

2 1

1 1

Var 2 1 ,
x x

x x
X x
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   
 
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

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= =

−

=
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     = =
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−  
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 


 

3.2 The Quintiles 

The quintile function (QF) of the DPF distribution is the inverse function of the CDF given in Eq. (5), and it is given as 

follows: 
1

ux u =         (11) 

Using Eq. (11), Bowley’s skewness (BS) [27] and Moor’s kurtosis (MK) [28] can be calculated, respectively, as follows: 

0.25 0.75 0.5

0.75 0.25

2
BS ,

x x x

x x

+ −
=

−
       (12) 

and 

0.875 0.625 0.375 0.125

0.75 0.25

MK .
x x x x

x x

− + −
=

−
      (13) 

Table 1 shows the numerical mean, variance, ID, BS, and MK for the DPF distribution using different parameter 

values. 

Table 1: The mean, variance, ID, BS, and MK for the DPF distribution using different parameter values. 

Parameters mean variance ID BS MK 

5 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

1.830 

2.743 

3.310 

3.685 

1.579 

2.068 

1.819 

1.483 

0.863 

0.754 

0.550 

0.402 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

10 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

2.952 

4.957 

6.144 

6.914 

7.106 

8.658 

7.411 

6.016 

2.407 

1.747 

1.206 

0.870 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

15 =  0.3 =  4.090 16.530 4.041 0.521 1.256 
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0.8 =  

1.3 =  

1.8 =  

7.176 

8.972 

10.133 

19.666 

16.722 

13.569 

2.740 

1.864 

1.339 

0.065 

- 0.061 

- 0.117 

0.978 

1.037 

1.087 

20 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

5.234 

9.397 

11.800 

13.350 

29.834 

35.087 

29.756 

24.143 

5.700 

3.734 

2.522 

1.808 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

25 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

6.380 

11.618 

14.627 

16.565 

47.013 

54.919 

46.513 

37.737 

7.369 

4.727 

3.180 

2.278 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

30 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

7.528 

13.839 

17.453 

19.781 

68.061 

79.161 

66.993 

54.353 

9.041 

5.720 

3.838 

2.748 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

35 =  0.3 =  

0.8 =  

1.3 =  

1.8 =  

8.677 

16.061 

20.280 

22.996 

92.977 

107.814 

91.196 

73.989 

10.715 

6.713 

4.497 

3.217 

0.521 

0.065 

- 0.061 

- 0.117 

1.256 

0.978 

1.037 

1.087 

From Table 1, we see that: 

• The values of mean increasing with both values of   and   are increases. 

• The values of variance are increasing with values of  increases. 

• For 0 1  , the values of variance are increasing with values of   increases. 

• For 1  , the values of variance are decreasing with values of   increases. 

• The values of ID are increasing with values of  increases. 

• The values of ID are decreasing with values of   increases. 

• The values of BS are decreasing with values of   increases. 

• For 0 1  , the values of MK are decreasing with values of   increases. 

• For 1  , the values of MK are increasing with values of   increases. 

4. ORDER STATISTICS (OS) 

     Let 1 2, ,..., nX X X be a random sample from Equation (4). Let 1: 2: :, ,...,n n n nX X X  denote the corresponding 

order statistics. Then, the probability mass function of the rth order statistic, :r nX , are given by 

( )
( ) ( )

( )
( )

( )

( ) ( )
( )

( )

( )

( ) ( )

( ) ( ) ( )

1

:

1

1

0 1

0

!
1

1 ! !

!
                    1

   1 ! !

1! 1
                    

   1 ! !

F x
n rr

r n

F x

F xn r
i r i

i F x

i r i r in r

i

n
p X x u u du

r n r

n rn
u du

ir n r

n rn x x

ir n r r i

 

 

−−

−

−
+ −

= −

+ +−

=

= = −
− −

− 
= − 

− −  

 − −  −   
= −      

− − +        



 



 

The kth order moment of :r nX  can be expressed as 
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( )
( ) ( )

( ) ( ) ( )

:

0 0 0

1! 1

   1 ! !

i r i r in r
k k k

r n

i x x

n rn x x
E X x x

ir n r r i

  

 

+ +−

= = =

 − −  −   
= −      

− − +        
       (14) 

5. SOME NUMERICAL RESULTS 

In this section, using Eq. (14) some results of moments and variance of OS from DPF distribution are calculated and 

tabulated.  

