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Punjabi is the second most spoken language in north India. It is desirable to have a 

communication system in a local language that permits ordinary people to communicate with 

machines via speech interface to retrieve information or to perform their daily activities. It is 

observed that conventional Automatic Speech Recognition (ASR) systems are in English or 

European languages. They also use the Mel Frequency Cepstral Coefficient (MFCC), Perceptual 

Linear Prediction (PLP) etc. features, but do not perform well in real-world situations. Here, a 

study has been carried out on different feature extraction techniques to find the best-performing 

feature extraction technique for Punjabi language in clean and noisy environments. This paper 

also compares the performance of different acoustic models-based ASR systems for Punjabi. 

Previously performed studies have utilized the Context-Independent (CI) and Context-

Dependent (CD) acoustic models but this study focused on CD models. This study will help the 

researcher to know about the behavior of different feature extraction techniques and acoustic 

models for Punjabi speech dataset in clean and noisy environments. Experimental results show 

that MFCC and Gammatone Frequency Cepstral Coefficients (GFCCs) perform well in clean and 

noisy environments, respectively. The best Word Error Rate (WER) is 12% and 14.8% achieved 

by MFCC and GFCC feature extraction technique with Bidirectional Long Short-Term Memory 

(BLSTM) as acoustic model in clean and noisy environment, respectively. 

Keywords: Acoustic Model, BLSTM, CNN, GFCC, Feature Extraction Techniques. 

 

INTRODUCTION 

In human communication, speech plays an important role. Therefore, various languages are spoken in the world by 

human beings for communication. A computer system that understands the spoken language can be very useful in 

various areas like agriculture, healthcare, and government sectors, etc. ASR is the ability of the machine to translate 

spoken words into written form (Pasricha & Aggarwal, 2016). Although the last decades have witnessed significant 

progress in ASR. Still, in many real usage scenarios, the performance of ASR systems is lagging far behind human-

level performance because quasi-stationary nature of speech signals.  

A speech recognition system consists of five blocks: - Feature extraction, Acoustic modeling, Pronunciation modeling, 

Language modeling, and Decoder. Feature extraction is the most important phase in a speech recognition system. 

ASR faces some problems during the feature extraction process because of the variability of the speakers (Guglani & 

Mishra, 2020). During feature extraction, the speech signal is converted into discrete sequence of feature vectors, 

which is assumed to contain only the relevant information about given utterance that is important for its correct 

recognition. An important property of feature extraction is the suppression of irrelevant information for correct 

classification such as information about speaker (e.g. fundamental frequency) and information about transmission 

channel (e.g. characteristic of a microphone). However, the information conveyed by these feature vectors may be 

correlated and less discriminative which may slow down the further processing. Feature extraction methods like 

MFCC provide some way to get uncorrelated vectors through Discrete Cosine Transform (DCT). Many new feature 

extraction techniques have led to significant advances in ASR.  
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Acoustic modeling is an open research domain in ASR. Almost all the traditional ASR systems are Hidden Markov 

Model (HMM) based. The relationship between HMM states and the acoustic input is usually represented by 

Gaussian Mixture Models (GMMs) or Artificial Neural Networks (ANNs). However, the ANNs were typically trained 

only with one hidden layer. Earlier, it was suspected that deep networks could model complex higher statistical 

structures effectively (Mohamed et al., 2011). Many researches indicated that  Deep Neural Network(DNN) based 

acoustic models can outperform GMMs in many speech recognition tasks (T. N. Sainath, Kingsbury, Soltau, & 

Ramabhadran, 2013). As first introduced in (Dahl, Yu, Deng, & Acero, 2012), the CI  pre-trained DNN/HMM hybrid 

architectures have been proposed for phone recognition. Then, CD pre-trained DNN/HMM for large vocabulary 

speech recognition is studied and discussed in (Yu, Seide, & Li, 2012) and achieved very competitive performance, 

and have become the focus of ASR research. 

The introduction of DNNs-based acoustic models changed many conclusions based on GMMs, owing to the difference 

that neural network is a discriminative model and the other is generative model. Section 3 of this paper focuses on 

the choice of acoustic models in ASR. The conducted experiments demonstrate the performance of different acoustic 

models for ASR. 

Over the past years, several review papers were published, in which the ASR task was examined from various 

perspectives. This review discusses some of the ASR challenges and also presents a brief overview of number of well-

known ASR systems methodologies. The authors consider various feature extraction techniques: MFCC, PLP, GFCC, 

Linear Predictive Coding (LPC), Linear Prediction Cepstral Coefficients (LPCCs), Relative Spectral Transform 

(RASTA), Power Normalized Cepstral Coefficients (PNCCs) as well as eight different acoustic models: HMM, GMMs, 

DNNs, Convolutional Neural Networks (CNN), Recurrent Neural Network (RNN), Long Short-Term Memory 

(LSTM), BLSTM, Gated Recurrent Units (GRUs).Finally, the performance comparison is presented based on the 

feature extraction and classification techniques used. In this paper, two research questions are tried to answer for 

future Punjabi ASR research. 

RQ1: What is the best feature extraction technique among different feature extraction techniques used in Punjabi 

ASR? 

RQ2: Which is the best acoustic model among the different acoustic models used in Punjabi ASR? 

This paper is organized as follows. The next section, i.e., section 2 presents the popular and widely used various 

feature extraction techniques. Section 3 describes the various acoustic models in detail, while section 4 introduces 

the details of Punjabi speech corpus, experimental setup used for this study, experimental results and analysis etc. 

Section 5 concludes the paper with some discussions. 

