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Fabric quality is of paramount importance in the textile industry. As a result, defect detection in 

fabric is critical for quality assurance to rigorous standards. Traditional methods of fabric 

inspection can suffer from human error and be quite labor-intensive. Therefore, further 

automated systems are needed to support this process. This paper describes a novel deep 

learning, and machine vision framework using Detectron2, state-of-the-art computer vision 

package. The framework is based on the Mask R-CNN model for automatic fabric defect 

detection. The architecture uses a ResNeXt-101 backbone, Feature Pyramid Networks (FPN), 

and Region of Interest (RoI) Align to improve defect detection for multiple textures, and sizes of 

fabric. The model achieves excellent performance, with a mean average precision (mAP) 

between 93% and 97%, near 97% recall rate, and F1-scores of between 95%- 96%. This 

automated framework not only improves the fabric inspection process but also reduces human 

error. Therefore, reducing costs and providing product quality assurance. By incorporating deep 

learning into fabric defect detection, this research represents a significant advancement towards 

improving efficiencies, and quality control, across the textile industry. 

Keywords: Fabric defect detection. Deep Learning, Mask R-CNN, Detectron2, Computer 

vision, Automated inspection, Textile quality control 

 

I. INTRODUCTION 

Fabric defect detection plays a crucial role in maintaining the quality of textile products, directly impacting 

production costs, customer satisfaction, and overall business efficiency. Traditionally, fabric inspection has been a 

manual process, carried out by skilled workers who inspect fabrics for defects such as cuts, holes, thread errors, and 

metal contamination. However, manual inspection is time-consuming, labor-intensive, and prone to errors due to 

human fatigue. As the textile industry embraces automation and smart manufacturing, there is a growing demand 

for systems that can accurately and efficiently detect fabric defects. Defect detection has been remarkably successful 

in recent years because of deep learning techniques, especially convolutional neural networks (CNNs). These 

methods have made it possible to develop systems that can recognize and categorize flaws on their own without 

requiring a lot of feature engineering. In applications like object recognition and segmentation, Mask R-CNN, a 

cutting-edge deep learning framework for instance segmentation, has demonstrated great promise. Its potential for 

detecting fabric defects has been shown in recent studies, providing advantages over manual inspection and simple 

image processing methods [1], [2], and [3]. 

The Detectron2 framework, a high-performance library created by Facebook AI Research based on Mask R-CNN, is 

the foundation for the fabric defect detection method we present in this study. Accurate fabric fault segmentation 

and classification are possible by utilizing Detectron2. In order to improve multi-scale feature identification and 

refinement, our system uses Region of Interest (RoI) pooling, Feature Pyramid Networks (FPN), and a ResNet50 

backbone for robust feature extraction [4], [5], [6], [7]. Through experiments on both public and bespoke datasets, 

we assess the system's performance and demonstrate that the suggested method performs better than conventional 

approaches in terms of accuracy, resilience, and scalability. 
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The paper is structured as follows. The paper is structured as follows. The related work in fabric flaw identification is 

reviewed in Section 2. The proposed methodology, data collection, labelling, preprocessing and augmentation is 

explained in Section 3. Model Architecture and training setup is given in Section 4. The experimental details and 

results are presented in Section 5.  Section 6 includes performance comparison and wraps up the study and makes 

recommendations for future research directions. 

II. RELATED WORK 

In order to guarantee the consistency and quality of textiles during the manufacturing process, fabric defect detection 

is essential. The majority of traditional defect detection methods relied on labor-intensive, human error-prone 

manual inspection or simple image processing techniques. However, more automated and effective defect detection 

systems are now possible thanks to developments in machine learning, especially deep learning. 

2.1 Traditional Methods and Early Machine Learning Approaches 

Early methods for fabric defect detection were based on traditional image processing techniques. These methods 

employed edge detection algorithms like Sobel and Canny edge detectors, Gabor filtering, and texture analysis to 

detect fabric defects such as holes, stains, and surface irregularities. However, these techniques often struggled to 

detect subtle defects or handle the complex textures of fabrics [8][9].  

