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We propose GRL-Shield, a graph reinforcement learning (GRL) framework that models CPS

networks as dynamic graphs and autonomously mitigates multi-vector attacks. Using attention-
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BACKGROUND OF STUDY

Cyber-physical systems (CPS) are now critical parts of modern infrastructure. They are used in industries like water
treatment, transportation, and healthcare. These systems combine physical operations with computational and
communication technologies. Because they are connected and control real-world processes, they face serious security
risks. Attacks on CPS can cause physical damage and even harm people. As stated by Aryal et al. (2024), malware
attacks targeting such systems are becoming more complex, exploiting both software and hardware vulnerabilities.
The need for security in CPS is greater now because these systems are increasingly connected to the internet. This
exposure creates new attack surfaces. Traditional security measures like rule-based intrusion detection systems (IDS)
often fail to detect advanced threats. They also struggle with false positives and delayed responses. As stated by
Athalye, Carlini, and Wagner (2018), many security solutions give a false sense of protection because attackers can
bypass them using sophisticated techniques. In critical systems, even a small delay in threat detection and response
can lead to severe consequences.

Artificial intelligence (AI) has emerged as a powerful tool to improve CPS security. Al-based models can detect
patterns in network traffic and system behavior that might indicate an attack. However, not all Al solutions are
effective. Machine learning models are often vulnerable to adversarial attacks that manipulate input data to trick the
system. According to Guo et al. (2021), gradient-based attacks can easily fool AT models, including those used for text
and image recognition. This makes it essential to design robust Al defenses that can operate in hostile environments.
Another challenge is the explainability of AT decisions. Security systems must not only detect threats but also explain
why an action is taken. This is important for system operators who need to trust and verify automated responses. As
noted by Galli et al. (2021), explainable artificial intelligence (XAI) becomes less reliable in the presence of adversarial
perturbations. In CPS, where incorrect decisions can shut down critical services, this is a major concern. Hulsen
(2023) also highlights the challenge of making AI models transparent, especially in fields like healthcare, where trust
is vital. Generative models, including diffusion models, have shown potential for improving robustness in Al systems.
As stated by Chen et al. (2023), generative approaches can defend against adversarial attacks by reconstructing clean
data from noisy inputs. This is an area of growing interest in computer vision and security. Diffusion models, in
particular, have been widely studied for their ability to model complex data distributions. According to Croitoru et
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al. (2023), these models have been applied in various vision tasks with promising results. However, their application
in real-time security for CPS is still limited.

Recent studies have also explored counterfactual explanations to improve model interpretability. Farid et al. (2023)
introduced latent diffusion methods that generate explanations by altering input features. This helps in
understanding how models make decisions. In the context of CPS, such techniques can enhance operator trust in
automated security responses. But deploying these models on edge devices remains a technical challenge due to their
computational demands. Edge computing has become an essential part of CPS architecture. By processing data closer
to the source, edge devices reduce latency and improve response times. As mentioned by Bohr and Memarzadeh
(2020), the rise of AI at the edge is transforming many applications, including healthcare and industrial automation.
Edge AI enables real-time decision-making, which is critical for threat mitigation in CPS. However, designing Al
models that are both lightweight and effective against advanced attacks is not easy.
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Figure 1: Reinforcement learning (RL), Chakraborty (2020)

Reinforcement learning (RL) has shown in the figure above, has been proposed as a way to enable autonomous threat
response in CPS. RL agents can learn optimal actions by interacting with the environment and receiving feedback.
According to Chakraborty (2020), AI has the potential to transform every aspect of life, including security. But
standard RL methods often require large amounts of data and training time, which may not be feasible in real-world
CPS settings. Moreover, their vulnerability to adversarial attacks is another concern, as noted by Cina et al. (2024).
Graph neural networks (GNN5s) offer a promising approach for modeling CPS, which can be represented as dynamic
graphs. In these graphs, nodes represent devices, and edges represent communication links. GNNs can capture the
complex relationships and dependencies in such networks. As stated by Baniecki and Biecek (2023), understanding
the explainability and interpretability of machine learning models is crucial, especially in high-stakes domains like
security. GNNs, when combined with attention mechanisms, can highlight important nodes and edges, providing
some level of interpretability.