FEATURE EXTRACTION TECHNIQUES 

Feature extraction is a crucial step in ASR where an audio signal is transformed into a representation, known as 

features, which is used by classifiers for recognition tasks. After decades, feature extraction is still an open field of 

research in ASR field. Here, fundamental techniques focus on extracting frequency information from unprocessed 

audio files to filter out unwanted disruptive sounds and reverberation to influence the speech recognition system. 

Additionally, certain approaches explore the effect of temporal information extracted from speech. Some common 

feature extraction techniques used in ASR tasks are: MFCC (Davis & Mermelstein, 1990), Linear Predictive Coding 

(LPC) (O'Shaughnessy, 1988), PLP (Hermansky, 1990), RASTA (Hermansky & Morgan, 1994; Koehler, Morgan, 

Hermansky, Hirsch, & Tong, 1994), gammatone filterbank features (Zhao & Wang, 2013), and spectral contrast.  

Mel-Frequency Cepstral Coefficients (MFCCs) 

MFCC is the most widely used feature extraction technique in ASR systems (Davis & Mermelstein, 1990). MFCC 

feature is considered the dominant characteristic parameter that is based on the human being auditory system. The 

working mechanism of MFCCs is a duplication of the human being auditory system. It is derived from the power 

spectrum of the audio signal after implementing several stages. Pre-emphasis is the first step where the suppressed 

frequency component is compensated by passing through the filter of high pass. The second step is framing, applied 

on a continuous signal to make it discrete by diving into the frames. To maintain the continuity between succeeding 

frames, the Hamming window is applied. After this, Fast Fourier Transformation (FFT) is performed to convert the 
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discrete time domain into the frequency domain. Then, computation of signal energy is done in various frequency 

band in the filter bank processing. To do this, Davis and Mermelstein (Davis & Mermelstein, 1990) developed the 

Mel scale (given in eqn. 1) that makes use of triangular filters for wrapping the magnitude spectrum.    

𝑀𝑒𝑙(𝑓) = 2595log10 (1 +
𝑓

700⁄ )                                 (1) 

The speech vectors are made significant by calculating the logarithm of the square magnitude of the coefficients and 

cepstral domain coefficients are obtained by the DCT and result in final MFCC features. The block diagram depicting 

the steps needed to compute MFCC is given in Figure 1. 

 

Figure 1:Block diagram of MFCC 

Perceptual Linear Prediction (PLP) 

PLP is similar to MFCCs but incorporates aspects of human hearing perception in its feature extraction process. It 

uses a non-linear frequency scale to better match human hearing perception and applies linear prediction to the audio 

signal before passing it through the bark filter bank. The block diagram illustrating the steps in computing the PLP 

is given in Figure 2. The description of PLP processing is given below: 

The initial few steps, i.e., preprocessing, framing, windowing, and fast Fourier transformation are almost the same 

as already discussed in MFCC. A Bark-scale filter bank divides the frequency spectrum of an audio signal into bands 

according to the Bark scale (Hermansky, 1990). This allows for a more perceptually relevant signal representation 

compared to a linearly spaced filter bank. Equal loudness pre-emphasis contours represent the relationship between 

sound intensity and perceived loudness at various frequencies. In the next step, intensity loudness conversion is done 

through a cubic-root amplitude compression. Then, autoregressive modeling and coefficient calculation are made to 

get the coefficients. The resulting autoregressive coefficients (frequency axis) are transformed into the bark scale. It 

uses a bark scale to work on the principle of human hearing resolution in frequency. PLP analysis is computationally 

efficient and yields a low-dimensional representation of speech. 

 

Figure 2: Block diagram of PLP 
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Gammatone Frequency Cepstral Coefficients (GFCC) 

GFCCs are features derived from the auditory filter responses in the Gammatone filter bank (Zhao & Wang, 2013). 

These coefficients capture the energy distribution across different frequency bands. The coefficients are computed by 

convolving the input signal with a set of Gammatone filters and extracting the resulting filterbank energies. Its initial 

steps are the same as MFCC, i.e., Pre-emphasis, framing, windowing, and fast Fourier transformation. Mel filterbank 

is replaced with Gammatone filterbank, rest of the steps are also like MFCC. Gammatone frequency spectral 

coefficients are widely used in speech and audio processing tasks, including and speaker identification. They offer 

better discrimination between different sound sources and are robust to noise. Gammatone-based features have been 

shown to outperform traditional filterbank-based features in challenging acoustic environments. In Figure 3, the 

steps involved in the calculation of GFCC is listed. 

 

Figure 3: Block Diagram of GFCC Computation 

Linear Predictive Coding (LPC) 

LPC is a technique used in speech recognition to model the spectral envelope of a speech signal (O'Shaughnessy, 

1988). It assumes that speech is produced by a time-varying linear filter excited by a source signal. The technique 

involves estimating the parameters of this linear filter to capture the characteristics of the speech signal. LPC models 

the speech signal as the output of a linear prediction filter, typically using an autoregressive model. Every frame of 

the windowed signal is auto-correlated, whereas the order of the linear prediction analysis is the highest value of 

autocorrelation. For estimating LPC coefficient, Yule-Walker equation is used in which the autocorrelation function 

is utilized. By estimating the coefficients of this filter, LPC captures the formant frequencies and spectral shape of the 

speech signal. LPC coefficients can be used for speech analysis, synthesis, and compression. They provide compact 

representations of the speech signal for classification and identification purposes.  