Detecting defects in yarn-dyed fabrics can be quite a challenge because of their intricate layers and patterns [10]. One 

effective strategy involves blending texture analysis with pattern matching to spot issues like oil stains, holes, or 

misplaced threads, and this approach has shown impressive accuracy. Another GLCM-based technique looks at how 

pixel patterns shift across the fabric when viewed from different angles and window sizes [11]. While these methods 

can be successful, they do have their limitations—they can be sensitive to noise, demand a lot of computational power, 

and struggle with high-resolution images. Plus, they sometimes overlook details, especially when the fabric's texture 

is particularly complex or large-scale. 

Enhancing methods for detecting fabric defects has been the focus of recent study. In order to extract characteristics 

from fabric and aid distinguish flaws and lower false alarms, a unique method combining morphological filters (MF) 

with a pretrained Gabor Wavelet Network (GWN) was presented [12]. 78 photos were used to evaluate this approach, 

and a low-cost inspection device was used for real-time analysis. To identify flaws in fine gray plain weave fabric, a 

hybrid method that combines morphological and correlational methodologies was developed, which successfully 

lowers false alarm rates [13]. Even though both approaches demonstrated increased detection accuracy, there are 

still issues to be resolved, like choosing the right defect model and controlling the selection of repeating elements. 

Although these developments show progress in detecting fabric defects, they also point to areas that still require 

improvement. 

The proposed approach takes inspiration from biological vision and uses low-rank representation (LRR) to break 

down fabric images into two parts: clear background areas and noticeable defect regions [14]. It treats the normal 

fabric as a low-rank structure and the defects as sparse anomalies [15][16]. Essentially, the image is seen as a 

combination of these two parts. Instead of using the traditional SVD for dimensionality reduction, it applies 

eigenvalue decomposition on smaller blocks of the image, which makes it simpler to implement and effective when 

the image has good contrast. That said, there are a few drawbacks. The method doesn’t perform well on low-contrast 

images. It also assumes that all defects are sparse and all backgrounds are low-rank, which might not work for every 

type of fabric. Breaking the image into blocks can introduce some artifacts, and the processing can still be a bit heavy 

for large images. 

Machine learning techniques, such as Support Vector Machines (SVM), k-Nearest Neighbors (k-NN), and Decision 

Trees, were introduced to improve the detection accuracy by learning from image features. While these methods 

showed improvement over traditional techniques, they were still dependent on manually extracted features (e.g., 

texture, color, shape), making them computationally expensive and requiring domain expertise [17][18]. Despite their 

effectiveness in some cases, these models were limited by their reliance on handcrafted features and struggled to 

scale efficiently for larger datasets or complex defect types. 

2.2 Deep Learning Approaches to Fabric Defect Detection 
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Since the inception of Convolutional Neural Networks (CNNs), fabric defect detection, in fact, has undergone a 

paradigm shift. CNNs can automatically learn hierarchical features from raw image data while eliminating the need 

for manual feature extraction. This aspect has greatly enhanced and brought about extraordinary detection of 

different fabric defects such as cuts, holes, and thread errors [19][20]. Deep learning has really transformed the way 

we detect fabric defects, allowing for automated and precise inspections. Convolutional Neural Networks (CNNs) 

have taken over from traditional methods by learning patterns straight from raw images, which has significantly 

improved our ability to spot issues like holes and thread errors [21]. Deep learning, particularly with CNN-based 

models, has really revolutionized how we detect fabric defects in the textile industry, making the process much more 

automated and precise. Take models like YOLO-SCD, for instance; they cleverly combine attention mechanisms with 

depth-wise separable convolutions, which has significantly boosted both feature extraction and detection speed. In 

fact, YOLO-SCD has outshone YOLOv4 when it comes to accuracy and speed [22]. That said, there are still hurdles 

to overcome. For starters, finding large, labeled datasets can be quite a challenge and often comes with a hefty price 

tag. Plus, these models can struggle to maintain consistent performance across various fabric types or under changing 

conditions. The need for substantial computational power also complicates real-time applications, and the "black 

box" aspect of deep learning models can lead to concerns about trust and transparency. Sometimes, they might 

overlook subtle or overlapping defects, and to keep them effective, regular updates are necessary. Nevertheless, the 

potential of deep learning to transform fabric defect detection is truly exciting [23]. 