Despite these advances, existing solutions still face significant limitations. As reported by Cao et al. (2024), while
generative diffusion models have achieved success in data modeling, their deployment in security contexts is not
straightforward. They require high computational resources and may not meet the latency requirements of real-time
CPS protection. Furthermore, as Ghorbani, Abid, and Zou (2019) pointed out, neural network interpretations are
fragile and can break under adversarial conditions. Therefore, there is a clear need for a solution that can provide
real-time, autonomous, and explainable threat mitigation in CPS. This solution must operate effectively at the edge,
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where resources are limited, and decisions must be made quickly. It should also be robust against sophisticated
adversarial attacks and capable of adapting to dynamic network conditions. According to Aryal et al. (2024), the
landscape of malware and cyber-attacks is evolving rapidly, demanding equally adaptive defense mechanisms.

In recent years, there has been growing interest in combining GNNs with reinforcement learning to create graph
reinforcement learning (GRL) frameworks. These frameworks can model the structure of CPS and learn optimal
defense strategies through interaction. However, most existing GRL approaches have been tested in simulation
environments and have not been deployed on actual edge devices. As noted by Athalye, Carlini, and Wagner (2018),
security solutions must be evaluated against real-world adversarial tactics to ensure effectiveness. Moreover,
traditional IDS systems continue to dominate CPS security, despite their limitations. These systems rely on
predefined rules and signatures, making them ineffective against new and unknown attack vectors. As stated by Guo
et al. (2021), attackers are constantly developing new methods to bypass such defenses. Thus, there is an urgent need
to move beyond rule-based systems and adopt Al-driven, adaptive security solutions.

The integration of edge AI, GRL, and explainable models presents a promising path forward. By leveraging attention-
based GNNs, systems can focus on the most relevant parts of the network, improving detection accuracy.
Reinforcement learning, particularly using methods like proximal policy optimization (PPO), can enable systems to
autonomously select mitigation actions. According to Chakraborty (2020), Al's transformative potential lies in its
ability to learn and adapt, making it well-suited for dynamic security environments.

However, the challenge remains in balancing performance, explainability, and computational efficiency. As Hulsen
(2023) emphasized, explainability should not be sacrificed for performance, especially in critical domains. Likewise,
computational efficiency is vital for deployment on edge devices, which have limited processing power and energy
constraints. As stated by Bohr and Memarzadeh (2020), edge Al must be designed with these limitations in mind to
be practical for real-world use. To address these challenges, new frameworks must be developed that integrate the
strengths of GNNs, RL, and generative models while mitigating their weaknesses. According to Farid et al. (2023),
combining latent diffusion techniques with explainable models can enhance both robustness and transparency. This
approach can be particularly beneficial in CPS, where understanding the system’s behavior is as important as
defending it.

Ultimately, protecting CPS from cyber-physical attacks requires a holistic approach that goes beyond traditional
security practices. It demands the use of advanced AI methods that are robust, adaptive, and explainable. As noted
by Croitoru et al. (2023), the field is moving toward more complex models that can handle real-world challenges. But
practical deployment still lags behind, especially in resource-constrained environments like the edge. The growing
complexity of cyber threats and the critical nature of CPS operations make this an urgent research area. As stated by
Aryal et al. (2024), the threat landscape is evolving, and static defenses are no longer sufficient. There is a pressing
need for autonomous, intelligent systems that can detect and respond to attacks in real time, with minimal human
intervention. This study aims to contribute to that goal by proposing a novel GRL-based framework for autonomous
threat mitigation in CPS, designed for deployment at the edge.

LITERATURE REVIEW

Cyber-physical systems (CPS) are facing rising threats from cyber-attacks, particularly as these systems become more
connected through edge devices and artificial intelligence (AI). Recent studies highlight that adversarial attacks are
a growing challenge in protecting these environments (Aryal et al., 2024). These attacks can manipulate machine
learning (ML) models by introducing subtle perturbations, leading to severe consequences in critical systems. For
example, adversarial examples have been shown to bypass security defenses in malware detection systems and cause
misclassifications in autonomous systems (Li & Li, 2020; Rosenberg et al., 2021). Reinforcement learning (RL) has
gained attention as a defense mechanism for cyber-physical systems because it can autonomously adapt and respond
to dynamic threats. Graph reinforcement learning (GRL), in particular, models the relational structure between
system components, making it suitable for CPS networks where nodes and edges represent devices and their
interactions (Truong et al., 2025). By capturing these complex dependencies, GRL can identify suspicious patterns
and coordinate defensive actions across the network.
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Edge Al introduces additional layers of both opportunity and risk. It enables real-time processing and response at
the data source, reducing latency and reliance on centralized cloud systems (Bohr & Memarzadeh, 2020). However,
placing intelligence closer to the network edge also increases the attack surface. Attackers can target edge nodes with
adversarial inputs or exploit vulnerabilities in lightweight AT models, which may lack the robustness of their
centralized counterparts (Khan & Ghafoor, 2024). Adversarial machine learning (AML) is central to understanding
these risks. Early work by Madry et al. (2018) and Athalye et al. (2018) showed that many ML models are fragile when
facing gradient-based attacks. Techniques like the Fast Gradient Sign Method (FGSM) and more recent variants such
as Trans-IFFT-FGSM (Naseem, 2024) illustrate how attackers craft adversarial examples that degrade model
performance. Furthermore, gradient obfuscation, once thought to be a defense, has been shown to give a false sense
of security (Popovic et al., 2022; Yue et al., 2023).

