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Cross-spectrum face recognition, in which thermal and visible images must be jointly 

analyzed, has long been challenged by discrepancies in illumination, sensor noise, 

and spectral characteristics. These issues are particularly relevant in security, 

defense, and healthcare, where robust identification across lighting and 

environmental conditions is essential. Despite advances in standard convolutional or 

attention-based networks, many models still struggle with domain adaptation and 

fail to extract consistent features from thermal and visible inputs. To address this 

gap, we investigate three alternative architectures: a Continuous Neural Network 

(CNN) that learns smooth kernel functions, an Attention-Free Transformer (AFT) 

with global weighting instead of multi-head attention, and a Fourier Neural Operator 

(FNO) that operates on low-frequency spectral components. Each model was trained 

on a disjoint set of thermal–visible face images and then evaluated for classification 

accuracy. Whereas the FNO-based method reached 0.86 (0.85 macro-average F1-

scores), our results reveal that the continuous neural network and the attention-free 

transformer attained 0.98 accuracies (with macro- and weighted-average F1-scores of 

0.98). 

Keywords:  cross-spectrum; thermal–visible fusion; face recognition; Continuous 

Convolution Networks; Attention-Free Transformers; Fourier Neural Operator 

Introduction 

Face recognition and identification in different light conditions are still difficult problems, especially 

when matching different spectra of face images [1]. Particularly, thermal-visible face identification 

requires bridging significant modality gaps: Thermal images convey robust performance in poor 

lighting but typically lack the discriminative appearance features available in visible data. On the other 

hand, visible images convey detailed color and texture information, which deteriorates significantly in 

poor light conditions [2]. Building a robust cross-spectrum face identification system is crucial in 

many fields, including security, surveillance cameras, and healthcare, where identification mostly 

occurs in uncontrolled or poor lighting conditions [3]. 
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In the last few years, many earlier approaches to processing the spectral mismatch achieved high 

performance depending on Deep Learning (DL) methods, specifically Convolutional Neural Networks 

(CNNs) or transformer-based architectures. While CNN-based pipelines have shown promise in 

inhomogeneous fields, they fail to align thermal and visible modalities without large-scale adaptation 

or domain-specific engineering [4]. On the other hand, transformer models can model global 

relations, but multi-head self-attention is computationally expensive and prone to overfitting, 

particularly with smaller cross-spectrum datasets. Thus, new strategies are needed to mitigate 

computational overhead and perform flexible, domain-adaptive feature extraction [5]. 

This paper explores three alternative deep architectures to alleviate these challenges, each offering a 

different strategy for bridging thermal–visible domain gaps. In particular, continuous neural networks 

(CNN-based models parameterizing their convolutional filters as smooth, learnable functions) have 

shown promise on tasks involving extreme local appearance shifts as they modulate their kernels to 

more subtly adapt to domain-specific patterns [6]. Alternatively, attention mechanisms—originally 

popularized by the vision transformer—have proven effective at global context modeling for unimodal 

tasks [7]. However, the overhead of multi-head self-attention may be unwanted, and some evidence 

indicates it is not necessarily needed to model cross-domain cues [8]. An attention-free transformer 

(AFT) is a newer alternative that forgoes multi-head projections for a simpler global weighting, 

simplifying model complexity without compromising salient global interactions [9]. 

The Fourier neural operator (FNO) has also gained traction as a spectral approach, where low-

frequency components undergo learnable transformations in the frequency domain before being 

inverse-transformed back to spatial space [10]. This process can integrate cross-spectrum face 

features by aligning thermal and visible signals at the spectral level, an idea supported by promising 

results in image-to-image translation tasks [11]. However, FNO-based methods sometimes 

underperform when the sensor gap is especially large, as high-frequency details unique to each 

domain may be truncated [12]. Consequently, each approach—continuous convolutions, attention-free 

transformers, and Fourier operators—exhibits both strengths and limitations when facing thermal–

visible matching scenarios. 

In this work, we systematically evaluate and compare three architectures for cross-spectrum face 

recognition: 

1. Continuous Neural Networks (CNNs), which adapt convolutional filters via smooth 

parameterization, 

2. Attention-Free Transformers (AFTs), leveraging a global weighting mechanism that discards 

multi-head complexity, and 

3. Fourier Neural Operator (FNO) blocks focusing on low-frequency spectral alignment. 

Every model is evaluated on a cross-spectrum face dataset with twenty identity classes. With strictly 

disjoint train/validation splits. Our contributions thus lie in proposing specialized cross-spectrum 

architectures, delivering rigorous comparisons, and demonstrating the viability of alternative neural 

operators beyond classical CNNs or standard transformers for robust thermal–visible face 

recognition. 

This research makes the following contributions: 

1. Propose and unify three architectures (continuous convolution, attention-free transformer, 

and FNO) for cross-spectrum face recognition, providing a multifaceted view of how best to 

integrate disparate sensor data. 

2. Present comprehensive comparative results, where the continuous neural network and 

attention-free transformer attain top-tier accuracy (98%) and the FNO-based method 
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achieves 86% accuracy. These findings reveal the trade-offs in complexity, computational 

load, and sensitivity to high-frequency information. 

3. Offer practical insights for domain-specific improvements: continuous kernel 

parameterization can yield adaptable filters, global weighting can simplify attention overhead, 

and spectral-domain alignment can robustly unify low-frequency content despite modality 

variations. 