Recently, deep learning has really taken off as a go-to solution for detecting fabric defects, and the results have been 

quite impressive [23, 24]. It's playing a significant role in enhancing both product quality and production efficiency 

within the textile industry [25]. However, while deep learning shines in areas like image segmentation and 

classification, applying it on actual production lines still presents some challenges [26]. One major hurdle is that 

textile factories require algorithms that can operate in real time, which means they need to be incredibly fast and 

efficient. Additionally, gathering enough images of real defects is much trickier than collecting defect-free samples, 

making it difficult to train deep learning models effectively [27] [28]. 

Deep learning object detectors fall into two types: one-stage and two-stage models [29]. One-stage detectors are faster 

but tend to be less accurate, while two-stage detectors are more precise but slower. In fabric defect detection, the 

same trade-off applies. So, choosing the right model really comes down to finding the best balance between speed 

and accuracy for the task at hand. One-stage detection algorithms treat every location in an image as a potential 

object, which speeds up the process but can sometimes lead to missing finer defects. The SSD model, a CNN-based 

approach, works well for fabric defect detection [30], but its focus on speed means it may overlook subtle flaws. 

Ouyang et al. [31] introduced a CNN method for on-loom fabric inspection that addresses data imbalance with a 

dynamic activation layer, but it can still struggle with detecting more complex defects. DCNNs, like those from Liu et 

al. [32] and Zhou et al. [33], improve texture recognition and feature extraction, though they can be resource-

intensive. Lastly, models like D4Net [34] and PRAN-Net [35] optimize feature extraction for large-pattern fabrics, 

but their complexity can make them less suitable for real-time applications. 

As with other two-stage detection algorithms like Faster R-CNN, the region proposals are first generated and then 

passed to a deep CNN for further predictions. Some modified versions of Faster R-CNN have been implemented for 

fabric defect detection, integrating both local and global defect recognition [36]. For fabric defects, GANs are quite 

effective because they can create realistic defect samples and adjust to various fabric textures; however, they have 

difficulty with the detection of rare defects [37]. To address this, WGANs with transfer learning have been used, 

increasing their efficacy on unbalanced datasets [38]. A model with visual long-short-term memory (VLSTM) has 

also been proposed, performing well in public dataset experiments [39]. Attention mechanisms have been utilized 

for the detection of more complex or blurry defects, enabling focus on the most relevant features [40]. While effective, 

these techniques are computationally expensive, limiting real-time applications. Some other techniques combine 

deep learning with non-deep approaches, such as adding a CNN with handcrafted features aimed at removing noise, 

which may help but increases the complexity and computational strength needed [41]. 

A thorough review of prior research highlights those traditional techniques for fabric defect detection such as edge 

detection, texture analysis, and early machine learning models often fall short when applied to real-world textiles due 

to their sensitivity to noise, reliance on manual feature design, and difficulty scaling to high-resolution or complex 



Journal of Information Systems Engineering and Management 
2025, 10(46s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 356 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

images [8][9][10][11]. While hybrid methods that combine filtering and statistical approaches have shown some 

improvements in accuracy, they remain computationally demanding and often struggle with low-contrast or subtle 

defects [13]. More recently, modern approaches have shifted toward data-driven methods that learn patterns directly 

from images, offering higher accuracy and automation potential [17][18]. However, even these advanced techniques 

face practical challenges, such as the need for large, labeled datasets, high computational resources, and inconsistent 

performance across different fabric types or lighting conditions [27][28]. To overcome these limitations, this study 

employs the Detectron2 framework, incorporating a ResNet-50 backbone, Feature Pyramid Network (FPN), ROI, 

and Mask R-CNN [42] [43] [44] [45]. ResNet-50 enables effective pattern extraction from complex textile surfaces 

while maintaining computational efficiency [46]. FPN improves the system’s ability to detect both small and large 

defects by combining image features at multiple scales [47]. ROI Mask R-CNN adds the capability for pixel-level 

segmentation, allowing for precise identification and outlining of defect regions [48]. Together, these components 

form a practical and scalable system, and with Detectron2’s modular design and support for real-time processing, the 

framework is well-suited for industrial fabric inspection applications [49]. 

III. PROPOSED METHODOLOGY 

3.1 Data Collection 

Data extraction is a fundamental step in the process of fabric defect detection, as it involves collecting suitable and 

relevant image data for accurate analysis. For this study, all fabric images were sourced from the MVTech fabric 

defect dataset and through self collection [50][51]. This particular dataset was selected due to its wide coverage of 

fabric types, defect categories, and image qualities, making it well-suited for developing a reliable and generalizable 

detection system. Prior to analysis, the dataset was carefully prepared through standard pre-processing techniques, 

including image resizing, data augmentation, and normalization. It contains high-resolution images that display both 

defect-free and defective regions across various fabric textures.  

