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Mangroves in Eastern Leyte play an important role in the environment by offering various 

ecological benefits like protecting shorelines, storing carbon and serving as homes for a variety 

of marine creatures. It is crucial to map and monitor mangrove forests to properly conserve and 

manage them. This research study specifically looks at how to identify and locate mangrove areas 

in Eastern Leyte Philippines using satellite images. A method based on the 75th percentile 

threshold segmentation index was used to detect and classify these mangrove areas. Field 

surveys provided ground truth data to confirm the accuracy of the classification results, which 

showed an overall accuracy rate of 83.93% and a Kappa coefficient of 0.678 indicating 

substantial agreement between the classified information and the actual data. The high level of 

accuracy demonstrates that the percentile-based threshold segmentation method is reliable in 

distinguishing mangrove areas from types of land cover. This study offers an efficient and faster 

approach for mapping mangroves in Eastern Leyte that can be applied to ecological research in 

different locations. The outcomes support the development of management strategies, 

contribute to global initiatives aimed at protecting and conserving mangroves. 

Keywords: Mangrove Area, Remote Sensing, Percentile-Thresholding, Sentinel-2A, 

Forecasting 

 

INTRODUCTION 

Mangroves are more than just trees along the coastline; they are a vital part of the life and culture of Eastern Leyte, 

Philippines. These unique ecosystems, with their sprawling roots and vibrant canopies, offer a sanctuary for a variety 

of marine life, protect shores from storms, and provide resources that many local communities depend on for their 

livelihoods. For the people living in these coastal areas, mangroves are also a source of sustenance, offering fish, 

wood, other essential products and tourism.  Mangroves have been suggested as a natural defense against coastal 

erosion, helping protect inland areas from natural disasters like typhoons, cyclones, and tsunamis [1]. Restoring 

mangroves for coastal protection is expected to be up to five times more cost-effective than building "grey 

infrastructure" like breakwaters [2].  

However, the country is vulnerable to typhoons due to its geographic location in the Pacific Ocean continues to 

experience significant mangrove losses. Each year, an average of 20 tropical cyclones enters the Philippine Area of 

Responsibility (PAR), with around 8 or 9 making landfall [3]. One of the most catastrophic typhoons in history, 

Typhoon Haiyan, struck the country in 2013, damaging approximately 86% of the mangrove areas in Eastern Visayas 

[4]. This event highlighted the importance to monitor trends in mangrove distribution and dynamics in order to 

develop an effective conservation and management programs [5]. Analyzing mangrove distribution is crucial to 

assess and evaluate these natural ecosystems [6]. To effectively conserve and manage mangroves, tools and methods 

are needed to track spatiotemporal changes caused by both natural disasters and human activity.  
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Traditionally, mangrove ecosystems were monitored through field observations and surveys. However, these 

methods can be challenging due to the dense vegetation and the fact that mangroves grow in hard-to-reach intertidal 

zones. On top of that, field surveys are often labor-intensive, expensive, and usually cover only small areas. Remote 

sensing (RS) has addressed the limitations of traditional field surveys, offering an easier and effective way to monitor 

mangroves. RS is a popular technique for mapping mangrove extents. It offers a more inexpensive alternative than 

on-the-ground techniques. Satellite imagery from sources like Sentinel and Landsat is readily available and free [4]. 

Additionally, images from past years are stored, making it easy for researchers to analyze and monitor significant 

changes in the distribution and covering of mangrove forests over time [7].  

To distinguish mangrove from other types of land cover and vegetation, researchers have created indices to accurately 

map their extent. Spectral indices combine pixel values from two or more bands in a multispectral image. They are 

designed to highlight areas that show the presence or absence of specific land-cover types in the image [8]. The use 

of thresholds on spectral indices helps classify different land cover types or features more effectively. By setting a 

specific threshold value, researchers can separate certain features like vegetation, water, or mangroves from other 

land covers in satellite imagery. However, the specific threshold value for identifying mangroves in a spectral index 

varies depending on the index used, the geographic region, and the quality of the satellite imagery. A study of Baloloy 

[7], attests to the potential of threshold segmentation-based indices, pointing out that they are easier to use, quicker, 

and less skill-intensive than classification procedures [9][10]. With this, the proponents would like to introduce a 

percentile-based threshold segmentation technique, by identifying the optimal threshold value of the mangrove 

index, to differentiate spectral properties of different classes in the imagery. One of the main goals of the indices is to 

accentuate the spectral properties of the target class to deviate from other classes.  