In the following sections, we detail the theoretical underpinnings of each proposed network, describe 

our thermal–visible dataset and training protocols, and analyze the numerical outcomes in terms of 

accuracy, F1-scores, confusion matrices, and multi-class Receiver Operating Characteristic (ROC) and 

Precision-Recall (PR) curves. Our results underscore that, although each approach addresses cross-

spectrum disparities in its own manner, both the continuous and attention-free solutions demonstrate 

near-ideal performance. In contrast, the Fourier-based approach, while promising, faces greater 

challenges in preserving high-frequency cues across modalities. By illuminating these strengths and 

weaknesses, we provide researchers and practitioners with targeted guidance on deploying robust 

cross-spectrum solutions in real-world scenarios. 

Related Work 

Cross-spectrum face recognition, particularly in thermal-to-visible matching, has seen significant 

advances due to deep learning [12]. However, domain adaptation, spectral discrepancies, and feature 

preservation challenges persist. Below, we review recent efforts in this area. 

Deep learning-based methods to close the spectral gap have been investigated in several papers. In 

[13] a Deep Joint Independent Component Analysis Network (DJICAN) was developed to improve 

feature alignment by learning mappings between thermal and visual face images. Similarly, [2] 

introduced a Domain and Pose Invariant Framework to address pose variations and spectral 

discrepancies. Their work improved matching accuracy under extreme conditions. 

Recent efforts have also focused on generative approaches. [13] proposed a Denoising Diffusion 

Probabilistic Model (DDPM) for Thermal-to-Visible (T2V) image translation, achieving state-of-the-

art results. Similarly, [13] utilized Conditional GANs (CGANs) to generate thermal face images from 

visible ones, enhancing recognition performance. 

Transformer-based methods have also been explored. [3] investigated end-to-end deep learning 

solutions for thermal spectrum face verification, addressing the limitations of prior CNN-based 

methods. Additionally, [13] reviewed the latest deep infrared (IR) approaches, identifying key 

challenges in spectral fusion. Table 1 summarizes key recent works, their methodologies, and the gaps 

our research aims to address. 

However, while these efforts show promise, they do not systematically compare different architectural 

paradigms tailored to cross-spectrum face recognition. Our work fills this gap by evaluating three 

distinct architectures: 

1. Continuous convolution networks, which adapt kernel filters for spectral alignment. 

2. Attention-free transformers, reducing complexity while retaining global feature interactions. 

3. Fourier Neural Operators (FNOs), leveraging spectral domain transformations to align 

thermal-visible face signals. 
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Table 1: Recent works, their methodologies, and the gaps our research aims to address. 

Study Methodology Research Gap 

[13] 

(2022) 

Independent Component Analysis for 

spectral alignment. 

Lacks adaptation to large spectral gaps. 

[2] 

(2022)  

Domain and pose-invariant framework. Does not address computational 

overhead in transformers. 

[14] 

(2022)  

Diffusion-based image synthesis for T2V 

translation. 

Computationally expensive and slow 

inference. 

[15] 

(2022)  

Generative adversarial networks for thermal-

to-visible translation. 

Struggles with fine-grained identity 

retention. 

[16] 

(2022)  

YOLOv5-based face and landmark detection 

in thermal images. 

Not designed for full face recognition 

tasks. 

[17] 

(2022)  

Cross-modality discriminator network. Lacks frequency-based feature extraction. 

[4] 

(2022) 

Triple CNN architecture for thermal-visible 

face verification. 

Limited performance on extreme spectral 

shifts. 

[18] 

(2022)  

GAN-based thermal image generation for 

robust face recognition. 

May introduce artifacts affecting 

recognition accuracy. 

[19] 

(2023)  

Survey on deep learning-based IR face 

recognition. 

Does not compare transformer vs. 

Fourier-based methods. 

[3] 

(2024)  

End-to-end CNN for face verification. Lacks attention-free and spectral-domain 

methods. 

 

Our study compares three alternative neural network architectures: continuous convolution networks, 

attention-free transformers, and Fourier neural operators. Unlike previous research, which often 

focuses on a single approach, we systematically evaluate distinct architectural paradigms for cross-

spectrum face recognition. Specifically, to reduce the model complexity while maintaining robust 

performance, we explored the AFT architecture in global feature weighting. Furthermore, a novel 

image alignment on a thermal-visible image perspective is offered using FNOs. Finally, multiple 

performance metrics were used on a controlled dataset to ensure a comprehensive assessment of the 

results, including accuracy, F1-score, recall, sensitivity, ROC curves, and confusion matrix. 

Methods 

This study addresses the challenges in thermal-visible face identification by proposing an end-to-end 

three distinct architectures that consolidate three distinct architectures, each emphasizing a specific 

strategy for bridging the modality gap. The continuous convolution network leverages adaptive kernel 

parameterization to accommodate illumination and spectral detail disparities. The Attention-Free 

Transformer (AFT) dispenses with multi-head self-attention in favor of a global weighting 

mechanism, thereby capturing broad contextual cues without overwhelming computational resources. 

By contrast, the Fourier Neural Operator (FNO) operates in the frequency domain to align low-

frequency components across thermal and visible images, offering a theoretically elegant way of 

mitigating spectral mismatches. Each model processes standardized inputs, culminating in a single 

classification head that outputs identity probabilities. The comparative aim is to determine whether 

continuously adjustable kernels, globally weighted patch interactions, or spectral alignment best 

resolve the discrepancy between thermal and visible facial representations in real-world conditions. 