 

Figure 4: Computation of LPC 
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Linear Prediction Cepstral Coefficients (LPCCs) 

LPCCs combine LPC with cepstral analysis to extract features from speech signals (Quen-Zong, Jou, & Suh-Yin, 1997). 

They are obtained by taking the cepstral coefficients of the LPC residual signal. They capture both spectral and 

temporal characteristics of speech, making them effective for speech recognition tasks. LPCCs are computed by taking 

the DCT of the log of the power spectrum of the LPC residual signal. LPCCs are robust to additive noise and channel 

distortion due to their compact representation of the speech signal. LPCCs offer a more compact representation 

compared to MFCCs while maintaining discriminative power. Steps for calculating LPCC is listed in Figure 5. 

.   

Figure 5: Computation of LPCC 

Relative Spectral Filtering (RASTA) 

RASTA is a technique used in speech recognition to enhance robustness against various acoustic disturbances 

(Hermansky & Morgan, 1994). It operates by smoothing the short-term spectral changes of speech signals while 

preserving long-term spectral characteristics. RASTA filtering reduces the impact of channel distortions, noise, and 

other environmental factors on speech signals. It achieves this by applying a high-pass filter that emphasizes slow 

spectral changes and attenuates rapid fluctuations. RASTA filtering helps in mitigating the effects of reverberation 

and other time-varying distortions, making speech signals more intelligible. It has been applied to improve the 

performance of ASR systems in noisy conditions. RASTA filtering is particularly effective in scenarios where speech 

signals are degraded by reverberation or background noise. 

 

Figure 6: Block diagram of RASTA filtering included with PLP (RASTA-PLP) 
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It is used to improve speech quality in noisy environments and reduce noise impact. The high pass filtering in RASTA 

helps in alleviating the convolutional noise effects that occurs in the channel, whereas with the low pass filtering the 

frame smoothing is done for framing the spectral changes. It can be used directly as features or combined with other 

techniques such as PLP (Koehler et al., 1994). 

Power Normalized Cepstral Coefficients (PNCCs) 

PNCCs are a type of feature representation used in ASR systems (Kim & Stern, 2016). The main characteristic of 

PNCC is the application of power normalization to the filterbank energies before computing the cepstral coefficients, 

which helps in improving the robustness of the features to varying input signal power levels. PNCCs offer several 

advantages over traditional MFCCs, such as improved noise robustness, better discrimination between speech and 

non-speech sounds, and reduced sensitivity to channel effects. 

The computation of PNCC involves applying a power-law compression to the filterbank energies to simulate the 

human auditory system's non-linear response to sound intensity. This normalization helps in emphasizing important 

spectral features while suppressing noise and irrelevant information. PNCCs have been shown to outperform MFCCs 

in challenging acoustic conditions, including noisy environments and reverberant conditions. PNCCs provide a 

robust and discriminative representation of speech signals, contributing to the improvement of ASR system 

performance in real-world scenarios. In Figure 7, the steps for computing PNCC are shown. 

 

Figure 7: Computation of PNCC 

The above discussed techniques have its own advantages and is suitable for different applications and scenarios in 

ASR. A combination of these techniques is also used to extract a comprehensive set of features for training ASR 

systems. Table 1 shows the advantages and disadvantages of each feature extraction technique. 

Table 1: advantages and disadvantages of feature extraction techniques 

Features Advantages Disadvantages 

MFCC 

• Representation of Human Auditory Perception. 

• Dimensionality Reduction. 

• Useful in Genre Classification 

• Widely Used 

• Sensitivity to Noise and Variability. 

• Limited Temporal Resolution 

• Loss of Phase Information 

PLP 

• Human Hearing Perception 

• Noise Robustness 

• Dimensionality Reduction 

• Complexity 

• Tuning Parameters 

• Limited Application Scope 

GFCC 

• Robustness to Noise 

• Improved Speaker and Speech Recognition 

• Frequency Resolution 

• Computational Complexity 

• Resource Intensive 

LPC • Efficient Compression. • Sensitivity to Noise 
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• Mathematical Simplicity 

• Real-Time Processing 

• Voiced/Unvoiced Detection 

• Phase Information Loss 

LPCC 

• Compact Representation 

• Good Discrimination 

• Stable and Robust Features 

• Sensitivity to Noise 

• Loss of Phase Information 

• Limited Effectiveness for Non-

Speech Signals 

RASTA 

• Robustness to Channel Distortions 

• Temporal Filtering 

• Compatibility with Other features 

• Sensitivity to Speech Variability 

• Parameter Tuning 

• Limited to Speech Signals 

PNCC 

• Non-linear Power Law 

• Temporal Masking 

• Resilience to Variability 

• Difficult Implementation 

• Limited Adoption 

• Parameter Sensitivity 

 

CLASSIFICATION TECHNIQUES 

The acoustic model's primary task is to represent the relationship between speech signals and linguistic units, such 

as phonemes or sub-word units. Various acoustic models are found well-suited for this task because they can model 

the temporal dependencies in speech signals effectively. From the start of the ASR process, many acoustic models 

have been proposed and successfully applied. Some popular acoustic models have been discussed in this section. 

Hidden Markov Model (HMM) 

HMM is widely used as an acoustic model in ASR. It is a statistical model developed by Baum in 1967 (Baum & Eagon, 

1967). Speech signals are usually pre-processed to extract relevant acoustic features such as MFCCs, which represent 

the spectral characteristics of the speech signal over time. In an HMM, each phoneme or sub-word unit is represented 

by a state, and the transitions between states are governed by probabilities. The states are hidden because they cannot 

be directly observed; instead, the acoustic features associated with each state are observed. 

