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ARTICLE INFO ABSTRACT

Received: 28 Dec 2024 Natural gas is an essential energy source that requires purification before transportation and use.

At the Basrah Natural Gas Liquification (BNGL) plant, the gas dehydration unit (GDU) is tasked

with minimizing water content to avert hydrate formation, corrosion, and related complications.

Accepted: 26 Feb 2025 An adsorption process using molecular sieves is necessary for separation from water vapor.An
enhancement on the adsorption stage of the GDU was implemented by fitting Bohart-Adams
model over 6 months using both genetic algorithm (GA) for optimization and parametersand gas
concentration which include the gas velocity.Via Bohart-Adams model outlook for breakthrough
behavior and investigation of the efficiency of adsorbing processThe critical parameters are
optimized with a genetic algorithm in Bohart-Adams model -- e.g., adsorption rate constant (K)
and saturation concentration (No). Optimization greatly reduced the discrepancy between theory
and experimental data, improving the model's predictive ability for adsorption behavior.Also,
with the aid of GA we were able to find the optimum parameter values that raised the dehydration
unit's overall efficiency.The results show that the combined effect of flow rate and water vapor
concentration of the breakthrough curve is large. Where the best performance was achieved
Water vapor concentrations at 450 to 500 ppmV within a gas stream rate of 100 to 110 million
standard cubic feet per day (MMSCFD) did not require any reactivation as occurred during avery
successful test having these settings Reactivation was unnecessary under these conditions
because it had completely honest behavior.

Revised: 18 Feb 2025

Keywords: Gas dehydration, Bohart-Adams model, Molecular sieve adsorption, Genetic
algorithm optimization

1. INTRODUCTION

Natural gas is a crucial energy source that requires purification before transportation and use. Water, an impurity
in natural gas, causes corrosion, hydrate formation, and obstruction of transmission lines. At the Basrah Natural Gas
Liquification (BNGL) plant, dehydration is performed using three-bed molecular sieve vessels and switching valve
arrangements. These vessels are filled with a water-adsorbing media bed along with associated floating mesh and
support bed arrangements. In regeneration mode, the saturated adsorbent is regenerated using hot regeneration gas
provided by the regeneration gas heater and circulated by a regeneration gas compressor [1]. The objective of gas
dehydration is to achieve a dried gas concentration of less than 3 ppm. The regeneration gas heater was designed to
deliver heated gas to regenerate the adsorber at a temperature of 290° C. The dehydration absorbers operate for a
total cycle time of 15 h, with a 10 h adsorption cycle and a 5 h regeneration cycle. The regeneration cycle was further
divided into three hours for heating, one hour and 15 min for cooling, and 45 min for standby time, resulting in a
total cycle time of 15 h for all three beds. Optimization of the Bohart-Adams model is critical for industrial gas
dehydration, as it sets out the theoretical approach to performance of the adsorption bed. In this sense, it is akin to
sailing closely into operational parameters and promises a highly controlled system.Despite the wide use of molecular
sieves, current models often do not take dynamic changes in the rate of adsorption adsorption stage, flow-quarter
conditions and mass transfer (concentration) limitations to account for effects by including a genetic algorithm (GA)
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with the Bohart-Adams model, this study hopes to improve predictive accuracy in adsorption modeling and thus help
reduce costs, save energy as well as prolong molecular sieve life.In several studies on molecular sieves Van Ness (1961)
used adsorption thermodynamics to improve molecular sieve performance and predict capacity under different
conditions [1]. Adamson (1982) developed surface adsorption models for molecular sieves and optimized some
molecular sieve designs to achieve higher dehydration efficiency [2]. Ruthven (1984) devised finite-rate mass-
transfer models for adsorption processes with the aim of lowering solvent requirements[3]. Bohart and Adams (1920)
introduced a breakthrough model to predict the adsorption bed performance and optimize the design parameters [4-
7]. Grace (1997) applied fluidized bed models to improve the efficiency of high-flow adsorption systems [8]. Sircar
(2002) combined kinetic and equilibrium models to develop tailored solutions for energy usage reduction and
enhanced adsorption processes [9 ,10]. Although these studies have laid the foundation for adsorption modeling, few
have explored the integration of genetic algorithms to optimize adsorption conditions in industrial gas dehydration.
This study aims to bridge this gap by applying a genetic algorithm to the Bohart-Adams model, further optimizing
key parameters such as adsorption rate constants and saturation concentrations under real operating conditions.
Consequently, this research provides a novel approach that improves molecular sieve activation, enhances unit
performance, and ensures more efficient gas dehydration at BNGL.