The present study aims to (i) to classify and map mangrove extent by utilizing the percentile-based threshold 

segmentation technique.; (ii) to identify growth trends and forecast future changes of mangrove cover in Eastern 

Leyte between the years 2017 to 2023 using satellite images; and (iii) to assess the accuracy of the proposed method 

with ground truth data. 

DATA AND STUDY AREA 

Study Area 

The study area (Figure 1) is situated in Leyte province, Eastern Visayas, Philippines, covering the municipalities of 

Tacloban City, Palo, and Tanauan. Bordered by Alangalang, Dulag, Tolosa, and the Leyte Gulf, this area spans 

approximately 2,367 square kilometers. The coordinates for the key locations within the study area are Tacloban City 

(11°7'N, 124°59'E), Palo (11°4'N, 124°56'E), and Tanauan (11°0'N, 124°55'E). The region features diverse topography, 

ranging from sea level to around 1,000 meters above sea level, with mountainous areas, coastal plains, and river 

valleys. A tropical monsoon climate, characterized by distinct wet and dry seasons, influences the local environment 

and vegetation patterns. 

 

Figure 1. The Study Area – Tacloban City, and the Munipalities of Palo and Tanauan Leyte 
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Significant features include the Leyte Gulf, which borders the eastern side of the area, and the San Juanico Strait to 

the north, which connects the Leyte Gulf to the Philippine Sea. The Leyte National Park, located in the northern part 

of the region, adds ecological value to the area by supporting conservation efforts and protecting biodiversity. These 

geographic and environmental characteristics make this region well-suited for studying mangrove dynamics, as it 

demonstrates the interaction between terrestrial and marine ecosystems, influenced by both climate and topography. 

Satellite Data 

The study utilizes two types of satellite imagery: data acquired from Sentinel-2A and imagery provided by ESRI, that 

serve as the validation dataset.  

The first image data was obtained from the Sentinel-2 MultiSpectral Instrument (MSI), which is part of the 

Copernicus program operated by the European Space Agency (ESA). Sentinel-2 satellite imagery was utilized for 

mangrove mapping due to its high spatial and spectral resolution. The dataset was obtained from the Copernicus 

Open Access Hub, covering the study area with a spatial resolution of 10 meters. The Sentinel-2A MSI provides high-

resolution optical imagery in 13 spectral bands, ranging from the visible and near-infrared to the short-wave infrared 

parts of the electromagnetic spectrum. The selected bands included visible near-infrared (NIR) 0.842 μm, and 

shortwave infrared (SWIR) 1.161 μm, and Green with 0.560 μm, which are effective in distinguishing mangrove 

vegetation from other land cover types [10]. Spectral bands refer to specific ranges of wavelengths in the 

electromagnetic spectrum that are measured by a sensor such as a satellite or airborne instruments [11]. Each spectral 

band captures information about the reflectance or emission properties of the Earth’s surface within that specific 

wavelength range [12]. These bands are essential for various applications, including monitoring vegetation, soil, 

water bodies, and coastal areas (Table 1). 

Table 1. Spectral Bands for Sentinel-2A Sensors 

Band Number Central Wavelength 

(nm) 

Bandwidth  

(nm) 

Spatial Resolution 

(m) 

1 (Coastal Aerosol) 442.7 20 60 

2 (Blue) 492.7 65 10 

3 (Green) 559.8 35 10 

4 (Red) 664.6 30 10 

5 (Red Edge 1) 704.1 14 20 

6 (Red Edge 2) 740.5 14 20 

7 (Red Edge 3) 782.8 19 20 

8 (NIR) 832.8 105 10 

8a (Narrow NIR) 864.7 21 20 

9 (Water vapor) 945.1 19 60 

10 (SWIR – Cirrus) 1373.5 29 60 

11 (SWIR1) 1613.7 90 20 

12 (SWIR2) 2202.4 174 20 

 

Another data utilized in this study was sourced from Environmental Systems Research Institute (ESRI) platform 

provides a comprehensive dataset for geographic information system (GIS) analysis. This dataset are images from 

2017 to 2023 which contains detailed classifications of land cover types such as forests, agricultural zones, urban 

areas, and water bodies. The ESRI imagery served as the validation data and comparison for assessing the below and 

above 75% threshold of the Mangrove index (MI) values. 