Figure 1 illustrates the overall pipeline of the proposed method, showing dual-input thermal–visible 

data preprocessing followed by parallel architectures (Continuous Convolution Network, Attention-

Free Transformer, and Fourier Neural Operator) converging into a unified classification head. 
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Figure 1: The proposed pipeline for cross-spectrum face recognition. 

Data Preprocessing 

A structured preprocessing pipeline was used to guarantee correct alignment and effective feature 

extraction from thermal and visible facial images. Training and validation sets were created from the 

dataset to guarantee a strong separation between identity classes, thereby preventing data leakage. 

Two main modalities made up the dataset: thermal and visual images, with different spectral 

properties. 

We applied histogram equalization to improve contrast in thermal images, making features clearer. All 

images were resized to 224×224 pixels for consistency. We used random cropping, horizontal flipping, 

Gaussian noise, and Fourier spectrum masking for data augmentation to boost model robustness and 

generalization. This operation compelled the models to identify and utilize the invariant features 

under varying frequency distributions, making the models more robust to the spectrum shifts. The 

pixel intensities were normalized using min-max scaling to maintain data representation consistency, 

restricting the values uniformly to the range [0,1]. Finally, we registered the thermal and visible image 

pairs with mutual information-based registration, providing pixel-wise consistency across the 

modalities. 

Continuous Convolution Networks 

Traditional convolutional neural networks typically utilize fixed-weight filters, which may prove 

inadequate in handling the significant spectral shifts that characterize thermal and visible face images. 

To overcome this limitation, CCNs introduce adaptively parameterized convolutional kernels capable 

of smoothly and dynamically adjusting to variations in input data. Unlike conventional static-filter 



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376  

  

https://www.jisem-journal.com/ Research Article  

 

 148 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

approaches that apply uniform kernels across all input images, the CCN architecture facilitates kernel 

flexibility, thereby enhancing the extraction of common features from diverse image domains. This 

adaptability is particularly advantageous for cross-spectrum tasks, given that thermal images 

inherently lack certain high-frequency details commonly present in visible-spectrum images, and 

conversely, visible images may omit spectral information prominently in thermal imagery. 

The final implementation of our continuous convolution network comprises an initial input layer for 

224×224×3 images, followed by two continuous convolutional layers, each of which was followed by a 

rectified linear unit (Relu) activation and a max-pooling operation to shrink spatial dimensions 

gradually. The tensor is then flattened and sent to a fully connected "penultimate" layer of size 128 

neurons before a last dense output layer projects into 20 identity classes. Table 2 offers a layer-by-

layer synopsis: 

Table 2: Model Summary for the Continuous Convolution Network (CCN) 

Layer (type) Output Shape Param # 

input_layer (InputLayer) (None, 224, 224, 3) 0 

continuous_conv2d (ContinuousConv2D) (None, 224, 224, 16) 448 

re_lu (ReLU) (None, 224, 224, 16) 0 

max_pooling2d (MaxPooling2D)  (None, 112, 112, 16) 0 

continuous_conv2d_1 (ContinuousConv2D) 

 

(None, 112, 112, 32) 4,640 

re_lu (ReLU) (None, 224, 224, 32) 0 

max_pooling2d (MaxPooling2D)  (None, 56, 56, 32) 0 

flatten (Flatten) (None, 100352) 0 

penultimate_dense (Dense) (None, 128) 12,845,18

4 

dense (Dense) (None, 20) 2,580  

Total params: 12,852,852 

Trainable params: 12,852,852 

Non-trainable params: 0 

The continuous convolutional filters at the heart of this network are parameterized to accommodate 

domain-specific distortions, including low-illumination noise in thermal images or overexposed 

regions in visible images. By learning these smooth, continuous kernels, the model preserves essential 

identity-relevant information across both spectra more effectively than a standard CNN. At the 

penultimate stage, a fully connected layer of 128 neurons provides a compact embedding of the 

extracted features, which are then passed to the final dense layer that generates class probabilities. 

This multi-stage process supports robust cross-spectrum generalization, allowing the model to 

distinguish identities even under substantial illumination or spectral disparities. 

Attention-Free Transformers 

While standard Transformers have demonstrated strong performances on a wide range of vision tasks, 

their application of multi-head self-attention mechanisms is computationally expensive and prone to 

overfitting, especially with limited datasets. In response, we created an AFT model that does not 

employ the standard self-attention but a lighter-weight global weighting mechanism to prevent 

compromising the long-range feature modeling property of Transformer-based methods but reduces 

the parameter number and computational complexity by a significant margin. 

To lower the input's spatial resolution, our first layers use two-dimensional convolution and max-

pooling. The images are subsequently split up and linearly projected to the embedding space. Unlike 

passing the embeddings through multiple attention heads, the AFT blocks compute global weights and 
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broadcast them to all the patch embeddings, effectively capturing context without the accompanying 

high computational cost of pairwise attention operations. The model has four stacked AFT blocks, 

each progressively refining the extracted representations. The blocks conclude with a global average 

pooling layer, effectively aggregating learned features across patches in the image—finally, a dense 

layer outputs class probabilities for the target categories of interest. 

Table 3 provides a detailed summary of the configuration of each layer, including input and output 

dimensions, parameter counts, and the functional roles of individual components. By excluding multi-

head self-attention, the model effectively reduces the quadratic computational complexity found in 

traditional Transformer architectures. This design choice makes the AFT model suitable for use in 

environments with limited resources or applications requiring fast inference capabilities. 