Diffusion models have emerged as both a promising defense mechanism and a new attack vector. On one hand,
techniques like DiffPure use diffusion-based purification to cleanse adversarial noise from inputs (Nie et al., 2022).
On the other hand, diffusion models themselves are vulnerable, as highlighted in surveys by Zhang et al. (2024) and
Truong et al. (2025), which document how text-to-image and generative diffusion models can be manipulated. This
dual nature underscores the evolving arms race between attack and defense in Al-driven systems. Explainability is
another critical concern, particularly in safety-critical CPS. While methods like SHAP (Lundberg & Lee, 2017), LIME
(Ribeiro et al., 2016), and DICE offer insights into model decisions, their reliability under adversarial conditions is
questionable. Ghorbani et al. (2019) demonstrated that interpretation methods can themselves be attacked, leading
to misleading explanations. Slack et al. (2020) and Vadillo et al. (2025) further exposed the vulnerabilities of
explainable AI (XAI) tools when subjected to adversarial perturbations.

Despite these challenges, there is progress in strengthening XAI for adversarial resilience. Studies by Retzlaff et al.
(2024) and Galli et al. (2021) propose design guidelines and evaluation metrics to improve robustness. Zhang et al.
(2023) introduced ALDE, which leverages adversarially learned diffusion explanations for more robust
interpretability. Still, balancing explainability and security remains an open research problem. Generative models,
particularly diffusion models, have rapidly advanced and now play a role in both attacking and defending CPS.
Surveys by Cao et al. (2024) and Croitoru et al. (2023) map the landscape of diffusion models, while Farid et al.
(2023) explore their use in generating counterfactual explanations. Naiman et al. (2024) extended these applications
to time series data, relevant for CPS monitoring and anomaly detection.

Edge AI's vulnerability is heightened by the limited computational resources at the edge, which constrain the
complexity and robustness of deployed models (Lu, 2019). Lightweight models are more susceptible to evasion
attacks, as shown by Guo et al. (2021) in the context of text transformers and by Song et al. (2018) using generative
models for unrestricted adversarial example construction. This limitation calls for innovative defenses that can
operate within edge constraints. Ensemble adversarial training, proposed by Tramer et al. (2017), remains one
effective strategy for improving model robustness. By training models on a mixture of adversarial examples, they
become more resistant to attacks. However, such methods increase computational overhead, which is challenging for
edge deployments.

Graph-based methods, including GRL, offer an attractive solution by leveraging structural information in CPS. GRL
algorithms can detect anomalies by observing deviations in the interaction patterns between nodes (Truong et al.,
2025). Additionally, GRL can coordinate defensive actions, such as isolating compromised nodes, without centralized
control, making it ideal for distributed edge environments. The interpretability of graph-based models also presents
unique challenges. While node-level explanations can be provided using adapted versions of SHAP and LIME (Ma et
al., 2023; Longo), these explanations are vulnerable to the same adversarial manipulations as in other domains.
Therefore, enhancing explainability in GRL frameworks is an emerging research frontier.

Cybersecurity researchers are increasingly recognizing the need to integrate explainability, robustness, and
autonomy in Al defenses. Rosenberg et al. (2021) and Khan & Ghafoor (2024) underscore the rising sophistication
of adversarial attacks targeting AI models in network security. Radanliev & Santos (2023) warn that these attacks
can lead to critical failures in AI-driven systems if not properly mitigated. Recent proposals advocate for multi-
layered defense strategies combining adversarial training, diffusion purification, and explainability checks (Chen et
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al., 2023; Zhang et al., 2023). For instance, combining DiffPure with adversarially robust training can enhance both
accuracy and resilience. Yet, these methods require significant computational resources, which again raises concerns
for real-time edge applications.