Ground Truth Data 

To evaluate the spatial distribution of mangroves in the Eastern Leyte study area, a field observation was carried out 

from April to June 2024. A stratified sampling method was utilized to ensure that all relevant sub-areas within the 

study site were adequately represented. To facilitate this, a grid with evenly spaced points was created across the 
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entire study area, maintaining a uniform interval of 10 meters between points. These points are randomly selected 

for accuracy assessment.  

Acquiring ground-truth data for validating the classified mangrove extent posed a challenge throughout the study. 

One significant issue was the inaccessibility of certain mangrove areas, particularly those located in remote, swampy, 

or flood-prone zones that were difficult to reach, especially during high tide or adverse weather conditions. To address 

this, the field validation was focused on accessible sites near roads and coastal barangays, with visits scheduled during 

low-tide windows. 

A mobile GPS device was used to record the locations and to gather coordinates of the mangrove boundaries during 

the field surveys. These coordinates were subsequently compared with satellite data. 

METHODOLOGY 

The workflow of this study is shown in Figure 2. The process begins with the acquisition of Sentinel-2A satellite 

imagery, which undergoes preprocessing procedures including atmospheric correction and cloud masking to ensure 

data quality. Spectral indices tailored for vegetation detection are then calculated to enhance the distinction of 

mangrove features. A thresholding technique is subsequently applied to classify mangrove and non-mangrove areas. 

To assess the accuracy of the classification, the outputs are validated against high-resolution reference imagery 

sourced from ESRI. 

 

Figure 2. The Workflow of the Study 

Collection and Pre-processing of Sentinel-2A Data 

The Sentinel-2A Multispectral Imager Instrument (MSI) Level 1-C images from 2017 to 2023 covering Tacloban City, 

Municipality of Palo and Tanauan, Leyte were downloaded from Copernicus Data Space. The image data has 



Journal of Information Systems Engineering and Management 
2025, 10(45s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 46 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

undergone pre-processing. The preprocessing steps of the image data includes atmospheric correction and cloud 

masking. These are applied to enhance data quality and minimize distortions caused by atmospheric interference.  

Cloud masking in Sentinel-2 Level-2A imagery is performed using the Scene Classification Layer (SCL) generated by 

the Sen2Cor processor to detect and mask pixels affected by clouds, cirrus, and cloud shadows. This is done using 

spectral information from key bands: visible bands like Band 2 (Blue), Band 3 (Green), and Band 4 (Red) are used to 

detect bright clouds due to their high reflectance. Thin cirrus clouds are identified using Band 10 (Cirrus), which is 

highly sensitive to atmospheric water vapor (Figure 3). Sen2Cor transforms Top-of-Atmosphere (TOA) reflectance 

to Bottom-of-Atmosphere (BOA) reflectance and classifies pixels into surface types using these wavelengths. Pixels 

labeled as cloud (classes 6–8) or cloud shadow (class 9) are excluded from analysis. This masking ensures that only 

clear-sky pixels are used for reliable applications like vegetation monitoring and land cover classification. 

 

Figure 3. Cloud Masking in Sentinel-2A 

Mangrove Index (MI) 

The Sentinel-2A spectral bands that were utilized in this study are: NIR, SWIR1, and Green wavelengths. The formula 

used is: 

                             (1) 

      

The formula is based on the study of Baloloy et al (2020) [7] which is the Mangrove Vegetation Index (MVI). The 

Mangrove Vegetation Index (MVI) utilizes three key spectral bands from Sentinel-2 imagery to enhance the detection 

of mangrove forests. The Near-Infrared (NIR) band (B8, 0.842 µm) captures strong reflectance from healthy 

vegetation, including mangroves, making it a crucial indicator of vegetation vigor. The Green band (B3, 0.560 µm) 



Journal of Information Systems Engineering and Management 
2025, 10(45s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 47 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

plays a significant role in vegetation differentiation by capturing reflectance from plant chlorophyll, aiding in 

distinguishing mangroves from other land cover types. Additionally, the Shortwave Infrared (SWIR) band (B11, 1.161 

µm) is particularly useful for identifying vegetation moisture content and further differentiating mangroves from 

other vegetation types due to its sensitivity to water absorption characteristics. The combination of these bands in 

the MVI formula enhances the accuracy of mangrove extent mapping by leveraging their unique spectral properties. 