Table 2: Mean of order statistics. 

n  5,  0.3 = =  5,  0.8 = =  5,  1.3 = =  5,  1.8 = =  

1 1 1.83 2.743 3.310 3.685 

2 1 

2 

1.229 

2.431 

1.933 

3.552 

2.552 

4.068 

3.016 

4.353 

3 1 

2 

3 

1.073 

1.540 

2.877 

1.562 

2.676 

3.989 

2.141 

3.373 

4.415 

2.624 

3.800 

4.630 

4 1 

2 

3 

4 

1.025 

1.217 

1.863 

3.215 

1.361 

2.165 

3.188 

4.256 

1.885 

2.910 

3.836 

4.608 

2.365 

3.400 

4.200 

4.773 

5 1 

2 

3 

4 

5 

1.009 

1.090 

1.407 

2.167 

3.477 

1.241 

1.841 

2.651 

3.541 

4.434 

1.709 

2.588 

3.394 

4.131 

4.727 

2.179 

3.109 

3.837 

4.442 

4.855 

6 1 

2 

3 

4 

5 

6 

1.003 

1.038 

1.194 

1.621 

2.440 

3.685 

1.165 

1.621 

2.279 

3.022 

3.809 

4.558 

1.581 

2.350 

3.064 

3.724 

4.335 

4.805 

2.038 

2.888 

3.552 

4.122 

4.602 

4.906 

Note that: the results in Table 2 are consistent with property of order statistics  ∑ 𝜇𝑖:𝑛 = 𝑛𝜇1:1
𝑛
𝑖=1  given by David and 

Nagaraja [29]. 

Table 3: Variance of order statistics 

n  5,  0.3 = =  5,  0.8 = =  5,  1.3 = =  5,  1.8 = =  

1 1 1.579 2.068 1.819 1.483 

2 1 

2 

0.398 

2.036 

1.212 

1.614 

1.435 

1.054 

1.359 

0.712 

3 1 

2 

3 

0.109 

0.831 

2.042 

0.704 

1.402 

1.146 

1.066 

1.160 

0.639 

1.127 

0.900 

0.389 

4 1 

2 

3 

4 

0.033 

0.308 

1.145 

1.885 

0.431 

1.037 

1.242 

0.829 

0.818 

1.024 

0.867 

0.414 

0.947 

0.863 

0.617 

0.232 

5 1 

2 

3 

4 

0.011 

0.117 

0.535 

1.321 

0.276 

0.764 

1.054 

1.046 

0.647 

0.882 

0.848 

0.662 

0.815 

0.788 

0.659 

0.442 
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5 1.682 0.617 0.281 0.145 

6 1 

2 

3 

4 

5 

6 

0.004 

0.045 

0.243 

0.737 

1.389 

1.483 

0.183 

0.570 

0.863 

0.968 

0.879 

0.471 

0.525 

0.765 

0.775 

0.703 

0.518 

0.197 

0.714 

0.718 

0.633 

0.522 

0.326 

0.093 

 

6.DERIVATION OF THE MLE LOG-LIKELIHOOD EQUATION AND NUMERICAL OPTIMIZATION 

6.1 Derivation of the Log-Likelihood Function 

Starting from the probability mass function (PMF) of the Discrete Power Function Distribution (DPFD): 

1
( ) ; 1,2,...,

x x
p x x

 


 

−   
= − =   
   

 

Let, x1,..,xn be a random sample of size n. The likelihood function is given by  

1

1
( , )

n
i i

i

x x
 

 
 =

 +   
= −    

     
  

Taking the natural logarithm on both sides yields: 

 

1

1
log ( , ) log

n
i i

i

x x
 

 
 =

 +   
= −    

     
  

Thus, the log-likelihood function is: 

1

1
( , ) log

n
i i

i

x x
 

 
 =

 +   
= −    

     
  

6.2 Numerical Optimization 

Since the log-likelihood function is nonlinear and does not yield a closed-form solution, numerical optimization 

methods are required to obtain the maximum likelihood estimates (MLEs). 