2. MATERIALS & METHODS

The dehydration absorbers each had a capacity of 47.8 m3 with the mechanical and process parameters listed in
Table 1. Figs. 1(a) and (b) show the three-dimensional model for BNGL Fig. 2 shows the UNISIM model for the BNGL
dehydration unit used in this study.

Table 1. Dehydration adsorber mechanical and process parameters (20),
Type Vertical
Diameter (mm) 2438 ID
Length (mm) 8100T/T
Design Pressure (barg) 75.8
Design Temperature (°C) 313
MDMT (°C) @ Pressure (barg) / MMT -20 @ 75.8 / -13.4
Operating Temperature (°C) 36.8to 55.4
Operating Pressure (barg) 65.4

Table 2. Feed stream composition.

Design FEED STREAM
Composition (Mol. Frac) Composition (Mol. Frac)
Components Sél:;gler Winter Case Summer Winter
1 HaS 0.0000013 0.00000143 18 M-Mercaptan 0.0000 0.0000
2  CO2 0.0000014 0.00000139 19 E-Mercaptan 0.0000 0.0000
3 Nitrogen 0.0079 0.0077 20 nPMercaptan 0.0000 0.0000
4 Methane 0.6105 0.6568 21 nBMercaptan 0.0000 0.0000
5 Ethane 0.1911 0.1949 22 Benzene 0.0002 0.0001
6 Propane 0.1032 0.0890 23 Toluene 0.0001 0.0001
7 i-Butane 0.0177 0.0117 24 E-Benzene 0.0000 0.0000
8 n-Butane 0.0442 0.0267 25 p-Xylene 0.0000 0.0000
9 i-Pentane 0.0100 0.0052 26 o0-Xylene 0.0000 0.0000
10 n-Pentane 0.0109 0.0057 27 n-BBenzene 0.0000 0.0000
11 n-Hexane 0.0010 0.0007 28 m-Xylene 0.0000 0.0000
12 n-Heptane 0.0003 0.0003
13 n-Octane 0.0000 0.0000 Total 1.00 1.00
14 n-Nonane 0.0000 0.0000
15 n-Decane 0.0000 0.0000
16 H20 0.0029 0.0012
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Fig. 1. (a) (b) Three-dimensional model for BNGL dehydration unit.
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Fig. 2. UNISIM R480 model for BNGL dehydration unit
3. MATHEMATICAL MODELING

The model assumed that radial and axial dispersions were absent in the mass balance equation, and radial dispersion
was also absent in the energy balance equation. The gas flow was presumed to move downward in the adsorption and
cooling beds and upward in the heating bed [11] [12]:

eU, —
Fig. 3. Fixed bed adsorber column.
9€Ca 9Ca = 9 — ) %as
es[-D, 22 + ¢, Uz]z,t —es|-D, 22+, U,]Mz,t = [saze: ]Z +[saz(1 - 62 ]Z (1

This equation represents the mass balance of a differential control volume in an adsorption column, accounting for
axial dispersion, convective transport, and accumulation in both gas phases.
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Rearranging the equation above and dividing both sides by € S AZ gives:

aCy aCy
Digy lz+azt—Di57 1zt CaUylzvazt—CaUslze _ 9Ca

AZ

— 1-€0dCys
AZ _atlz+e at |z

(2)

By applying a limiting process to AZ and assuming that the axial diffusion coefficient and velocity are constant, Eq.

(2) can be expressed as follows:

(0 5), = (

U, %) = (%) 4 (L)
292/ at /, e ot /,

The Bohart—Adams model describes the adsorption of a single component. The dispersion axial term and mass

(3)

transfer zone exert no influence on the fluid velocity; hence, the velocity was considered constant in this model,
characterizing it as plug flow in a trace system. Considering the flow to be unidirectional, the fundamental mass-

balance equation is:

%) 4 (%
(UZ az t+ ot

Letting

), + (T, =0

(2_‘:)2 = K,8C(q- — q)

C))

(5)

The Chu (2020) and Bohart-Adams models are mathematically equivalent. The following logistic equation represents
the response of the model. The Bohart-Adams model parameters are outlined in Table 3.