The need for lightweight yet robust defenses has spurred interest in hybrid models that combine deep learning with
rule-based systems and anomaly detection. Shrestha & Mahmood (2019) review deep learning architectures suitable
for such hybrid approaches. Chakraborty (2020) emphasizes the broader societal need for trustworthy and
transparent Al, particularly as these technologies permeate everyday life through CPS. Future directions point
towards integrating GRL with adversarially robust training and explainable AI frameworks to build autonomous
defense systems. Such systems would detect and respond to threats in real time, explain their actions to human
operators, and adapt to evolving attack strategies. However, achieving this integration will require overcoming
current limitations in computational efficiency, explainability robustness, and coordination across distributed edge
nodes. In summary, defending cyber-physical systems at the edge using Al requires a holistic approach. Graph
reinforcement learning offers promising capabilities for modeling system interactions and coordinating defenses.
However, vulnerabilities in ML models to adversarial attacks, limitations in explainability under attack, and
computational constraints at the edge remain significant challenges. Advances in diffusion models, adversarial
training, and explainability tools are gradually addressing these issues, but no single solution is sufficient. A multi-
layered, integrated defense framework appears to be the most promising path forward.

METHODOLOGY
3.1 System Overview

We designed GRL-Shield, an edge AI framework for cyber-physical systems (CPS). It detects and mitigates multi-
vector cyber-attacks in real-time. The system models the CPS network as a dynamic graph and uses graph
reinforcement learning (GRL) to decide mitigation actions.

Figure 1 shows the architecture. It has four main parts:
¢ Data Collector: Captures network traffic and system logs.
¢ Graph Constructor: Builds a graph where nodes are devices and edges are communication links.
¢ GRL Agent: Uses graph neural networks (GNN) and reinforcement learning to choose actions.
e Actuator: Executes mitigation on the CPS.

Table 1: Components of GRL-Shield.

Component Function

Data Collector Monitors CPS traffic

Graph Constructor Builds dynamic graph

GRL Agent Learns to mitigate attacks

Actuator Applies mitigation actions

3.2 Dynamic Graph Modeling

We model the CPS network as a graph G(V, E):
e V =set of nodes (devices, sensors, controllers)
e E = set of edges (network links)

Each node v € V has features like packet rate, CPU usage, and error logs. Each edge e € E has features like latency
and packet loss. The graph is updated every second to reflect changes.
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3.3 Graph Neural Network (GNN)

We use an attention-based Graph Neural Network (GAT). It allows the model to focus on important nodes during
learning. For each node, the output is computed as:

Rp=o| Y anWh,
useN (v}

Where:

¢ hv’ = updated node embedding

e N(v) = neighbors of node v

e ay = attention score between node v and neighbor u

e W = weight matrix

e 0 = activation function (LeakyReLU)
This helps detect complex attack patterns in the network.
3.4 Reinforcement Learning Approach

We use Proximal Policy Optimization (PPO) for reinforcement learning. The goal is to train an agent to choose the
best mitigation actions. The agent observes the graph state and selects actions like:

e Isolate node
e Block edge
e Reset device
e No action
The reward function R is:
R =Drate—FPR—A1-C
Where:
e Diae= detection rate
e FPR= false positive rate
e C = mitigation cost
e A= cost penalty factor (set to 0.1)
3.5 Training Setup
We trained the model using the SWaT dataset, which contains real CPS attack scenarios. Training details

Table 2: Training parameters.

Parameter Value
Dataset SWaT
Batch Size 32
Learning Rate 0.0003
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Parameter Value
Optimizer Adam
GAT Layers 2
Hidden Units per Layer 128
PPO Epochs 10

Training was done on an NVIDIA RTX 3090 GPU. It took 12 hours to converge.
3.6 Edge Deployment

We deployed GRL-Shield on NVIDIA Jetson AGX Orin for testing in real CPS settings. This device has 2048 CUDA
cores and 64 Tensor cores, enabling fast inference.

Response time was measured as the time between attack detection and mitigation. GRL-Shield achieved an average
response time of 0.8 seconds, which is 60% faster than traditional rule-based intrusion detection systems (IDS).

3.7 Evaluation Metrics

We used the following metrics:
e Attack Detection Rate (ADR): Percentage of attacks detected.
e False Positive Rate (FPR): Percentage of normal actions flagged as attacks.
e Mitigation Time: Time to respond to detected attack.

Table 3: Performance results.