Based on related studies on mangrove vegetation properties and their spectral responses, the SWIR and NIR bands 

were found to be effective in characterizing water absorption in vegetation and vegetation greenness, respectively 

[13]. 

Percentile-Based Thresholding 

As per the study conducted by Tran et. al. [14], there is no notably specific optimal threshold for the Mangrove 

Vegetation Index which differs from ranges of other classes. Hence, for this study, the MI values were analyzed. A 

series of threshold values for the mangrove index, ranging below and above 75% were evaluated. For each threshold, 

classification accuracy was utilized: Precision, Recall, and F1-score, based on a comparison with ground-truth data. 

The threshold value that achieved the highest overall accuracy was selected as the optimal threshold, enhancing the 

reliability of the mangrove extent mapping. 

Accuracy Assessment 

The extracted mangrove data was validated by comparing with the land cover data from ESRI. Values generated in 

the distribution is extracted from the Mangrove spectral index.  

The confusion matrix (Figure 4) is used to assess and evaluate the performance of the mangrove classification model. 

For each threshold value of mangrove index ranging above and below 75% were evaluated, and classified maps are 

generated. The accuracy of each map is measured by comparing it to a ground-truth dataset. Figure 3 shows a sample 

confusion matrix to evaluate the different thresholds. 

 

Figure 4. The Confusion matrix 

 True Positive (TP) are mangroves correctly identified as mangroves by the model. 

 True Negative (TN) are non-mangroves correctly identified as non-mangroves by the model. 

 False Positive (FP) are mangroves incorrectly identified as non-mangroves by the model 

 False Negative (FN) are non-Mangroves incorrectly identified as mangroves by the model. 

To implement the accuracy matrix, stratified random sampling was applied to the selected points for both mangrove 

and non-mangrove classes, with a total of 56 samples. The sample size of 56 points were selected to balance statistical 

reliability with available resources and time. In stratified sampling, the population is divided into distinct subgroups 
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or "strata" based on specific characteristics, in this case mangrove and non-mangrove. Given the total area and the 

variability across different strata, 56 points provide a sufficient representation of the mangrove extent while 

minimizing sampling errors.  Fishnet method was used to generate the validation points in the study area as shown 

in Figure 5. 

 

 

Figure 5. Distribution of Validation Points use in Stratified Random Sampling 

Classified mangrove data is compared against the ground data to determine the efficacy of each classification model. 

To evaluate the classification accuracy results, this study utilized the overall accuracy (OA), precision, recall, F1 score 

and Kappa coefficient (k). 

The overall accuracy (OA) is calculated by dividing the number of samples that were correctly classified by the total 

number of samples as shown in Equation 2.  

0𝐴 =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠⋅
                                                                                   (2) 

The Kappa coefficient is an index used to assess the accuracy of satellite image classification in identifying actual 

ground objects. It can calculate both overall consistency and classification consistency (Equation 3). 

𝐾 =
𝑃𝑜 −𝑃𝑒

1−𝑃𝑒
                                                                                       (3) 

where, Po is the observed accuracy (OA), and Pe is the expected accuracy by chance. 

Precision measures the proportion of correctly identified positive results (mangrove areas) out of all predicted 

positives (Equation 4). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑃
                                                                                                                   (4) 

Recall (or Sensitivity) measures the proportion of correctly identified positive results out of all actual positives 

(Equation 5). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃 

𝑇𝑃 + 𝐹𝑁
                                                                                                                 (5) 

F1 Score is the harmonic mean of Precision and Recall, giving a single score that balances both (equation 6). 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 𝑥 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                    (6) 

 

RESULTS AND DISCUSSION 

The Optimal Threshold Value 

To optimize classification accuracy, a series of threshold values for the mangrove index was explored, ranging below 

and above 75%. For each threshold, classification accuracy was evaluated using Overall Accuracy, Precision, Recall, 

and F1-score, and Kappa coefficient based on a comparison with ground-truth data. The threshold value that achieved 

the highest overall accuracy was selected as the optimal threshold, enhancing the reliability of the mangrove extent 

mapping. 