Table 3: Model Summary for the Attention-Free Transformer (AFT) 

Layer (type) Output Shape Param # 

input_layer (InputLayer) (None, 224, 224, 3) 0 

conv2d_6 (Conv2D) (None, 224, 224, 64) 1,792 

max_pooling2d_6 (MaxPooling2D) (None, 112, 112, 64) 0 

conv2d_7 (Conv2D) (None, 112, 112, 128) 73,856 

max_pooling2d_7 (MaxPooling2D) (None, 56, 56, 128) 0 

patch_embedding_3 (PatchEmbedding) (None, None, 256) 2,097,408 

aft_block_14 (AFTBlock) (None, None, 256) 723,968 

aft_block_15 (AFTBlock) (None, None, 256) 723,968 

aft_block_16 (AFTBlock) (None, None, 256) 723,968 

aft_block_17 (AFTBlock) (None, None, 256) 723,968 

global_average_pooling1d_3 

(GlobalAveragePooling1D) 

(None, 256) 0 

dense (Dense) (None, 20) 5,140 

 

Total params: 5,074,068 (19.36 MB) 

Trainable params: 5,074,068 (19.36 MB) 

 Non-trainable params: 0 (0.00 B) 

 

This architecture prioritizes essential features rather than calculating full attention scores for every 

image patch, capturing high-level dependencies efficiently. The AFT identifies individuals across 

thermal and visible spectra without overfitting, providing a computationally efficient solution for 

cross-spectrum face recognition tasks. 

Fourier Neural Operators 

Fourier Neural Operators (FNOs) are a new type of deep learning models that operate directly in the 

frequency domain. Unlike the spatial representation of the features learned by standard CNNs, FNOs 

perform the operations in the spectrum domain and, therefore, are naturally suitable for cross-

spectrum applications where frequency alignment can close modality gaps. Since the thermal and 

visible spectrum distributions inherently possess discrepancies, we examined the feasibility of FNO as 

a solution for cross-spectrum face recognition. 

The model first applied an FFT to convert input images from the spatial domain to the frequency 

domain. In this transformed space, a low-pass filtering operation was performed to retain only the 

dominant frequency components, removing high-frequency noise that could introduce domain 

discrepancies. The core of the FNO framework consisted of two spectral convolution layers, which 

learned transformations directly on frequency coefficients. This process allowed the model to align 



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376  

  

https://www.jisem-journal.com/ Research Article  

 

 150 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

thermal and visible images based on shared frequency components rather than spatial textures. Table 

4 below details the layer configuration, parameter counts, and output dimensions. 

Table 4: Model Summary for the Fourier Neural Operators (FNOs) 

Layer (type) Output Shape Param # 

input_layer (InputLayer) (None, 224, 224, 3) 0 

conv2d_36 (Conv2D) (None, 224, 224, 32) 896 

max_pooling2d_6 (MaxPooling2D) (None, 112, 112, 32) 0 

conv2d_7 (Conv2D) (None, 112, 112, 64) 18,496 

max_pooling2d_7 (MaxPooling2D) (None, 56, 56, 64) 0 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

fno_block_12 (FNOBlock) (None, 56, 56, 64) 1,086,080 

global_average_pooling1d_3 

(GlobalAveragePooling1D) 

(None, 64) 0 

dense (Dense) (None, 20) 1,300 

 

Total params: 8,709,332 (33.22 MB) 

 Trainable params: 8,709,332 (33.22 MB) 

 Non-trainable params: 0 (0.00 B) 

 

Following Fourier domain processing, the network inverted the Fast Fourier Transform (iFFT) to 

translate spectral data into spatial representations. Identity predictions were generated using a three-

layer, completely linked layer of 1024, 512, and 128 neurons, headed by classification. Domain-

invariant feature learning was motivated by combining cosine similarity loss with Kullback-Leibler 

(KL), divergence loss. Over 40 epochs, a batch size of 32 was used in the RMSprop optimizer to train 

the model. 

Performance Metrics 

Multiple metrics can provide a comprehensive picture of the quality and resilience of a facial 

recognition system: accuracy, precision, recall, and the F1-score. All these criteria evaluate model 

performance differently, particularly in classification tasks. 

Accuracy 

Accuracy is a fundamental metric that assesses the ratio of properly predicted instances to the total 

instances, providing a basic indication of the model's performance; nevertheless, it may be misleading 

in situations including class imbalance. The accuracy is calculated as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁)
   (1) 

Where: 

𝑇𝑃 : True Positives (correctly predicted positive instances) 

𝑇𝑁: True Negatives (correctly predicted negative instances) 
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𝐹𝑃: False Positives (incorrectly predicted positive instances) 

𝐹𝑁: False Negatives (incorrectly predicted negative instances) 

Precision 

Precision, also known as Positive Predictive Value, refers to the ratio of true positive predictions to the 

total number of expected positives. Mathematically, it is a ratio that indicates the number of 

accurately predicted positive cases relative to all instances projected as positive, rendering accuracy a 

valuable indicator when the cost of false positives is significant. The precision is calculated as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃)
                              (2) 

Recall 

Recall, also known as Sensitivity or True Positive Rate, is the ratio of anticipated true positive 

instances to all actual positive cases, indicating the effectiveness of detecting positive instances. This 

metric is particularly valuable when the cost of overlooking a positive instance is significant. The recall 

is calculated as follows: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
   (3) 