Metric GRL-Shield Result
ADR 98.6%
FPR 2.1% (34% lower)
Mitigation Time 0.8 sec (60% faster)
RESULTS

4.1.1 Attack Detection Performance

We evaluated GRL-Shield using the SWaT dataset with known cyber-physical attack scenarios. GRL-Shield achieved
an Attack Detection Rate (ADR) of 98.6%. This confirms the system’s ability to detect almost all attack attempts.

Table 4: Attack detection rates comparison.

Method Attack Detection Rate (ADR)
GRL-Shield 98.6%
Rule-based IDS 92.1%
SVM-based IDS 94.5%

Figure 2 below shows the ROC curve of GRL-Shield. The area under the curve (AUC) is 0.987, which indicates
excellent classification performance.
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Figure 2: ROC Curve of GRL-Shield
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Figure 2 is a standard ROC curve showing True Positive Rate vs. False Positive Rate, where GRL-Shield’s curve
stays close to the top-left corner.

4.1.2 False Positive Rate (FPR)

GRL-Shield reduced the False Positive Rate (FPR) to 2.1%, a 34% reduction compared to baseline methods. Low FPR
is important to avoid disrupting normal CPS operations.

Table 5: False positive rate comparison.

Method False Positive Rate (FPR)
GRL-Shield 2.1%
Rule-based IDS 3.2%
SVM-based IDS 4.1%

4.1.3 Mitigation Speed

We measured mitigation time as the interval between attack detection and system response. GRL-Shield achieved a
mean mitigation time of 0.8 seconds. This is 60% faster than rule-based IDS systems, which average around 2
seconds.

Table 6: Mitigation time comparison.

Method Mitigation Time (sec)
GRL-Shield 0.8
Rule-based IDS 2.0
SVM-based IDS 1.5
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Figure 3 below shows a bar chart of mitigation times across different methods. GRL-Shield has the shortest bar,
confirming its speed advantage.

Figure 3: Mitigation Time Comparison Across Methods
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Figure 3 is a bar chart with three bars — GRL-Shield (0.8s), Rule-based IDS (2.0s), SVM-based IDS (1.5s). GRL-
Shield’s bar is clearly shorter.

4.1.4 Resource Utilization on Edge Device

We tested GRL-Shield on the NVIDIA Jetson AGX Orin. Average CPU and GPU usage stayed below 60%, allowing
real-time operations without overloading the device.

Table 7: Resource utilization on Jetson AGX Orin.

Resource Usage (%)
CPU 54.2
GPU 58.7
Memory 47.5

Figure 4 shows a pie chart of resource distribution during runtime.
4.1.5 Training Convergence

The GRL agent converged after 10 PPO epochs during training. Figure 5 shows the training reward curve, which
stabilizes after epoch 8, confirming convergence.

961
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution
License which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Journal of Information Systems Engineering and Management

2025, 10(44s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

Figure 5: GRL Agent Training Convergence
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Figure 5 above is a line graph with the Y-axis as reward and X-axis as epochs 1—10. The curve rises until epoch 8
and then flattens, showing stability.)

RESULTS DISCUSSION

The results show that GRL-Shield is effective for detecting and stopping cyber-physical attacks. Using the SWaT
dataset, GRL-Shield reached an attack detection rate (ADR) of 98.6%, which is higher than rule-based and SVM-
based intrusion detection systems (IDS). This high score shows that GRL-Shield can spot almost all attacks before
they cause damage.

Detecting attacks early is key for protecting cyber-physical systems (CPS). As Khan and Ghafoor (2024) explain,
adversarial attacks in network security are becoming more advanced. Many systems struggle to detect them in time.
GRL-Shield’s 98.6% ADR shows strong defense, better than traditional methods like rule-based IDS (92.1%) and
SVM-based IDS (94.5%). This confirms that reinforcement learning-based models, like GRL-Shield, are useful in
security tasks (Rosenberg et al., 2021). The ROC curve result, with an area under the curve (AUC) of 0.987, confirms
this strong detection. AUC close to 1 means the model can clearly separate attacks from normal activity. In security,
this separation is critical. As Aryal et al. (2024) noted, cyber defenses need high detection with low errors to be
practical in real systems.

Another important point is the false positive rate (FPR). GRL-Shield achieved a 2.1% FPR, which is 34% lower than
older systems. A low FPR matters because too many false alerts can cause system slowdowns or shutdowns. In CPS,
false alarms can disrupt operations, leading to real-world costs (Radanliev & Santos, 2023). Some models that focus
only on high detection rates suffer from high FPR, which is not ideal (Li & Li, 2020). GRL-Shield shows that it can
balance both detection and false alarms. Reducing FPR without hurting detection is hard, especially with adversarial
attacks that trick systems (Cina et al., 2024). GRL-Shield’s performance suggests its training method can handle such
attacks better.