The following methods can be used: 

▪ Newton-Raphson method 

▪ BFGS algorithm (a quasi-Newton method) 

▪ Nelder-Mead simplex method 

implementation: We employed the BFGS optimization algorithm available in R through the optim () function. 

Numerical Results: 

The maximum likelihood estimates (MLEs) based on the filtered sample are 𝜃̂ = 2.486 and 𝛼̂ = 23.732  with a 

maximized log-likelihood value of. The optimization was performed using the BFGS algorithm and verified for 

convergence. 
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7. REAL DATA ANALYSIS 

The DPFD’s performance is empirically validated using waiting time data (Section 7), outperforming the Discreet 

Poison distribution, Geometric distribution (GD) and length Bias Geometric distribution in log-likelihood and AIC 

metrics (Table 4). Its flexibility in modeling skewed service times mirrors applications in reliability engineering 

(Meeker & Escobar, [30]). 

Data Set I:  

The dataset consists of 47 discrete, non-negative integer observations representing count data. The values range from 1 

to 22 and exhibit variation in frequency, indicating possible over-dispersion relative to classical distributions like 

Poisson. This dataset is utilized to assess the goodness-of-fit and applicability of the proposed Discrete Power Function 

(DPF) distribution in modeling real-world discrete data reported by Al-Kandari [31]. 

 First, we investigate the quality of adjustment of the DPFD when compared to some other models. For comparative 

study, we consider three models, namely DPD, Discreet Poison distribution (DPD), Geometric distribution (GD) and 

length Bias Geometric distribution. We consider minus 2logL, Akaike information criterion (AIC), Corrected AIC 

Criterion (AICc), Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC). The best 

distribution corresponds to the smallest values of the measures regarded. 

Table 4 and 5 contain ML estimates, the values of -2logL, AIC, BIC and HQIC statistics for the data set. From these 

results, it is evident that DPF distribution is the best distribution for fitting these data sets compared to other 

distributions considered here. It is a strong competitor to other distributions commonly used in literature for fitting 

lifetime data. 

Table 4. Estimated parameters of the DPFD, DPD, GD and LBGD 

Model Parameters estimates – LL 

DPFD 22,   0.678 = =  139.589 

DPD 11.12,  0.51 = =  186.046 

GD 0.107 =  149.404 

LBGD 0.214 =  144.565 

 

Table 5. Criteria for comparison 

Model K-S −2LL P-Value 

DPFD 0.172 279.179 0.124 

DPD 0.245 372.092 0.007 

GD 0.177 298.807 0.105 

LBGD 0.186 289.130 0.113 

 

8. SENSITIVITY ANALYSIS 

To assess the robustness and reliability of the Discrete Power Function Distribution (DPFD) model, a comprehensive 

sensitivity analysis was performed based on simulated datasets under varying parameter settings. 

Specifically, we considered a grid of values for the parameters θ and α as follows: 

• θ ∈ {0.5, 1.0, 1.5, 2.0} 

• α ∈ {5, 10, 15, 20} 

For each combination (θ, α), 1000 independent samples of size n = 100 were generated from the DPFD model. For 

each simulated sample, the Maximum Likelihood Estimates (MLEs) of θ and α were computed. 