In (%—

Therefore,

) =a-—bt (6)

t

Table 3. Bohart-Adams model parameters.
Model Bohart-Adams
A KsaNoZ/u
B KBACo

(%)Z = 1/(1 + exp (KpaCo [% - t])

with each symbol in the equation described below:

Symbols Description

C,

4o
Uz

DL

AZ

initial concentration

Case concentration

saturation capacity from BA model
Rate constant in BA model
Volumetric flow rate

Bed depth of the column

Time required for 50% adsorbate breakthrough from
BA Model

sorption capacity

The superficial velocity of the gas phase in the z-
direction

Axial dispersion coefficient

Void fraction (porosity) of the packed bed
The cross-sectional area of the packed bed

Small differential length along the the z-direction

(7)

Unit
ppmY.
ppmY.
mg/L.cm
Limg.s
MMSCFD
Cm

Sec

mg/L
m/s

m?/s
Dimensionless

m?

m
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4. EXPERIMENTS

The work on the gas dehydration unit (GDU) at BNGL was conducted over a six-month period to identify the
parameters directly influencing the process and to provide input data for the Bohart-Adams model implemented
in MATLAB 2024a. The gas dehydration unit optimization was conducted using GA because compared to
conventional optimization approaches, GAs are better at handling complicated, nonlinear, and multi-objective
issues. Adsorption rate, bed saturation, and flow rate are three operational parameters in molecular sieve
dehydration that are intricately related to one another. In contrast to the GA population-based search techniques,
which guarantee a more thorough exploration of the solution space, traditional gradient-based approaches
frequently converge to local optima and struggle with nonlinearities [13].

Unlike traditional optimization methods, GA does not rely on mathematical formulations or explicit derivative
information, thereby offering a great deal of flexibility when dealing with experimental and empirical data [14]. In
addition, GA can easily manage both continuous (temperature and flow rate) and discrete (cycle duration and
switching time) variables in the optimization of the dehydration process [15]. Because GA is based on mutation and
crossover procedures, it increases the likelihood of discovering a global optimum and helps avoid premature
convergence, in contrast to approaches based on Newton or gradient descent, which can get trapped in local
minima [16]. These benefits prompted us to select GA as the best optimization strategy for boosting the efficiency
of the BNGL gas dehydration unit.

The continuous-flow adsorption results were recorded on the GDU at BNGL. In addition, multiple experimental
conditions were tested to acquire a comprehensive understanding of the adsorption process. Gas concentrations
were varied (C1 = 300 ppmV, C2 = 350 ppmV, ..., C14 = 1000 ppmV) while maintaining an internal diameter of
2438 cm and an adsorber height of 8100 cm. The gas flow rate remained constant at 60 million standard cubic feet
per day (MMSCFD). In other studies, the concentration remained constant while altering the flow rate (e.g., Q1 =
40 MMSCFD, Q2 = 50 MMSCFD, ..., Q10 = 130 MMSCFD). Pressure and temperature were held constant during
both tests to isolate the effects of variations in flow rate.

5. RESULTS AND DISCUSSION

The objective was to predict the breakthrough behavior in an adsorption column using the Bohart-Adams model,
with an emphasis on concentration and flow rate fluctuations over time. Key model parameters, namely saturation
concentration (No) and adsorption rate constant (K) [17], were optimized using a systematic methodology. The goal
of this optimization was to minimize the discrepancy between the concentration data obtained experimentally and
determined theoretically. With the help of the MATLAB code, a breakthrough curve was created, plotting
concentration ratio (C/Co) as a function of time. The efficiency and performance of the adsorption column is clearly
indicated in the graph. At the point where C/Co = 0.5, the adsorption column starts to lose its efficacy. This point
was marked and underlined as an important point. To measure how well the model predicted the outcomes, R2
values were also computed. These values, shown in Table 4, provide a statistical measure of the alignment between
the experimental data and outcomes predicted by the model, serving as a strong and trustworthy assessment of the
adsorption system.