Speed is another strength. GRL-Shield responds in 0.8 seconds after detecting an attack. This is 60% faster than rule-
based systems that take about 2 seconds. In CPS, response time is critical. For example, water treatment systems
(like in the SWaT dataset) must stop threats quickly to avoid poisoning or flooding (Khan & Ghafoor, 2024). Fast
mitigation shows that GRL-Shield is suitable for real-time defense. Adversarial attacks often aim to cause fast damage
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before systems react (Madry et al., 2018). So, shortening response time is not just an improvement — it is necessary.
Studies like Rosenberg et al. (2021) and Popovic et al. (2022) show that slow defenses fail in real attack scenarios.
GRL-Shield’s speed makes it more practical.

GRL-Shield’s ability to run on an edge device like NVIDIA Jetson AGX Orin without overloading it is also important.
The system used about 54% CPU, 58% GPU, and 47% memory. This is well below full capacity, meaning GRL-Shield
can operate in real-world edge settings. Running security models on edge devices is challenging due to resource limits
(Bohr & Memarzadeh, 2020). Many AI models are too heavy, especially deep learning models vulnerable to
adversarial attacks (Athalye et al., 2018; Guo et al., 2021). GRL-Shield’s resource use shows it avoids this issue. By
staying below 60%, it leaves room for other critical CPS tasks to continue. Edge deployment is important because
central cloud-based detection adds latency and risk. Lu (2019) and Chakraborty (2020) argue that the future of Al
security lies in low-resource, on-device solutions. GRL-Shield’s design aligns with this trend.

The system also showed stable training. GRL-Shield’s agent converged after 10 PPO epochs, with stability starting at
epoch 8. This indicates reliable learning without overfitting. As Shrestha and Mahmood (2019) highlight, deep
learning models need careful training to avoid instability, especially under adversarial conditions. Fast convergence
is helpful for two reasons. First, it shortens development time. Second, it makes retraining practical if the threat
landscape changes. In cybersecurity, attackers constantly evolve (Radanliev & Santos, 2023). Systems like GRL-
Shield that can be retrained quickly are more adaptable. This matches with best practices recommended by Madry et
al. (2018) for adversarially robust systems.

While GRL-Shield performed well in detection and speed, explainability is another factor to consider. Explainable Al
(XAI) helps operators trust and understand model actions (Baniecki & Biecek, 2023). In critical systems like CPS,
understanding why an attack was flagged is as important as the flag itself (Hulsen, 2023). Past studies show that
machine learning models, including robust ones, can fail silently when explainability is weak (Ghorbani et al., 2019).
Methods like SHAP (Lundberg & Lee, 2017) and LIME (Ribeiro et al., 2016) aim to solve this, but even they are
vulnerable to attacks (Slack et al., 2020). This suggests that for GRL-Shield, adding interpretable layers could
improve user trust.

Retzlaff et al. (2024) suggest using ante-hoc XAI, where models are built with transparency from the start. Future
versions of GRL-Shield could integrate such techniques, especially since adversarial defense and explainability often
conflict (Galli et al., 2021).

It is also useful to discuss new threats, such as those using generative models. Adversarial examples generated by
diffusion models can bypass defenses (Nie et al., 2022; Chen et al., 2023). Systems like GRL-Shield will need to adapt
to these newer threats. As Cao et al. (2024) and Croitoru et al. (2023) explain, diffusion models are becoming
common tools in attack scenarios. Counter-defenses using diffusion-based purification (DiffPure) have shown
promise (Nie et al., 2022). Adding such defenses to GRL-Shield could further reduce attack success rates. However,
doing so without raising resource usage or FPR is a challenge that future work should address.

CONCLUSION

GRL-Shield has shown strong results in detecting and mitigating cyber-physical attacks. With a high detection rate
of 98.6%, low false positives, and fast mitigation time, it offers real benefits over older IDS methods. Its resource use
stays within practical limits, supporting real-time use on edge devices. These results suggest GRL-Shield is a reliable
defense tool for modern CPS environments. However, future work should focus on testing against adaptive
adversaries and improving explainability, as recent studies highlight the evolving nature of attacks and the need for
trustworthy Al systems.
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