 

Figure 1: Proposed System for fabric defect detection using hybrid Detectron 2 architecture 

To ensure the dataset aligned with the study’s objectives, defect areas were manually annotated using pixel-level 

labeling tools. This manual process enabled precise identification of typical defects encountered in textile 

manufacturing, such as cuts, holes, thread inconsistencies, and contamination by foreign materials like metal. The 
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detailed nature of these annotations significantly enhanced the accuracy and relevance of the dataset, making it 

suitable for both classification and segmentation tasks. As a result, the dataset served as a dependable benchmark 

for evaluating detection methods. This refined dataset ultimately contributed to the development of a more 

consistent and efficient approach to quality control in textile production. 

3.2 Data Labelling 

In the proposed methodology for fabric defect detection, Figure 1 presents the entire process flow, outlining all key 

steps from data collection to defect detection and classification.  

Data labelling is one of the key steps in creating a machine learning-based pipeline where datasets with mindful 

annotations are used to teach models to learn and predict. This involves labelling each data point meaningfully so 

that the model has access to ground truth information from which patterns, relationships and decision boundaries 

can be found. High-quality labels are important, as they directly impact the model performance and reliability. 

Labelling assigns classes to data points (for example, using labels 'defective' and 'non-defective' for fabric defect 

detection) and may also include finer-grained attributes related to ground-truth defects (for example, types, 

locations, or severity levels of defects). Because of the significant role each label plays in model training, validation 

and testing, labelling is one of the most time-consuming and resource-intensive portions of ML model development 

as it often requires expertise, attention to detail, and domain knowledge. The dataset didn’t have a COCO format 

annotation file suitable for Detecron2 architecture. Manual labelling is done to make images in Roboflow (e.g., JPG, 

PNG) compatible format, and an annotation file is created using Roboflow [50] [52] [53]. The dataset is organized 

into appropriate folders for each class (e.g., Cut, Hole, Thread Error, Metal Contamination) to keep the labelling 

process straightforward. Images are labelled manually by selecting the Labelling Interface within Roboflow.  For each 

image, bounding boxes are drawn around the defect areas, and the appropriate class label (e.g., Cut, Hole, Thread 

Error, Metal Contamination) is assigned to the correct category. The resulting COCO JSON file is organized with the 

images, annotations, and categories sections following the correct structure. 

3.3 Data Pre-processing and augmentation 

Data pre-processing is the most essential stage in preparing the collected dataset for efficient fabric defect detection. 

It removes uncertainties such as noise, missing values, null values, and irrelevant data that impact the precision of 

classification. For the optimization of the dataset for training a model, we meticulously conduct the pre-processing 

phase. The image sizes in the dataset were resized to 640 x 640. Images are converted to grayscale by gray conversion, 

which simplifies processing and reduces computational complexity. Then resizing and rescaling techniques 

standardize the dimension and intensity values throughout the dataset. Gaussian filtering is used to remove 

unwanted noise that otherwise may hide defects. A Gaussian filter is a type of low-pass filter that helps reduce noise 

(high-frequency components) in an image, especially in areas that appear blurry. It smooths out edges and eliminates 

bright pixels. The filter operates by applying a symmetric kernel of odd size to each pixel within the Region of Interest 

(ROI), achieving the intended effect. The values in the kernel are determined using a 3×3 Gaussian 2D Filter with 

Standard Deviation = 1 [54] [55].    

Finally, normalization techniques, such as min-max scaling or standardization, ensure uniform pixel values between 

0 and 1 to ease the convergence of the model and eliminate feature dominance. These pre-processing techniques 

transform the raw dataset into a refined, consistent, and high-quality input for our deep learning model to increase 

the accuracy and dependability of defects in detection as shown in Figure 2 
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             Figure 2: Visualization of preprocessed fabric images with annotations 

As a means of improving the diversity and the number of images in the dataset, different techniques of data 

augmentation were used. These include augmentation in image flipping (horizontal flip, vertical flip, rotation ±15°, 

shear in horizontal and vertical direction angle of 0-20 degrees), hue shifts and brightness adjustment, and even 

image degradation (1-pixel blur). These augmentations introduced randomness in already existing images in a 

systematic way and thus led to an increase in the size of the datasets while increasing the generalizability of the model. 