F1-Score 

The F1-score is the harmonic mean of precision and recall, offering a singular metric that equilibrates 

both measures. It becomes highly beneficial in instances of class imbalance and when an equilibrium 

between precision and recall is required. The F1-Score is calculated as follows: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)
                   (4) 

Multi-Class ROC/PR Curves as Performance Metrics 

We utilized multi-class adaptations of the usual Receiver Operating Characteristic (ROC) and 

Precision-Recall curves to assess each model's capacity to differentiate among numerous IDs in 

thermal-visible settings. We implemented a One-vs-Rest (OvR) framework, designating each class as 

the "positive" label in contrast to the remaining classes as "negative." The True Positive Rate (TPR) 

and False Positive Rate (FPR) were determined at multiple decision thresholds to produce ROC curves 

for each class, from which the Area Under the Curve (AUC) was calculated. Similarly, we computed 

Precision and Recall across all thresholds to generate multi-class PR curves and calculated the related 

Average Precision (AP) values. These per-class values were combined using macro-averaging 

(assigning equal weight to all classes) and weighted-averaging (with class frequency considerations). 

This method allowed us to comprehensively compare the performance of all models on all identities, 

with strengths in some classes but weaknesses in others. Further, by giving macro- or weighted-

average ROC-AUC and PR-AUC, we had an aggregate measure of the degree to which each model 

performed cross-spectrum recognition robustly. These multi-class ROC and PR analyses thus served 

as critical performance metrics, giving insight into aggregate accuracy and the fine-grained error 

distribution across individual identities. 

Results and Discussion 

Table 5 consolidates the collective view on the primary performance metrics for all the architectures, 

CCN, AFT, and FNO when presented with cross-spectrum face recognition issues. The metrics are 

macro- and weighted-average precision, recall, F1-scores, accuracy, total inference time, and inference 

per sample. Summing up all these indicators, the table captures each model's capability to correctly 

identify identities derived from thermal and visible spectra and the computational complexity and 

efficiency associated with their respective inference process. 
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Table 5: Summarized Performance Metrics for Cross-Spectrum Face Recognition 

Architecture Macro 

Precisio

n 

Macro 

Recall 

Macro 

F1 

Weighted 

Precision 

Weighted 

Recall 

Weighted 

F1 

Accurac

y 

Inference 

(s) 

Inf./Samp

le (ms) 

Continuous 

Convolution 

Networks 

0.98 0.98 0.98 0.98 0.98 0.98 0.98 2.43 8.68 

Attention-

Free 

Transformer

s 

0.98 0.98 0.98 0.98 0.98 0.98 0.98 5.34 11.68 

Fourier 

Neural 

Operators 

0.85 0.85 0.85 0.86 0.86 0.85 0.86 27.06 28.64 

 

Examining these results reveals that both CCN and AFT models achieve an accuracy of 0.98 on their 

validation sets, with corresponding macro- and weighted-average precision, recall, and F1-scores 

likewise reaching 0.98. This high consistency indicates that neither model skews excessively toward 

particular classes and that they exhibit strong generalizations to all identities. The CCN's effectiveness 

appears to stem from its continuous convolutional filters, which adapt to spectral discrepancies and 

preserve high-frequency features necessary for identification. In contrast, the AFT model discards 

multi-head self-attention in favor of a global weighting scheme, and this strategic simplification 

preserves long-range dependencies without greatly inflating parameter counts or inference times. 

Although the AFT takes longer (5.34 seconds versus the CCN's 2.43 seconds on their respective 

validation sets), its per-sample inference time remains sufficiently low (11.68 ms), indicating 

feasibility for near-real-time deployments. The FNO architecture, however, attains a lower accuracy of 

0.86, with macro- and weighted-average precision, recall, and F1-scores remaining around 0.85–0.86, 

and it exhibits a notably longer total inference time of 27.06 seconds. Despite its theoretical appeal for 

harmonizing low-frequency components between thermal and visible images, the FNO's reliance on 

repeated forward and inverse Fourier transformations likely curtails its ability to preserve the high-

frequency cues essential for fine-grained face discrimination. This trade-off reduces its overall 

classification performance and increases the computational burden, resulting in a per-sample 

inference time of 28.64 ms. Consequently, while the FNO may still be valuable for specific tasks 

prioritizing frequency-domain alignment, the evidence suggests its advantages are overshadowed by 

its slower inference and diminished accuracy relative to CCN and AFT architectures. 

The confusion matrices in Figure 2, corresponding to each model, provide a detailed view of 

classification performance by illustrating the distribution of predicted versus actual labels. The 

diagonal elements represent correctly classified instances, while off-diagonal elements indicate 

misclassifications. A deeper analysis of these matrices helps identify strengths and weaknesses in each 

model's performance. 
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(c) 

Figure 2: Confusion matrices for the three proposed models: (a) CCN, (b) AFT, and (c) FNO. 

 

The Continuous Convolution Networks' confusion matrix (Figure 2.a) demonstrates high diagonal 

dominance, confirming the model's ability to classify nearly all the individuals correctly. A few off-

diagonal entries are evident, indicating that there are few misclassifications. The macro and weighted 

F1-score value for the CCN stands at 0.98, confirming its ability to make solid feature extraction on 

both the visible and the thermal spectra. The model misclassifies a few samples, indicating that its 

continuous convolutional filters are highly competent in solving the spectral inconsistencies that the 

dataset presents. The off-diagonal errors may be due to identities with comparable face structures or 

where thermal noise impacted recognition. 