Table 2. Comparison of the result of the accuracy matrix of Mangrove Index percentage-based threshold 

Threshold 

(Percentage) 
OA Precision Recall F1 Score Kappa 

65% 66.1 67.9 65.5 66.7 0.32 

70% 73.21 75.0 72.41 73.68 0.46 

75% 83.93 86.21 83.33 84.75 0.68 

80% 80.36 79.31 82.14 80.70 0.61 

85% 78.57 76.92 76.92 76.92 0.57 

 

Table 2 presents the performance metrics of different percentage-based thresholds models for classifying mangrove 

indices.  

At the 65% threshold, the model shows moderate performance, with an Overall Accuracy of 66.1%. Precision (67.9%) 

slightly exceeds Recall (65.5%), indicating that the model is somewhat better at avoiding false positives than it is at 

identifying all true positives. However, the F1 Score of 66.7% and the Kappa value of 0.32 suggest only a slight 

agreement beyond random chance, indicating room for improvement. 

Raising the threshold to 70% results in noticeable improvement. The model’s accuracy increases to 73.21%, and both 

Precision (75.0%) and Recall (72.41%) are higher and more balanced, yielding a stronger F1 Score of 73.68%. The 

Kappa value also rises to 0.46, indicating better consistency and agreement. 

The optimal performance is achieved at the 75% threshold, where the model reaches its highest accuracy of 83.93%. 

Precision (86.21%) and Recall (83.33%) are both strong, leading to a high F1 Score of 84.75%. The Kappa value of 

0.68 reflects substantial agreement, suggesting this threshold balances the trade-off between false positives and false 

negatives effectively. 
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At the 80% threshold, the model’s accuracy decreases slightly to 80.36%. While Recall (82.14%) improves marginally, 

Precision drops to 79.31%, resulting in a lower F1 Score of 80.70% and a Kappa of 0.61. This decline suggests that 

setting a higher threshold may cause the model to miss some true positives, affecting overall performance. 

Finally, at the 85% threshold, the model’s metrics decline further. Both Precision and Recall fall to 76.92%, and the 

F1 Score remains the same at 76.92%. The Overall Accuracy drops to 78.57%, and the Kappa value decreases to 0.57, 

indicating moderate agreement. This suggests that a very high threshold makes the model too conservative, reducing 

its ability to identify positive instances effectively. 

In summary, the analysis indicates that the 75% threshold provides the best balance between Precision and Recall, 

leading to optimal overall performance. Lower thresholds (e.g., 65%) result in more false positives, while higher 

thresholds (e.g., 80% and 85%) increase the likelihood of missing true positives, making the model less effective. 

Thus, the 75% threshold is recommended for achieving the highest accuracy and agreement in the classification of 

mangrove indices. 

Mangrove Classification Accuracy 

The box plots in Figure 5 shows the separability of mangrove and other classes. This illustrates the distribution of 

Mangrove Index (MI) values across different land cover types for the year 2017 to 2023, highlighting the contrast 

between mangrove and non-mangrove areas.  It can be observed that MI showed consistent separability from the 

other classes, indicating the MI values exhibit greater than 75th percentile range of values. This suggests that 

mangroves possess a unique spectral signature or vegetation index, making them easily identifiable using remote 

sensing techniques. 

 

Figure 6. Mangrove Indices’ Box plot values for each year. (A) 2017, (B) 2018, (C) 2019,  

(D) 2020, (E) 2021, (F) 2022, (G) 2023 

Mangrove Area Change 

The calculation of the mangrove area was performed using Geographic Information System (GIS) software, 

specifically Zonal Statistics Tool in ArcGIS. The trend of mangrove area showed a steady growth over the period from 

2017 to 2023 as shown in Table 3. 

Table 3. Mangrove Area from 2017 to 2023 
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Year Mangrove Area (ha) 

2017 183.949 

2018 321.382 

2019 381.971 

2020 417.158 

2021 491.320 

2022 544.178 

2023 656.632 

 

Figure 7 illustrates the changes in mangrove coverage in various municipalities of Leyte, Eastern Visayas, from 2017 

to 2023 using Sentinel-2 MSI based on the >75% percentile of the Mangrove Index. It is observed that the mangrove 

area increased by approximately 256.96% from 2017 to 2023, growing from 183.949 ha to 656.632 ha.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Images of the Change of Mangrove Extent from (a) 2017, (b) 2018, (c) 2019, (d) 2020,  

(e) 2021, (f) 2022 and (g) 2023 using the Mangrove Index (MI) with 75% threshold  

Mapping of Mangrove Extent using the Mangrove Index (MI) 

Figure 8 illustrates the changes in mangrove coverage in various municipalities of Leyte, Eastern Visayas, from 

2017 to 2023 using Sentinel-2 MSI based on the >75% percentile of the Mangrove Index. 