Each state in the HMM emits a probability distribution over the observed acoustic features. These emission 

probabilities represent how likely it is to observe certain acoustic features given the state of the HMM. The parameters 

of the HMM, including transition probabilities and emission probabilities, are estimated from a large corpus of 

labeled speech data. This training process typically involves algorithms like the Baum-Welch algorithm (Baum, 

Petrie, Soules, & Weiss, 1970) or Maximum Likelihood Estimation (Myung, 2003). During decoding, the HMM is 

used to find the most likely sequence of states given the observed acoustic features. This is typically done using the 

Viterbi algorithm, which efficiently finds the most probable state sequence. The output of the acoustic model is 

combined with a language model to produce the final recognition result.  

Overall, hidden Markov models have been a milestone of acoustic modeling in speech recognition for several decades, 

although recent approaches, such as DNNs and RNNs, have gained popularity due to their ability to capture more 

complex patterns in the data. However, HMMs still play a vital role in traditional ASR systems, especially in 

combination with other techniques. 

Gaussian Mixture Models (GMMs) 

GMM is used as an acoustic model in statistical speech recognition systems. GMM is trained using the extracted 

features from speech signals. The training data typically consists of pairs of feature vectors and their corresponding 

phonetic labels. The GMM is trained to model the distribution of features corresponding to each phoneme. Each 

phoneme is represented by a separate GMM. This allows the model to capture the variability in the acoustic 

characteristics of different phonemes. Each GMM is composed of multiple Gaussian components, each representing 

a cluster of feature vectors in the high-dimensional feature space. These components are jointly trained to capture 

the statistical properties of the corresponding phoneme or sub-word unit. 

During recognition, an input speech segment is given, the likelihood of the observed features is computed for each 

phoneme. This is done by evaluating the probability density function of the GMM for the observed features. The 
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likelihood scores obtained from the GMMs are then used as input to a decoder, which combines them with other 

linguistic models (such as HMM) to generate the most probable sequence of phonemes. GMMs still serve as a 

fundamental baseline and are used in hybrid systems where they are combined with HMM for improved 

performance. 

Deep Neural Networks (DNNs) 

In recent years, DNNs have become a dominant approach for acoustic modeling in ASR systems (Dahl et al., 2012; 

Hinton et al., 2012). Like traditional acoustic models, it processes the acoustic features extracted from the raw audio 

signal. DNNs consist of multiple layers of neurons organized in a feedforward manner. These networks often include 

several hidden layers, allowing them to learn complex patterns in the input data. 

DNNs are trained using supervised learning techniques, where they are presented with pairs of input acoustic 

features and corresponding target labels (e.g., phoneme or word sequences). The network's parameters (weights and 

biases) are fixed iteratively to minimize a loss function, such as Cross-Entropy (CE) (T. N. Sainath et al., 2013) or 

Mean Squared Error (MSE) (Chen, Xing, Liang, Zheng, & Príncipe, 2014), which measures the difference between 

the predicted output and the true labels. DNN learns to map input acoustic features to output labels by iteratively 

adjusting its parameters during training process. The network automatically learns to extract relevant features from 

the input data and capture complex relationships between the input features and output labels. 

DNNs can also be used to model context-dependent phonetic units, such as triphones, which capture the phonetic 

context of each speech segment. This allows the model to better capture the variability in speech sounds depending 

on their surrounding context. The output of the DNN acoustic model is typically combined with a language model 

during the decoding process to produce the final recognition result.  

DNN-based acoustic models have shown significant improvements in ASR performance compared to traditional 

approaches such as HMMs, particularly when trained on large amounts of data. They are also capable of capturing 

complex patterns in the data. 

Convolutional Neural Network (CNN) 

One of the popular kinds of deep learning architecture is CNN, which is widely used in vision tasks (Ren & Xu, 2015). 

CNN has changed the paradigm of ASR as an acoustic model (Passricha & Aggarwal, 2019). The various attractive 

advancements of CNN are weight sharing, pooling, and convolutional filters. CNNs have gained popularity as acoustic 

models in ASR tasks, especially for processing raw audio waveforms directly (Palaz, Magimai-Doss, & Collobert, 

2019).  

The building blocks of CNNs is convolutional layers. These layers consist of filters, also known as kernels, that slide 

over the input data, performing convolutions to extract local features. In the context of acoustic modeling, these filters 

capture various aspects of the input audio signals, such as temporal patterns and frequency content. After each 

convolutional layer, pooling layers are often used to reduce the spatial dimensionality of the feature maps, while 

retaining the most important information. Max pooling is a common technique where the maximum value within 

each pooling window is retained, effectively down-sampling the feature maps (Passricha & Aggarwal, 2020). 

CNNs consist of multiple convolutional layers stacked on top of each other, allowing the network to learn hierarchical 

representations of the input data. Each successive layer captures increasingly abstract features, potentially 

representing higher-level acoustic characteristics. In last, one or more fully connected layers may be added to the 

network. These layers integrate the extracted features from the convolutional layers and perform classification tasks, 

depending on the specific ASR architecture. 

CNNs are trained using supervised learning techniques, where they are presented with audio waveforms and 

corresponding target labels. The network's parameters are adjusted iteratively to minimize a loss function, such as 

cross-entropy, which measures the discrepancy between the predicted output and the true labels.  