Table (4) Bohart-Adams model parameters under different phases

Phase | Concentration | Flow rate Pressure | Temperature | K No R2
(ppmV) (MMSCAFD) | (bar) (C9) (L/mg,s) (mg/L.cm)

I 100 100 65.3 55.7 0.0069 803.68 1.1789
200 100 65.3 55.7 0.0072 950.189 1.1528
300 100 65.3 55.7 0.0085 940.747 1.0642
400 100 65.3 55.7 0.009 937.7586 1.0308
450 100 65.3 55.7 0.0097 978.86 1.0002
500 100 65.3 55.7 0.01 926.47 9.996
550 100 65.3 55.7 0.012 922.305 9.982
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600 100 65.3 55.7 0.0127 938.39 0.9741
650 100 65.3 55.7 0.0130 973.568 0.9639
700 100 65.3 55.7 0.0175 966.712 0.9618
750 100 65.3 55.7 0.0184 964.54 0.9524
8oo0 100 65.3 55.7 0.0219 968.093 0.9477
850 100 65.3 55.7 0.0242 945.3 0.9402
900 100 65.3 55.7 0.0280 998.985 0.9374
950 100 65.3 55.7 0.0374 966.57 0.9352
1000 100 65.3 55.7 0.0459 981.5 0.9327
II 450 40 65.3 55.7 0.0061 046.32 1.2711
450 50 65.3 55.7 0.007 902.08 1.1745
450 60 65.3 55.7 0.008 920.87 1.0967
450 70 65.3 55.7 0.0081 978.5881 1.0915
450 8o 65.3 55.7 0.0089 877.00 1.0470
450 90 65.3 55.7 0.0096 932.249 1.0160
450 100 65.3 55.7 0.0097 991.607 1.0129
450 110 65.3 55.7 0.01 963.05 1.0003
450 120 65.3 55.7 0.0108 998.6 0.9737
130 65.3 55.7 0.011 960.56 0.9697

5.1. Effect of concentration on breakthrough curve

The effect of the water vapor concentration on the breakthrough curves is shown in Fig. 4. Both penetration and
depletion times decrease as the initial water vapor concentration increases. The water vapor removal rate decreases
when the starting water vapor concentration is increased to 600 mg/L. This is attributed to the rapid saturation of
binding sites within the column. When the concentration exceeds 900 mg/L, the limitations of insufficient adsorption
capacity become increasingly apparent. An optimal concentration range of 450—-500 mg/L, produced positive
adsorption coefficient. At higher adsorbate concentrations, with faster breakthrough, a higher inlet concentration of
water vapor leads to faster saturation of the adsorbent material, and with reduced bed utilization, the rapid
consumption of active sites results in earlier breakthroughs and decreased adsorption bed efficiency. At lower
adsorbate concentrations, with delayed breakthrough, a lower inlet concentration allows the adsorbent material to
operate longer before saturation occurs, and with improved adsorption efficiency, the mass transfer zone is more
effective and the adsorbent capacity is utilized more efficiently [18]. In Fig. 5, the predicted values are higher than the
experimental data, whereas in Fig. 6, this trend is reversed, indicating that the bed efficiency has been reduced,
accompanied by an increase in the total cycle count.
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Concentration (mg/L)

500

Concentration vs Time Using Bohart-Adams Model

Concentration vs Time Using Bohart-Adams Model

[hS]
o
S

T
=—8— Experimental Data
=@ Predicted Concentration

=== Experimental Data

oo
o

——@— Predicted Concentration | |

(=23
o

120

Concentration {mg/L)
=) =
(=] o

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License
which permitsunrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

00 50 100 15‘0 2(;0 25;0 300 350 400 450 500 86 1[’;0 1éD 1:10 160 1éD 260
Time (s)/100 Time (s)/100
Reversed Breakthrough Curve (1 - C/C0 vs Time)
T T T T T T T T
Tr Reversed Breakthrough Curve m
_% 08l o Reverse Breakthrough Point (C!C0 =0.5)| |
o
o 0.6 J
o Reverse Breakthrough {er‘CD =0.5)
Oo04f .
T 0.2t -
O Il 1 1 Il 1 1 Il 1 1
0 50 100 150 200 250 300 350 400 450 500
Time (s)/100
Fig. 5. Bed behavior at a concentration of 450 mg/L and a flow rate of 100 MMSCFD
1102



Journal of Information Systems Engineering and Management

2025, 10(44s)
e-ISSN: 2468-4376
https://www.jisem-journal.com/ Research Article

1000 Concentration vs Time Using Bohart-Adams Model 300 Concentration vs Time Using Bohart-Adams Model
T T T T T T T T T T T T T 9
- =@ Experimental Data ) =——©— Experimental Data
g’ 800 =@ Predicted Concentration E’ ——@— Predicted Concentration
& 600 5 250 ]
g j
*a-:; 400 -g
£ 200 g
5 4
&) 8 200
0 L L L L L 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 110 120 130 140 150 160
Time (s)/100 Time (s)/100

Reversed Breakthrough Curve (1 - C/C0 vs Time)