The Attention-Free Transformers' confusion matrix (Figure 2.b) also exhibits strong diagonal 

dominance, with the same level of performance as the CCN. The average classification accuracy 

remains constant at 0.98, with few misclassifications. Its use of a global weight mechanism instead of 

self-attention appears to be efficient in preserving contextual relationships between facial features 

without the overfitting problems that may be faced with relatively limited datasets in transformer-

trained models. Few misclassifications appear, although their frequency remains low, suggesting that 

the errors may be due to uncertain samples or lighting changes throughout the thermal spectrum. 

In contrast, the confusion matrix for the Fourier Neural Operators (Figure 2.c) reveals a greater 

number of off-diagonal misclassifications, with several classes experiencing noticeable confusion. The 

accuracy of 0.86 and macro F1-score of 0.85 reflect this trend, with errors more evenly distributed 

across various identity classes. This model struggles to differentiate between certain individuals, likely 

due to its reliance on Fourier transformations, which emphasize low-frequency components. While 

aligning dominant frequencies between thermal and visible domains can improve cross-spectrum 

generalization, it obscures some finer high-frequency details essential for face recognition. Several 

misclassifications suggest that some identities share similar spectral profiles, causing difficulties in 

distinguishing between them. The increased inference time and computational overhead further 

indicate that the performance trade-off associated with frequency-domain transformations may not 

justify their use over spatial-domain alternatives such as CCNs and AFTs. The confusion matrices 
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collectively confirm that CCN and AFT models perform near optimally, with a high level of 

classification accuracy and minimal inter-class confusion. Their strong diagonal structures indicate 

that most predictions align correctly with ground truth labels, reinforcing their suitability for cross-

spectrum face recognition tasks. The FNO model, while conceptually appealing, demonstrates 

increased misclassification rates, suggesting that relying solely on frequency-domain transformations 

may not be sufficient for handling the full complexity of face recognition across different spectral 

inputs. These findings show that while frequency-domain representations help cross-spectrum 

harmonization, high-frequency identity cues' degradation impacts classification accuracy. The 

performance of CCNs and AFTs emphasizes the need for efficient architectures to extract spatial and 

spectral features without losing computational efficiency. 

 
(a) 

 
(b) 

 
(c) 

 

Figure 3: The Training accuracy and loss curves the proposed models: (a) CCN, (b) AFT, and (c) 

FNO. 
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The training performance of the three models (CCN), (AFT), and (FNO) (Figure 3) is measured based 

on accuracy trends, top-3 accuracy, and the loss curves across the epochs during the training process. 

These metrics capture the convergence of learning dynamics and the capability to generalize the 

models, indicating their efficiency in cross-spectrum face recognition operations. 

The graphs in the first set for the CCN model show fast convergence and stable learning with high 

accuracy. The graph for accuracy shows a steep rise in the initial epochs, with the accuracy increasing 

to approximately 95% at the fifth epoch and nearly 100% at the seventh epoch, showing the model's 

efficiency in learning discriminative representations in the thermal and visible spaces. The validation 

accuracy tracks the training accuracy closely, showing good generalization with minimal overfitting. 

The graph for top-3 accuracy also exhibits the same trend with almost perfect results in a few epochs, 

corroborating that the model has high confidence in its decision even when the top-1 classification 

goes wrong. The graph for the loss also corroborates the above observation, with the sharp decline in 

the initial epoch and stabilization with less fluctuation. The absence of divergence in the training and 

validation loss shows that the CCN model has good regularized properties and can learn domain-

invariant representations due to its dynamic convolutional filters that adjust dynamically to the 

spectral differences in the thermal and visible images. 

Although the AFT model's convergence rate is slightly slower than the CCN's, its training performance 

follows a similar trajectory. The accuracy plot shows consistent improvement throughout the epochs, 

reaching near-perfect categorization by the sixteenth epoch and approaching 90% accuracy by the 

fifth. The tight alignment between validation and training accuracy indicates the model's ability to 

generalize unknown input. The model's resilience is further validated by the top-3 accuracy plot, 

which shows that the correct identity is usually among the top predictions. The loss curve presents a 

rapid initial decrease, followed by stable convergence, with no major discrepancies between training 

and validation loss. These trends highlight that despite discarding multi-head self-attention, the AFT 

model effectively captures long-range dependencies through its global weighting mechanism, 

resulting in highly competitive performance. However, its slightly longer convergence time than CCN 

suggests that transformers may require more optimization steps to extract robust features, even when 

computationally optimized. 

Compared to the CCN and AFT models, the FNO model has a dramatically different learning curve, 

which aligns with its limitation in cross-spectrum face recognition. The graph for accuracy rises much 

more slowly, requiring over 30 epochs to surpass the mark of 80% accuracy, unlike the fast 

convergence in the case of the CCN and AFT models. The validation accuracy oscillates more than 

other models, suggesting volatile generalization and potential susceptibility to domain shifts. The 

graph for top-3 accuracy also has the same slow trend, indicating that the model has problems ranking 

the correct identity in the top ranks, again highlighting its inability to discriminate the features. The 

FNO loss graph also supports the findings, with a sharp drop initially but a steady and irregular 

decrease throughout the remaining epochs. Unlike the case with the CCN and AFT, the FNO model 

graph for loss has fewer oscillations, indicating less stable optimization and potential problems in 

learning discriminative representations for identities. 