Unlike traditional acoustic models, which often use handcrafted features like MFCCs, CNNs can directly process raw 

audio waveforms as input. The raw waveform is typically divided into short-time segments, such as frames of 20-50 

milliseconds, with some overlap (Palaz et al., 2019). 
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CNN-based acoustic models offer several advantages, including the ability to learn hierarchical representations 

directly from raw audio data, scalability to large datasets, and effectiveness in capturing local and global patterns in 

the input signal. They have demonstrated state-of-the-art performance in various ASR tasks and are widely used in 

modern speech recognition systems. 

 

Recurrent Neural Networks (RNNs) 

RNNs are another powerful type of neural network architecture used as an acoustic model (Graves, Mohamed, & 

Hinton, 2013). Unlike DNNs or CNNs, RNNs are designed to handle sequential data, making them well-suited for 

processing time-series data such as speech signals.  

RNNs process sequential data in one-time step at a time, where each time step corresponds to a frame of the input 

signal. This allows the network to capture temporal dependencies and patterns in the input sequence. The key 

characteristic of RNNs is their recurrent connections, which allow information to persist over time. At each time step, 

the network receives input from the current frame as well as information propagated from the previous time step 

through the recurrent connections. RNNs maintain a hidden state vector that represents the network's internal 

memory or context at each time step. This hidden state is updated recursively based on the current input and the 

previous hidden state, allowing the network to capture temporal dynamics in the input sequence (Robinson, 

Hochberg, & Renals, 1996). 

RNNs are trained using supervised learning techniques, where they are presented with audio waveforms and 

corresponding target labels. The network's parameters are adjusted iteratively to minimize a loss function, such as 

cross-entropy, which measures the differences between the actual outputs and the targeted outputs. Gradient 

descent-based optimization algorithms, such as backpropagation through time, are commonly used for training 

RNNs. 

RNN-based acoustic models have shown promising results in ASR tasks, especially when trained on large amounts 

of labeled speech data. They excellently capture temporal dependencies in sequential data and have been widely 

adopted in various ASR applications. 

Long Short-Term Memory (LSTM) 

LSTM networks are an advanced type of RNN architecture that has been successfully used as an acoustic model 

(Hochreiter & Schmidhuber, 1997). LSTM networks are designed to process sequential data, making them well-suited 

for modeling the temporal dynamics of speech signals (Sak, Senior, & Beaufays, 2014). LSTMs contain memory cells 

that maintain information over time, allowing them to capture long-range dependencies in the input sequence. These 

memory cells have a self-connected recurrent structure, which enables them to selectively retain or discard 

information from previous time steps. 

LSTMs use gating mechanisms to control the flow of information through the network and regulate the memory cell's 

state. These gating mechanisms include an input gate, a forget gate, and an output gate, each of which consists of a 

sigmoid activation function and element-wise multiplication operations. These gates enable the LSTM to learn when 

to update the memory cell's state and when to forget irrelevant information. 

LSTM networks are trained using supervised learning techniques, where they are trained with pairs of input 

sequences and corresponding target labels. The network's parameters including those of the memory cells and gating 

mechanisms, are set iteratively to minimize a loss function, such as cross-entropy or mean squared error. 

LSTM networks have several advantages as acoustic models for ASR. LSTMs are capable of capturing long-range 

dependencies in sequential data, making them effective for modeling speech signals, which often exhibit complex 

temporal patterns. LSTMs address the vanishing gradient problem commonly encountered in traditional RNNs, 

allowing them to learn from sequences with long durations more effectively. LSTMs require fewer parameters 

compared to other types of recurrent networks, making them computationally efficient and easier to train. Overall, 

LSTM networks have demonstrated strong performance as acoustic models and have been widely adopted in both 

research and industrial applications (Li & Wu, 2015). 
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Bidirectional Long Short-Term Memory (BLSTM) 

BLSTM networks are a variant of RNNs. BLSTMs combine the advantages of LSTMs with bidirectional processing, 

allowing them to capture both past and future contexts in the input sequence (Passricha & Aggarwal Rajesh, 2019). 

BLSTMs process the input sequence in both forward and backward directions simultaneously. This means that at 

each time step, the network receives information from both past and future contexts, enabling it to capture temporal 

dependencies in both directions. 

A BLSTM network consists of two sets of LSTM layers. One set processes the input sequence in the forward direction, 

while the other set processes it in the backward direction. Each set of LSTM layers maintains its own hidden state 

and memory cells. The outputs of the forward and backward LSTM layers at each time step are typically concatenated 

to create a combined representation of the input sequence. This combined representation captures the past and future 

context of each time step. BLSTM networks are generally trained in a supervised manner, like other neural networks.  

BLSTMs offer several advantages as acoustic models for ASR. BLSTMs capture past and future contexts, allowing 

them to model long-range dependencies in the input sequence more effectively (Passricha & Aggarwal Rajesh, 2019). 

BLSTMs are robust to variations in the timing of speech events, as they can leverage information from both preceding 

and succeeding frames. By capturing bidirectional context, BLSTMs can provide richer representations of the input 

sequence, leading to improved recognition accuracy in ASR tasks. Overall, BLSTM networks have demonstrated 

strong performance as acoustic models in ASR systems and are commonly used in research and industrial 

applications. 

Gated Recurrent Units (GRUs) 

GRUs are another variant of RNNs that also used as acoustic models (Ravanelli, Brakel, Omologo, & Bengio, 2018). 

GRUs are similar to LSTM networks but have a simpler architecture with fewer parameters. Like other RNN 

architectures, GRUs process sequential data, making them suitable for modeling the temporal dynamics of speech 

signals. They also operate on input sequences one-time step at a time, where each time step corresponds to a frame 

of the input signal. GRUs use gating mechanisms to control the flow of information through the network. Unlike 

LSTMs, which have separate input and forget gates, GRUs have a single gate called the update gate. The update gate 

determines how much of the previous hidden state should be retained and how much of current input should be 

incorporated into the new hidden state. 