T T

1 -
o
= 0.8r .
1
o 0.6 i
o Reverse Breakthrough (C/C = 0.5)
o4t 0 -
' Reversed Breakthrough Curve
02+ o Reverse Breakthrough Point (C/C, =0.5)| 4

0 1 1 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450 500

Time (s)/100

Fig. 6. Bed behavior at a concentration of 9oo mg/L and flow rate of 100 MMSCFD

5.2. Effect of flow rate on breakthrough curve

The diffusion curves at different flow rates, shown in Fig. 7, indicate that dispersion occurs more swiftly at higher
flow rates. The duration required for complete saturation increases as the flow rate decreases. At reduced intake flow
rates, the entering gas has more time to engage with the molecular sieve, leading to enhanced elimination of water
vapor molecules inside the column. The results demonstrate an inverse correlation between the flow rate and removal
efficiency after the optimal condition (100 - 110 MMSCFD) is attained, whereas a direct correlation exists before this
range, indicating the possibility of material inactivation due to inadequate flow in certain instances. An increased
flow rate with accelerated breakthrough elevated gas flow rates, decreases the residence time of the adsorbate in the
bed, thereby reducing the contact duration between gas and adsorbent. The change from total adsorption to
saturation occurs more suddenly because of restricted diffusion and mass transfer . The reduced flow rate in
prolonged breakthrough decreases the flow rates, facilitating an extended residence time, which improves the
interaction between adsorbate and adsorbent. The mass transfer zone exhibits increased uniformity, leading to the
progressive saturation of the bed. In Figs. 7 and 8, the projected values exceed the experimental data, whereas in Fig.
9, the inverse tendency exists. This indicates that under these conditions, the bed efficiency declines, resulting in an
increased overall cycle count.
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5.3. Combined effects of concentration and flow rate

From the previous result, it can be concluded that 450-500 ppm concentration flow rates of 100-110 MMSCFD is
optimal for operating conditions. Breakthroughs are most efficiently managed when concentrations are moderate,
thereby avoiding extreme saturation. The flow rates were balanced to provide a sufficient contact time without
causing operational inefficiencies [19,20]. Based on these results, water vapor concentrations of 450-500 ppmV
and flow rates of 100-110 MMSCFD demonstrated optimal performance in the gas dehydration units and in the
mass transfer zone (MTZ), which is the region within the bed where the adsorbate concentration transitions from
fully adsorbed to the breakthrough level. Higher concentrations or flow rates compress the MTZ, leading to
inefficient bed capacity utilization.

6. CONCLUSION

This article uses a genetic algorithm and the Bohart-Adams model to optimize the operational performance of the
gas dehydration plant at Basrah Gas Co. To this end, the main goal of this study was to evaluate the effect of
adsorption over a period of six months by following closely the main system parameters such as the amounts of gas
and water vapor. Using a genetic algorithm, the most important model parameters, such as saturation
concentration and adsorption rate constant, are determined. The efficiency of the unit was systematically increased
by optimizing conditions that allowed effective water vapor adsorption.This result shows that the concentration of
water vapor and the flow velocity both have rather strong effect on the breakthrough curve. Optimal performance
was observed at gas flow rates of 100—110 MMSCFD and water vapor concentrations of 450—500 ppmV, with the
outer concentration remaining below 1 ppmV. Optimal adsorption occurs under these conditions, enhancing the
overall performance of the dehydration unit. This paper presents a comprehensive strategy for enhancing gas
dehydration systems at BNGL, aimed at optimizing water removal from natural gas and significantly increasing
gas quality . The findings indicate that the integration of mathematical model approaches with optimization
algorithms can result in operational excellence, which has significant implications for future advancements in gas-
processing technology. Although critical adsorption parameters can be successfully optimized using GA, its search
strategy does not provide complete global optimization. The efficacy of the algorithm is affected by the initial
population selection, mutation rates, and convergence criteria, which may influence solution quality. Furthermore,
GA does not explicitly account for the degradation of adsorbents over time, which may influence long-term
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efficiency forecasts. Future enhancements may use hybrid optimization methods, such as integrating genetic
algorithms with machine learning models, to increase predicted precision and computing efficiency. In addition,
the model can be augmented to incorporate energy consumption analysis and assess the trade-offs between
adsorption efficiency and operating expenditure. This study can enhance gas dehydration technology and promote
increased efficiency and sustainability in natural gas processing by addressing these areas.
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