The comparative analysis highlights different strengths and weaknesses among the models. The CCN 

model demonstrates efficiency with quick convergence, high accuracy, and minimal overfitting, 

making it appropriate for real-world applications. While slower to converge, the AFT model achieves 

similar final accuracy and generalization, functioning effectively as a transformer-based alternative 

without the computational load of self-attention. In contrast, the FNO model exhibits lower 

performance, requiring more epochs and showing higher variability in accuracy and loss. This 

performance suggests that frequency-domain transformations may be inadequate for robust face 

recognition due to challenges preserving high-frequency identity cues, underscoring the importance of 

spatial feature extraction in the CCN and AFT models for detailed recognition tasks. 
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The training curves confirm that CCN and AFT are the most suitable architectures for cross-spectrum 

face recognition, balancing efficiency, accuracy, and generalization ability. Their ability to extract 

spatial and spectral features while maintaining stable learning dynamics ensures that they outperform 

the frequency-domain approach employed in the FNO model. The CCN, with its rapid convergence 

and robust performance, appears to be the most practical solution, whereas AFT offers a viable 

alternative with similar accuracy but a slightly longer training duration. The FNO model, while 

conceptually valuable for spectral alignment, struggles with the fine-grained identity cues necessary 

for face recognition, making it a less favorable choice unless supplemented with additional spatial 

feature extraction techniques. These findings collectively demonstrate that spatial-domain learning 

remains the most effective approach for handling the challenges of thermal-visible face recognition, 

with CCN and AFT leading the way in achieving state-of-the-art performance. 

 

 
(a) 

 
(b) 
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(c) 

Figure 4: Multi-class ROC and PR curves for the three proposed models: (a) CCN, (b) AFT, and (c) 

FNO. 

The ROC and PR curves (Figure 4) provide a detailed analysis of the classification performance of the 

three models— CCN, AFT, and FNO—by evaluating their ability to distinguish between multiple 

identity classes across thermal and visible spectra. While standard accuracy metrics and confusion 

matrices indicate general classification effectiveness, ROC and PR curves offer deeper insights into 

how each model balances true positives, false positives, precision, and recall, which is particularly 

critical in multi-class classification settings where misclassifications can impact overall system 

reliability. 

The ROC curves for both CCN and AFT models exhibit near-perfect behavior, achieving an Area 

Under the Curve (AUC) of 1.00 for both micro- and macro-averaged evaluations. This result suggests 

that these architectures can separate different identity classes almost flawlessly. The curves 

consistently align along the optimal boundary, confirming that these models exhibit minimal false 

positive rates while preserving high recall, meaning they confidently classify individuals without 

excessive misidentifications. This strong performance underscores the effectiveness of CCN's adaptive 

continuous convolutional filters and AFT's global weighting mechanism, enabling robust feature 

extraction that remains resilient to domain variations between thermal and visible images. The high 

AUC values further indicate that, across all classification thresholds, the models maintain stable 

predictive power, reinforcing their capacity to generalize effectively across different identities. 

In contrast, while still demonstrating strong performance, the ROC curve for the FNO model shows a 

macro-AUC of 0.98 and micro-AUC of 0.99, revealing subtle weaknesses in distinguishing certain 

identity classes. The slight deviations from the ideal boundary suggest that, compared to CCN and 

AFT, the FNO model experiences greater difficulty in achieving perfect class separability, which aligns 

with previous findings from the confusion matrices, where the FNO model exhibited higher 

misclassification rates, particularly for visually similar individuals. The underlying reason for this 

limitation likely stems from the model's reliance on frequency-domain transformations, which 

emphasize dominant spectral components but potentially discard high-frequency facial features 

critical for identity differentiation. Consequently, while the FNO model performs well, its 

classification confidence is lower than that of CCN and AFT, leading to marginally increased false 

positive rates and a slightly less stable classification performance. 

The PR curves highlight these performance differences by measuring each model's ability to maintain 

high precision while achieving strong recall. Both CCN and AFT models yield near-perfect PR-AUC 

values of 1.00, indicating that their classifications are accurate and reliable, meaning that when these 

models predict a given identity, they do so with minimal uncertainty. The curves remain nearly flat at 
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high precision levels, demonstrating that these models rarely misclassify an identity when making 

high-confidence predictions. This result suggests that the feature representations extracted by CCN 

and AFT are highly discriminative, allowing them to correctly classify individuals across a wide range 

of input conditions. The balance between precision and recall further confirms their effectiveness, as 

both models successfully minimize false positives while capturing the vast majority of true positives 

across different identity classes. 

By contrast, the FNO model's PR curve reveals a micro-AUC of 0.92, indicating a noticeable decline in 

precision as recall increases. Unlike CCN and AFT, which maintain high confidence in their 

predictions across all identity classes, the FNO model exhibits a drop in precision at higher recall 

levels, suggesting that as the model attempts to classify more instances correctly, it produces more 

false positives. This behavior reflects a fundamental challenge in frequency-domain approaches—

while Fourier-based representations can effectively align spectral differences between thermal and 

visible images, they may fail to capture fine-grained identity cues necessary for robust classification, 

leading to increased classification uncertainty. The observed decline in precision further supports the 

hypothesis that the FNO model struggles more with ambiguous identity cases, leading to reduced 

classification confidence compared to the more spatially driven CCN and AFT models. 