In addition to the update gate, GRUs have a reset gate that controls how much of the previous hidden state should be 

reset before computing the new hidden state. The reset gate allows GRUs to selectively forget irrelevant information 

from the past. GRU networks are trained using supervised learning techniques. The network's parameters, including 

those of the update and reset gates, are fixed iteratively to minimize a loss function, such as cross-entropy or mean 

squared error. 

GRUs offer several advantages as acoustic models for ASR. GRUs have a simpler architecture compared to LSTMs, 

which may lead to faster training and lower computational complexity. GRUs have fewer parameters as compared to 

LSTMs, making them more memory-efficient and easier to train, especially on smaller datasets. Despite their simpler 

structure, GRUs are capable of capturing long-range dependencies in sequential data, making them suitable for 

modeling speech signals. Overall, GRUs have shown promising results as acoustic models in ASR systems. They 

provide an effective and efficient alternative to more complex RNN architectures like LSTMs. 

Table 2: advantages and disadvantages of different acoustic models 

Acoustic 

Model 
Advantages Disadvantages 

HMM 

• Able to Model Time Distribution of Speech 

signal 

• Probabilistic Framework  

• Integration with Other Models 

• Assumption of Independence 

• Fixed Model Topology 

• Large State Space 

GMM • Flexibility in Modeling data Distribution • Sensitivity to Initialization 
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• Soft Clustering 

• Robustness to Outliers 

• Computational Complexity 

• Curse of Dimensionality 

DNN 

• High accuracy  

• Highly Adequate for Pattern Recognition 

Applications 

• Self-organising 

• Self-learning   

• Computational Resources 

• Overfitting 

• Hyperparameter Tuning 

CNN 

• Able to Extract Features from Raw Data 

• Capture Spatial Hierarchies of Features 

• Parameter Sharing 

• Robust to Variations 

• Computationally Intensive 

• Need Large Datasets 

• Complex architecture 

RNN 

• Sequential Data Handling 

• Memory of Previous Inputs 

• Context Modeling  

• Vanishing and Exploding Gradients 

• Overfitting 

• Gradient Computation 

LSTM 

• Long-Term Dependency Handling 

• Ability to Learn Temporal Patterns 

• Gated Memory Units 

• High Computational Cost 

• Difficulty in Training 

• Limited Interpretability 

BLSTM 

• Bi-directional Context 

• Improved Sequence Modeling 

• Reduced Information Loss 

• High computational complexity 

• Potential Overfitting 

• Parallelization Challenges 

GRU 

• Simpler Architecture 

• Faster Convergence 

• Modeling Complex Patterns 

• Limited Modeling Capability 

• Reduced Control over Memory 

• Potential Information Loss 

 

EXPERIMENTS 

This section discusses the speech corpus used, baseline architectures, hardware details, and the model description. 

Punjabi Speech Corpus 

The effectiveness of ASR systems relies on the accessibility of labeled speech data for training. Punjabi is categorized 

as an under-resourced language due to the scarcity of extensive speech corpora, benchmarked data, and other 

necessary resources. The ASR systems performance was evaluated using Punjabi speech corpus with tonal 

characteristics which included a total of 119,500 utterances recorded from 180 speakers out of which 106 were male 

and 74 were female belonging to the Malwa, Majha, Doaba, and Powadh regions of Indian Punjab. The corpus 

contained frequently used Punjabi words, Punjabi tonal words, phonetical rich Punjabi sentences, , affirmatives 

Punjabi sentences , doubtful Punjabi sentences ,interrogative Punjabi sentences and sentences having tonal words. 

The description of the Punjabi speech corpus with tonal characteristics is given in Table 3. 

Table 3: Detail of Punjabi Speech Corpus with Tonal Characteristics 

Speaker type Region Male Female Words spoken Time duration (hrs) 

Set1 Malwa 28 27 35,350 19:15 

Set2 Majha 30 15 30,100 16:30 

Set3 Doaba 30 20 34,300 18:30 

Set4 Powadh 18 12 19,750 10:45 

Total Speakers = 180 Total Utterances = 119,500 
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Baseline 

The performance of different ASR systems is evaluated for seven feature extraction methods, i.e., MFCC, PLP, GFCC, 

LPC, LPCC, RASTA, PNCC. Figure 8 demonstrates the combined architecture of various feature extraction techniques 

used with different acoustic models. The systems are evaluated for clean as well as real-time conditions. The features 

containing the highest information about speech signals are kept to reduce the computational cost. First 13 

coefficients with their first and second-order derivatives, i.e., 39 coefficients are used. To extract features, 25ms long 

hamming window is used with a consistent shift of 10ms. Cepstral Mean and Variance Normalization(CMVN) (Viikki 

& Laurila, 1998) is an efficient normalization technique which is adopted by almost every speech recognition system 

to increase the robustness. The same practice, i.e., normalized speech data with zero mean and unit variance, is 

followed for training and testing purposes. Decoding is defined as the task of recognizing the speech samples based 

on their acoustic characteristics. For decoding, a trigram language model is used. Fundamental dissimilarities 

between training data and generated output degrade the accuracy of ASR. 

The HMM consists of a set of states representing different phonetic units (e.g., phonemes or sub-phonetic units). 