The resulting dataset consists of 2749 images for training and 246 images for validation, thus it allows our model to 

better generalize out of sample unseen data and withstand variability of factors, as well as overall accuracy in fabric 

defect detection. Introducing augmented images helped mitigate the overfitting phenomenon and enhance the 

model's defect detection capability in several conditions, which improved the accuracy as well as the reliability of the 

defect detection system. 

IV.  MODEL ARCHITECTURE AND TRAINING SETUP 

The fabric defect detection model is based on Detectron2, a state-of-the-art object detection and segmentation library 

developed by Facebook AI Research (FAIR). Detectron2 offers high performance, speed, and simplicity, making it 

ideal for fabric defect detection tasks, including instance segmentation and key point detection. The framework is 

built on the PyTorch platform and utilizes CUDA for fast computation, supporting large-scale computer vision 

applications. The schematic architecture of Detectron2 is shown in Figure 3 [7][42]. The model leverages a hybrid 

architecture that consists of multiple stages for fabric defect detection, as outlined below in Figure 3 

ResNeXt-101 Backbone: The analysis of fabric images begins with the use of ResNeXt-101, a deep convolutional 

neural network that excels at extracting visual features across different levels of detail. It starts by identifying basic 

elements such as edges and textures, then gradually picks up more complex and abstract patterns. Unlike traditional 

architectures, ResNeXt-101 introduces a grouped convolution strategy, which allows it to process information 

through multiple parallel paths. This design boosts its capacity to recognize intricate features while maintaining 

computational efficiency. As a result, it’s particularly effective for tasks that require a nuanced understanding of 

visual content, such as identifying detailed characteristics in fabric textures [43] [46] [58]. 

Feature Pyramid Network (FPN): The features extracted by ResNet-50 are passed to a Feature Pyramid 

Network, which generates multi-resolution feature maps to detect fabric defects of varying sizes. The FPN defines 

pyramid levels as P2, P3, P4, P5, and P6, with each level focused on detecting defects of different sizes. P2 focuses on 

small defects (e.g., pinholes), P3 and P4 focus on medium-sized defects, and P5 and P6 focus on large defects (e.g., 

tears or stains) [44] [47] [58]. 
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Region Proposal Network (RPN): The feature maps from the backbone network are analyzed by the RPN, which 

generates candidate bounding boxes or region proposals. These boxes represent regions likely containing fabric 

defects and are assigned objectness scores to estimate the probability of defect presence [56]. 

 

Figure 3: Schematic architecture of Detectron2 (redrawn figure based on https://github.com/ 

facebookresearch/detectron2 

Mask RCNN and RoI Pooling: Mask R-CNN is an advanced method for detecting objects in images, such as fabric 

defects, by not only identifying them but also generating precise masks around them. When used for fabric defect 

detection, it can highlight issues like tears or holes. ROI pooling is crucial in this process, allowing the model to focus 

on various regions of the fabric and extract important features, regardless of size. This makes sure even minor defects 

are caught accurately. Together, Mask R-CNN and ROI pooling work seamlessly to identify fabric defects with great 

precision. The Region of Interest (RoI) Pooling step converts the proposed regions from the RPN into fixed-size 

feature maps, enabling uniform classification regardless of the regions' original sizes or aspect ratios [45]. Non-

Maximum Suppression (NMS): NMS is applied to remove overlapping bounding boxes representing the same defect, 

retaining only the most confident predictions [57]. 

4.1 Training Setup 

Experiment was implemented on Google Collab which uses TESLA T4 GPU (16GB VRAM). The model was fine-tuned 

using the pre-trained Faster R-CNN architecture, specifically the faster_rcnn_X_101_32x8d_FPN_3x variant that 

was originally trained on the COCO dataset. It uses a ResNet backbone with Bottleneck Blocks for better efficiency, 

and the Feature Pyramid Network helps capture features at different scales. To keep training stable, 

FrozenBatchNorm2d layers were used, and the Region Proposal Network relied on 3x3 convolutions to generate 

object proposals. The final layer was set up to detect five classes—four types of defects and one background class—

with bounding box regression. Training ran for 1000 iterations with a batch size of 2 and a base learning rate of 

0.00025. Learning rate decay was turned off, and the ROI batch size was set to 256. A custom Training Sampler and 

dataset serialization helped speed up data loading. When loading the pre-trained model, some typical warnings 

appeared due to differences between the COCO-trained weights and the custom dataset setup, especially in the ROI 

heads, which required some manual tweaking. The learning rate increased linearly from 5×10⁻⁶ to around 2.5×10⁻⁴. 