The comparative analysis of these curves reinforces key findings regarding model efficiency and 

reliability. CCN and AFT consistently outperform the FNO model across ROC and PR evaluations, 

demonstrating near-perfect separability and classification reliability. Their ability to maintain high 

precision and recall while minimizing false positives ensures they generalize well across multiple 

identity classes, making them well-suited for real-world deployment in cross-spectrum face 

recognition systems. The FNO model, while still relatively strong, exhibits signs of classification 

instability, particularly at high recall levels, suggesting that relying solely on frequency-domain 

representations is insufficient for optimal face recognition performance. This result underscores the 

necessity of spatial feature extraction in preserving identity-specific details, as seen in the superior 

performance of CCN and AFT. 

The ROC and PR analyses validate the overall effectiveness of CCN and AFT models as the dominant 

approaches for cross-spectrum face recognition, highlighting their ability to achieve near-perfect 

classification performance with strong generalization, stability, and precision. The FNO model, while 

functional, is less reliable due to its increased false positive rates and decreased classification 

confidence at higher recall levels. These findings emphasize that a combination of spatial and spectral 

feature extraction remains essential for achieving state-of-the-art performance in thermal-visible face 

recognition, reinforcing the superiority of convolutional and transformer-based architectures over 

purely frequency-domain approaches. 

Comparison with the state-of-the-art works 

The outcomes of our suggested techniques are contrasted with the most recent cutting-edge 

approaches in cross-spectrum face recognition. The comparison is predicated on resistance to 

spectrum fluctuations, computing efficiency, and classification accuracy. Compared to the most recent 

research in thermal-visible face recognition, the main conclusions of our investigation are compiled in 

Table 6. Our findings show that while FNO achieves 86% accuracy, CCN and AFT beat many previous 

methods, reaching 98%. These findings highlight the strengths and weaknesses of different 

architectures in bridging the spectral gap. 
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Table 6: A comparison with the most advanced approaches currently available 

Study Methodology Accuracy Key Strengths Limitations 

[20] 

2022 

Survey on CFR methods N/A Comprehensive 

overview 

Lacks experimental 

results 

[21] 2022 Bidirectional Conversion 

Network 

95.2% Effective cross-

spectral conversion 

Computational 

complexity 

[22] 2022 Domain and Pose Invariant 

Framework 

93.8% Robust to pose 

variations 

Requires extensive 

training data 

[23] 2024 Cross-Spectral Attention 

Network 

92.5% Unsupervised learning 

approach 

Performance depends 

on data quality 

[24]  

2024 

Deep Fusion Model for 

Hyperspectral Face 

Recognition 

97.0% Rich information 

retention 

Complexity in model 

training 

[25] 2024 Vision Transformer for 

Biometric Authentication 

96.5% High accuracy and 

reliability 

Requires large 

datasets 

This 

Work 

(CCN) 

Continuous Convolution 

Networks 

98.0% Adaptability to 

spectral distortions 

Requires memory 

optimization 

This 

Work 

(AFT) 

Attention-Free 

Transformers 

98.0% Efficient long-range 

feature extraction 

Higher computational 

cost 

This 

Work 

(FNO) 

Fourier Neural Operators 86.0% Spectral domain 

alignment 

Loss of high-

frequency identity 

cues 

 

Our CCN and AFT models achieve a 2-5% increase in accuracy compared to state-of-the-art CNN-

based and transformer-based models, demonstrating their robustness in handling spectral domain 

variations. While the AFT model attains competitive accuracy, it requires more computational 

resources than CCN. However, both models outperform DDPM-based methods in terms of inference 

time. Although FNO-based models offer theoretical advantages in frequency-based alignment, our 

results indicate that high-frequency details critical for identity recognition are often lost, leading to a 

lower accuracy of 86%. Prior GAN-based solutions struggle with identity retention when translating 

between thermal and visible domains. In contrast, our CCN and AFT models achieve robust cross-

spectrum feature extraction without requiring synthetic data generation. 

Our findings suggest that CCN and AFT architecture provide a more stable and efficient framework for 

cross-spectrum face recognition than generative and CNN-based approaches. Future research could 

explore hybrid models that combine the spatial adaptability of CCN with the efficiency of AFT while 

integrating spectral-domain enhancements from FNO to improve identity retention further.  

Conclusion 

This study compared CCN, AFT, and FNO models for cross-spectrum face recognition, with a focus on 

classification accuracy, generalization, and computational efficiency. Both CCN and AFT 

outperformed FNO, underscoring the significance of spatial feature extraction for reliable identity 
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recognition between thermal and visible spectra. The CCN model achieved the highest accuracy of 

98%, demonstrating rapid convergence and minimal overfitting, thereby indicating strong 

adaptability to spectral variations. Similarly, the AFT model attained an accuracy of 98% by 

employing global weighting mechanisms to capture long-range dependencies without relying on self-

attention. Conversely, the FNO model underperformed with an accuracy of 86%, attributed to higher 

misclassification rates and lower precision at high recall levels, indicating its inability to maintain 

fine-grained identity cues. Although CCN and AFT perform well, they have certain limitations. AFT 

demands higher computational resources, and CCN might need additional optimization in low-power 

environments. While FNO faces challenges in fine-grained identity differentiation, its frequency-based 

representations could complement spatial-domain models. As a recommendation, future research 

should develop hybrid architectures that combine spatial and spectral feature extraction to optimize 

recognition performance and reduce computational costs. Overcoming challenges like occlusions, 

extreme lighting, and domain adaptation will improve cross-spectrum recognition. CCN and AFT 

remain the most effective models, providing superior accuracy, stability, and classification confidence 

for thermal-visible face recognition. 
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