Each state has a GMM which represents the probability distribution of acoustic features emitted by that state. Each 

state emits a mixture of Gaussians representing the acoustic features associated with that state. More mixtures allow 

for more complex sound representations but increase model complexity. The HMM configuration is used in 

experiments, total 4 states per phoneme are used having 8 Gaussians per mixture. Also, left-to-right topology is used. 

Transition probabilities between states are typically uniform within a state level and small probabilities of 

transitioning to neighboring states are allowed for slight variations in timing. The probability of transitioning from 

one state to another is taken as 0.2. Covariance type used is diagonal. Moreover, emitting states across different 

phonemes are tied together to share the same GMM. It reduces the number of parameters to learn and improves 

efficiency. 

 

Figure 8: Combined architecture of feature extraction techniques with acoustic models 

Neural network models containing 5 fully connected layers with 1024 hidden units in each layer, and the last layer, 

i.e., softmax layer having 42 output targets is used as DNN architecture. DNNs is pre-trained using the cross-entropy 

training and then Hessian Free sequence-training is applied for training purpose (Kingsbury, Sainath, & Soltau, 

2012). The DNN-HMM system uses the same pre-trained DNN architecture (Tara N Sainath, Kingsbury, Mohamed, 

Saon, & Ramabhadran, 2014). Heteroscedastic Linear Discriminant Analysis (HLDA) is applied on softmax layer to 

reduce the dimensionality from 1024 to 42. By using the DNN-based acoustic model,  Maximum Mutual Information 

(MMI) HMM training is applied. For MMI training, numerator and denominator lattice are used. The denominator 
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lattice represents the most likely word sequences for any training sentence and the numerator lattice represents the 

language model log probabilities. 

The architecture given in (Tara N Sainath et al., 2015) is used as our baseline CNN architecture where CNN act as 

acoustic model. This baseline architecture consists of 2 convolutional layers with 512, 256 feature maps respectively 

and 4 fully connected layers of 1024 hidden units each. Each convolutional layer is followed by max pooling layer 

having size 2 × 1. All the neurons are maxout except for the last layer.  

The input to the RNN acoustic model is a sequence of feature vectors extracted from the audio signal. RNN consisting 

of 3 recurrent layers process the input sequence and captures temporal dependencies. Each recurrent layer maintains 

a hidden state that is updated at each time step based on the current input and the previous hidden state. Output of 

the recurrent layers is fed into 2 fully connected layers to generate predictions. In final layer, softmax activation 

function is applied to produce a probability distribution over the output classes. 

LSTM acoustic model used the following configuration for experimental purposes. 5 LSTM layers are stacked to learn 

complex temporal patterns. Each LSTM layer consists of 256 LSTM units (cells). After the LSTM layers, two fully 

connected layers transform the LSTM outputs into the desired output space. These layers have Rectified Linear Unit 

(ReLU) activation functions. The final output layer is usually a softmax layer that provides probability distributions 

over the set of possible phonemes or sub-word units. 42 units in the softmax layer correspond to the number of target 

classes (e.g., phonemes, characters). 

BLSTM networks used in ASR are bidirectional, meaning they have two parallel LSTM layers for each time step: one 

processing the sequence from start to end and another from end to start. This setup allows the network to have 

context from both past and future frames, improving recognition accuracy. 10 LSTM layers (5 Forward and 5 

Backward) are stacked to learn complex temporal patterns. Each LSTM layer consists of 256 LSTM units. After the 

LSTM layers, 2 linear layers are applied to transform the LSTM outputs into the desired output space. These layers 

have ReLU activation functions. The final output layer is usually a softmax layer that provides probability 

distributions over the set of possible phonemes or sub-word units. 42 units in the softmax layer correspond to the 

number of target classes (e.g., phonemes, characters). 

In GRU architecture, 4 GRU layers are stacked to capture the temporal dependencies of speech. The number of 

hidden units per layer used is 512 to significantly impacts the model's capacity and complexity. More units allow for 

capturing complex temporal patterns but require more training data and computational resources. Bidirectional 

GRUs analyze the speech sequence in both directions, potentially improving accuracy therefore GRUs are adjusted 

in bidirectional. A fully connected layer with 1024 units are applied for linear mapping. The final layer depends on 

the specific task within ASR. The output layer uses a softmax activation to predict the probability distribution over 

all possible phonemes. 42 units are used in softmax layer. 

Hardware Details 

The various ASR architecture designs are tested on a supercomputer named PARAM Shavak Yuva-II. It consists of 2 

multicore CPUs having 18 cores each along with two number of accelerator cards (i.e., GPGPU). The computer has 

64GB RAM, 8TB storage, Nvidia Pascal architecture-based co-processing technologies, and deep learning GPU 

software environment. It works under Ubuntu v22.04 operating system. Kaldi toolkit is used for the implementation 

with Python. Note that same hardware detail is used for all experiments performed in this paper. 

Acoustic Modeling and Training 

The different ASR systems use different acoustic models which have been trained using discriminative techniques. 

39-dimensional features are generated from the speech. The speech signal is corrupted artificially with 20dB SNR 

using noizeus dataset to design the noisy dataset. The model is trained using clean dataset and tested for clean and 

noisy datasets respectively.  

Training Criteria 
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Asynchronous Stochastic Gradient Descent (ASGD) optimization strategy (Dean et al., 2012) is used to train the 

neural network with the CE criteria with a context window of 15 frames. Typically, CE is used as the objective function, 

and optimization is performed through ASGD 

Experimental Results and Analysis 

This section represents the performance of the various ASR which is analyzed in terms of WER (%). Table 4 shows 

the WER (%) obtained by the different ASR systems in clean environment.  