      (a)       (b)       (c)       (d) 

      (e)       (f)       (h) 
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Figure 8. The Change of Mangrove Extent per Year from (a) 2017 (b) 2018 (c) 2019 (d) 2020  

(e) 2021 (f) 2022 (g) 2023 and (h) the RGB Satellite Image Year 2024 

 

Figure 9. The trend in Mangrove Area Per Year 
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The satellite data shows a remarkable recovery and expansion of mangrove coverage in Eastern Leyte, following the 

destruction caused by Typhoon Haiyan in 2013.  

The graph in Figure 9 illustrates the expansion of mangrove areas from 2017 to 2023, showing a general upward 

trend in coverage. In 2017, the mangrove area was recorded at 183.95 hectares. A significant increase of 74.71% 

occurred between 2017 and 2018, reaching 321.38 hectares. This rapid growth suggests that early post-disturbance 

factors, such as natural regeneration and possibly improved environmental conditions, may have played a role. 

However, from 2018 to 2019, the growth rate slowed to 18.85%, bringing the total area to 381.97 hectares. 

In the following years, mangrove expansion continued at a more moderate pace, with a 9.21% increase from 2019 to 

2020 (417.16 hectares) and a slightly higher 17.78% growth from 2020 to 2021 (491.32 hectares). From 2021 to 2022, 

the growth rate was 10.76%, reaching 544.18 hectares. From 2022 to 2023, the mangrove area saw a notable increase 

of 20.66%, reaching 656.63 hectares. This recent acceleration could indicate favorable ecological conditions, reduced 

disturbances, or the natural ability of mangroves to regenerate over time. While restoration efforts may have 

contributed, the variability in growth rates suggests that other factors, such as the resilience of pre-existing mangrove 

stands, hydrodynamic processes, and climate conditions, likely influenced the observed patterns. This aligns with the 

study of Cabello [4] emphasized that mangrove recovery after Typhoon Yolanda is not just about external restoration 

efforts, it is likely influenced by the pre-disturbance extent and ecological condition of the forest. 

Forecasting Future Change of Mangrove Extent 

A time series analysis was performed on mangrove area data, utilizing historical trends to forecast future changes 

and estimate expected coverage in the coming years. 

 

Figure 10. The trend in Mangrove Area Per Year 

The graph presents a time series analysis of mangrove area growth from 2017 to 2023, with a forecast projecting this 

trend through to 2030. The blue dots and line represent the actual data collected over the years, showing a steady 

increase in mangrove coverage. The orange dots and line extend this trend into the future, giving an estimate of what 

the mangrove area might look like if the current growth pattern continues. 

The trendline equation, 𝑦 = 70.464𝑥 – 141909, suggests a consistent, steady increase in mangrove area over time. 

The high 𝑅2 value of 0.9726 indicates that this model fits the data well, it can explain about 97% of the changes 

observed in the historical data. 

CONCLUSION 

This study demonstrates the effectiveness of using satellite images and percentile-based threshold segmentation of 

mangrove index methods to classify and detect mangrove areas in Eastern Leyte, Philippines. Mangroves are vital to 

the environment, providing shoreline protection, carbon storage, and habitats for marine life. Accurate mapping and 

monitoring are essential for their conservation and management. 
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The study employed a method based on 75th percentile thresholds to detect and classify mangrove areas, validated 

by field surveys that provided ground truth data. The classification results showed an overall accuracy rate of 83.93% 

and a Kappa coefficient of 0.678, indicating substantial agreement between the classified information and the actual 

data. The classification model performs well in distinguishing between mangrove and non-mangrove areas with high 

accuracy. The Precision and Recall show a strong model performance with 86.21% and 83.33% respectively. However, 

there is still room for improvement to achieve higher accuracy and reliability of the model. These results confirm that 

the percentile-based threshold segmentation method is a reliable tool for distinguishing mangrove areas from other 

land cover types using the Sentinel-2A satellite images.  
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