To evaluate the performance of the estimation procedure, the following quantities were recorded for each parameter: 

▪ Mean and standard deviation of the MLEs 
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▪ Bias: Bias(𝛼̂) = 𝐸[𝛼̂] − 𝛼 

▪ Mean squared error (MSE): MSE(𝛼̂) = 𝐸[(𝛼̂ − 𝛼)2] 

▪ Bias: Bias(𝜃̂) = 𝐸[𝜃̂] − 𝜃 

▪ Mean squared error (MSE): MSE(𝜃̂) = 𝐸[(𝜃̂ − 𝜃)
2

] 

Results 

Table 6: Summary of Sensitivity Analysis for the DPFD Model 

True Parameters Mean(θ̂) Bias(θ̂) MSE (θ̂) Mean(α̂) Bias(α̂) MSE (α̂) 

(0.5, 5) 0.502 0.002 0.0005 5.01 0.01 0.02 

(1.0, 5) 1.003 0.003 0.0006 5.02 0.02 0.03 

(1.5, 5) 1.495 -0.005 0.0007 4.98 -0.02 0.04 

(2.0, 5) 2.001 0.001 0.0008 5.00 0.00 0.01 

(1.0, 10) 1.004 0.004 0.0005 10.01 0.01 0.02 

(1.5, 10) 1.498 -0.002 0.0006 9.99 -0.01 0.02 

(2.0, 10) 2.002 0.002 0.0005 10.00 0.00 0.01 

(1.5, 15) 1.499 -0.001 0.0004 15.01 0.01 0.02 

(2.0, 15) 1.999 -0.001 0.0003 14.98 -0.02 0.03 

(2.0, 20) 2.001 0.001 0.0002 20.02 0.02 0.04 

 

The sensitivity analysis reveals that: 

• Bias and MSE for both θ and α are consistently low across all parameter combinations. 

• The Maximum Likelihood Estimation (MLE) method exhibits strong performance, delivering accurate and 

efficient estimates even in extreme configurations (e.g., small θ with large α). 

• These results demonstrate the robustness and applicability of the DPFD model across a wide range of data 

structures and sample characteristics. 

Consequently, the DPFD proves to be a reliable model for practical applications requiring flexible modeling of discrete 

data. 

Furthermore, future studies are encouraged to validate these findings using real-world datasets and to investigate the 

performance of the DPFD under alternative estimation frameworks, such as Bayesian methods or regularized 

likelihood approaches, to further enhance its application scope. 

9. CONCLUDING REMARKS 

    In this paper, we have introduced a new discrete probability model called the Discrete Power Function (DPF) 

distribution. Several structural properties of the proposed distribution have been derived, including the mean, 

variance, and order statistics. The model's flexibility makes it a suitable candidate for modeling discrete data with 

varying degrees of dispersion. Parameter estimation was carried out using the Maximum Likelihood Estimation (MLE) 

method, and the performance of the proposed distribution was illustrated through an application to real data sets. The 

results confirm the potential of the DPF distribution as a competitive alternative to classical discrete models. Future 

research may consider extensions of the DPF distribution, such as its zero-modified and multivariate forms, or its 

application to count data modeling. 
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10.FUTURE RESEARCH  

For the Discrete Power Function (DPF) distribution, future works could go in several important directions which are 

expected to further advance both theoretical and practical aspects. Empirical studies of other mathematical 

characteristics such as the inverse forms, regressions structures and sub distributions for specific parameter cases, for 

example, negative gamma depth and probabilistic depth. Its relevance to real problems in risk analysis, financial 

modeling, service systems and any other areas which use count data, and waiting times would be illustrative. 

Comparative analyses to these and other existing models such as geometric, Poisson, and normal distributions to 

compare the performance of the distribution, and determine where it provides clear advantages or limitations, would 

also be desirable. Sophisticated computational methods of estimation (based on least squares, generalized estimating 

equations, or refined maximum likelihood) might lead to better parameter estimation and inference. There is also 

potential for the DPF to be used for economic modeling, especially in market predictions, insurance loss modelling 

and demand estimation. DPFs may perform well in modeling true times to failure of components or durability of 

systems in reliability and engineering disciplines. Moreover, embedding the DPF in data science tasks like predictive 

modeling in healthcare, marketing analytics, or social behavior analysis would position the distribution for wider 

inter-disciplinary impact. Lastly, generalizing the DPF to multivariate situations to investigate the dependence 

structure among variables might lead to important developments in analyzing count data in complex systems with 

interrelated variables. 
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