Table 4: Result of ASR systems for different combinations of feature extraction techniques and acoustic models in 

clean environment in terms of WER (%). 

Feature Extraction/ Acoustic 

Models 

HMM GMM DNN CNN RNN LSTM BLSTM GRU 

MFCC 13.1 12.7 12.5 12.2 12.3 12.1 12 12.3 

PLP 13.7 13.4 13.2 12.8 13.0 12.8 12.6 12.9 

GFCC 13.4 13.1 12.9 12.5 12.8 12.6 12.4 12.7 

LPC 13.8 13.5 13.3 12.9 13.1 12.9 12.7 13.0 

LPCC 13.6 13.3 13.1 12.7 13.0 12.8 12.6 12.9 

RASTA-PLP 13.5 13.2 13.0 12.7 12.8 12.7 12.4 12.7 

PNCC 13.3 12.9 12.7 12.3 12.6 12.4 12.2 12.5 

From the analysis of the results presented in the above table, it is concluded that MFCC features performed well with 

BLSTM, outperforming all the feature extraction techniques in a clean environment. The reason for the best 

performance of the MFCC feature extraction technique is Mel filters are designed to mimic the human ear’s response 

to different frequencies. It is based on the perceptual scale of pitches, which aligns the feature extraction process with 

how humans naturally process speech sounds. Moreover, its cepstral transformation also reduces channel variations' 

impact, such as different microphones or recording conditions. On the other hand, other feature extraction 

techniques are missing these characteristics, so they are lagging in recognition rate when compared with MFCC 

features. Table 5 represents the result achieved by the different combinations of feature extraction techniques with 

acoustic models in noisy environments in terms of WER (%). 

Table 5: Result of ASR systems for different combinations of feature extraction techniques and acoustic models in 

noisy environments in terms of WER (%) 

Feature Extraction/ 

Acoustic Models 

HMM GMM DNN CNN RNN LSTM BLSTM GRU 

MFCC 16.1 15.7 15.5 15.2 15.3 15.1 15.0 15.3 

PLP 16.7 16.4 16.2 15.8 16.0 15.8 15.6 15.9 

GFCC 15.8 15.5 15.2 15.0 15.0 15.0 14.8 14.9 

LPC 16.8 16.5 16.3 15.9 16.1 15.9 15.7 16.0 

LPCC 16.6 16.3 16.1 15.7 16.0 15.8 15.6 15.9 

RASTA-PLP 16.4 16.1 15.9 15.6 15.7 15.6 15.3 15.5 

PNCC 15.3 15.9 15.7 15.3 15.6 15.4 15.2 15.5 
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The results given in Table 5 show that GFCC features offer the best recognition rate with the BLSTM acoustic model 

in noisy environments over all the feature extraction techniques. The reason for GFCC performance is GFCCs use the 

Gammatone filterbank, which mimics the filtering characteristics of the human auditory system. Gammatone 

filterbank models the cochlear filtering process to effectively isolate important features from the signal by 

suppressing noise. GFCC also offers better frequency resolution at low frequencies than other feature extraction 

techniques, making it best in noisy environments.  

This review paper gives a technical overview of the different feature extraction and acoustic modeling approaches 

widely used nowadays for ASR. An ASR system has mainly three stages: feature extraction stage, classification stage, 

and language modeling. Various feature extraction methods have been proposed, having different characteristics, 

and performing well in different scenarios. As discussed in the classification stage, the approach that transformed 

ASR research was the HMMs. GMM-HMM models require significant training data and can struggle with complex 

acoustic environments compared to DNN-HMM models. While DNN-HMM has become the dominant approach, 

understanding GMM-HMM provides a foundational knowledge of acoustic modeling in ASR. Although considerable 

accuracies were obtained from ASR systems based on HMMs, these are still far from achieving an optimal ASR system 

by themselves. Hence, numerous acoustic models, either based on the concept of integrating HMMs with another 

approach or direct modeling have been proposed. However, in recent years, CNNs have also been adopted in ASR 

systems, where numerous researchers proved the superiority of CNNs over ANNs, but most importantly researchers 

also showed that CNNs can achieve better results than HMMs. BLSTM has shown its capability in ASR due to 

bidirectional temporal  

CONCLUSION 

ASR has achieved new heights over the past few decades, due to advancements in machine learning and deep 

learning. The availability of large-scale annotated datasets also helped the Punjabi ASR research. Feature extraction 

techniques, such as MFCCs and GFCCs, play a crucial role in the performance of ASR systems. MFCCs have been 

widely adopted due to their efficiency and effectiveness in capturing essential audio features, whereas GFCCs offer 

superior performance in noisy environments by better modeling the human auditory system. The transition from 

traditional techniques like HMMs and GMMs to more sophisticated DNNs, CNNs, and RNNs has significantly 

improved the accuracy and robustness of ASR systems. However, bidirectional temporal modeling by BLSTM as 

acoustic model, made it the best acoustic model. Two research questions were discussed in the introduction section, 

for first RQ answer is MFCC and GFCC are the best performing feature extraction techniques in clean and noisy 

environments respectively. Second RQ answer is BLSTM. Throughout the experiments if we see Table 4 and Table 5 

results, BLSTM performed well with every feature extraction technique due to its bidirectional temporal modeling 

capability. 

Despite these advancements, challenges remain in achieving human-level performance in diverse and complex 

acoustic environments. Issues such as background noise, speaker variability, accents, and language differences 

continue to pose significant hurdles. To address these challenges, enhancing noise robustness, dialects, pitch, and 

tonal characteristics will be focused in future. 
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