The full training took about 19 minutes and used up to 3896 MB of GPU memory. Over time, the model improved 

steadily—total loss dropped from 1.88 to 0.22, classification loss came down significantly, and bounding box 

regression loss reduced gradually. By the end, RPN losses were almost gone, showing strong performance in 

proposing regions. 

V.  EXPERIMENTAL DETAILS AND RESULTS 

 

5.1 Training and Validation Results 

The custom dataset focused on four fabric defect classes: cut, thread error, metal contamination, and hole. Data was 

split into "train" and "valid" sets, and training outputs were saved in the "1000ep_train" directory. In total, there 

https://github.com/
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were 2,748 images used across training and validation, with annotations covering 618 holes, 724 metal contaminants, 

697 thread errors, and 733 cuts. Images were formatted in COCO style and preprocessed using a ResizeShortestEdge 

method, which adjusted the shortest side of each image to 800 pixels, keeping the largest side under 1333 pixels. 

Random flipping and other augmentations were applied to help the model generalize better. Although the training 

logs showed clear improvements, no official metrics like mean Average Precision (mAP) were calculated due to the 

lack of an evaluator during inference. Still, mAP was the intended way to measure how well the model detected 

defects. Going forward, using tools like Detectron2’s COCOEvaluator would help provide a more complete evaluation. 

5.2 Performance Evaluation Metrics for Fabric Defect Detection 

To assess the performance of the fabric defect detection techniques on the labeled dataset, several key metrics were 

used: accuracy, recall, precision, and mean Average Precision (mAP). These metrics are essential for understanding 

how well the framework detects fabric defects and how accurately it predicts defect locations in relation to the ground 

truth annotations. 

Precision :- Precision tells us how often the defect predictions are correct. In simple terms, it measures the 

percentage of true fabric defects (correctly detected defects) among all the defects identified. It’s calculated as: 

                                 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                                            (1) 

Where, True Positives (TP) are the fabric defects (Hole, Cut, Thread Error, Metal Contamination) that were correctly 

identified and False Positives (FP) are instances where a defect was incorrectly identified. The higher the precision, 

the better the framework is at avoiding false alarms and correctly identifying Recall 

Recall:- It measures how well the framework detects every relevant fabric defect in the dataset. It answers the 

question: “Out of all the actual defects, how many were successfully detected?” It’s calculated as: 

                                 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                                     (2) 

Where False Negatives (FN) are defects that were missed (i.e., defects present but not detected). A higher recall value 

means that the framework is better at identifying all fabric defects and minimizing Mean Average Precision (mAP).  

Mean Average Precision (mAP):- It evaluates the overall performance of detecting fabric defects across all 

categories. It calculates the average precision (AP) for each defect type and then computes the mean of these values. 

The AP for each defect type is based on the area under the precision-recall curve, which shows how precision and 

recall trade off at different detection thresholds. A higher mAP indicates better performance, meaning the framework 

consistently detects defects across all categories. 

                              𝑚𝐴𝑃 = (
1

𝑁
) × ∑ 𝐴𝑃𝑖

𝑁
𝑖=1                                                                       (3) 

          Where, N- total number of object class 

Accuracy:- Lastly, accuracy provides an overall measure of the framework's performance by comparing the number 

of correctly identified fabric defects to the total number of instances. It’s calculated as: 

                               𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠(𝑇𝑃+𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠
                                                        (4) 

Where: True Positives (TP) are the fabric defects (Hole, Cut, Thread Error, Metal Contamination) correctly detected, 

True Negatives (TN) are the non-defective fabrics correctly identified as such, False Positives (FP) are non-defective 

fabrics incorrectly labeled as defective, False Negatives (FN) are defective fabrics mistakenly classified as non-

defective.This metric gives a broad view of the framework’s ability to correctly identify both defective and non-

defective fabrics. 

VI. RESULTS AND ANALYSIS 

 

6.1 Performance Metrics by Class 
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Table 1 highlights how well the proposed framework performs in detecting different types of fabric defects. The 

system shows strong accuracy and consistency across all defect categories, including Hole, Cut, Thread Error, and 

Metal Contamination. Its mean Average Precision (mAP@50) scores range from 93% to 97%, reflecting high 

reliability in identifying these issues. For instance, it achieves an impressive 97% mAP for Cut, followed by 96% for 

Thread Error and 95% for Metal Contamination. The Recall values also remain high—97% for Hole, Thread Error, 

and Metal Contamination, and 93% for Cut. The F1-scores, which indicate how well the system balances precision 

and recall, fall between 95% and 96%, reinforcing overall robustness. These results clearly show that the framework 

can accurately detect and classify different types of fabric defects, making it reliable for practical, real-world 

applications. Even though the Cut defect has a slightly lower recall, it still performs strongly overall, with high mAP 

and F1-score values that confirm its dependability. 

                               Table 1. Detection performance across fabric defect types using key evaluation metrics. 

                         

Figure 4 shows how accuracy improves during training. It tracks two key metrics class_accuracy (in blue) and 

foreground_class_accuracy (in orange) across 3000 training steps. Both metrics start off low but quickly improve 

and eventually settle close to 1.0, indicating that the system becomes highly accurate as training progresses. Class 

accuracy stabilizes first, while foreground class accuracy takes a bit more time, suggesting the system needed longer 

to consistently identify the more detailed features. Still, by the end of training, both metrics demonstrate strong, 

reliable performance. 

                        

                             Figure 4: Training accuracy trends showing improvement in classification over time. 

 

6.2 Training Dynamics and Loss Visualization 

The system is trained to detect and classify common fabric defects, including Hole, Cut, Thread Error, and Metal 

Contamination. To achieve accurate detection and localization, a combined loss function is used, defined as [7] 

                                 L_total=L_rpn-cls + L_rpn-box + L_cls + L_box                          (5)                                                        

In equation 5, each component of this loss contributes to a specific part of the detection process: 

• L_rpn-cls: Classification loss from the region proposal stage, responsible for distinguishing between defect 

regions and non-defect background areas. Binary cross-entropy loss is applied here. 

• L_rpn-box: Regression loss from the region proposal stage, used to fine-tune the bounding box coordinates 

around candidate defect areas. This term uses Smooth L1 loss. 
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• L_cls: Classification loss from the final prediction stage, ensuring that identified defects are correctly 

categorized into one of the defined classes (Hole, Cut, Thread Error, or Metal Contamination). Categorical 

cross-entropy loss is used. 

• L_box: Final bounding box regression loss to enhance the precision of defect localization. This also uses the 

Smooth L1 loss function. 

The Smooth L1 loss is calculated as: 

                                                                              (6) 

This combined loss ensures accurate identification, classification, and localization of fabric defects, improving the 

reliability and efficiency of textile quality inspection systems. 

The training process recorded the following metrics at regular intervals. 

                       Table 2 - Training Loss Components and Learning Rate Across Iterations 

                        

The Table 2 shows the evaluation results of the Faster R-CNN model on training data using the Detectron2 

framework. The key performance metrics were tracked across 1000 iterations to monitor progress. Table 2 displays 

these results, showing how the model’s total loss, classification loss, bounding box regression loss, and Region 

Proposal Network (RPN) losses evolved as training progressed. The learning rate started at 5e-6 and gradually 

increased to 0.00024975 by the end of the training, allowing the model to fine-tune its predictions and gradually 

improve. From the data in the table, we can see that the total loss dropped significantly from 1.882 at iteration 0 to 

0.2163 at iteration 999, indicating steady learning and optimization. The classification loss saw the most notable 

improvement, reducing from 1.595 at the start to 0.06058 by the end, which highlights the growing ability to identify 

objects correctly. Additionally, the losses associated with bounding box regression and the RPN also decreased, with 

the RPN classification loss nearing zero—suggesting a strong and consistent convergence of the model. The entire 

training process was completed in under 19 minutes, which means the training was not only effective but also 

efficient, processing each iteration in just over 1 second on average. To further support accuracy, a resizing 

augmentation technique (ResizeShortestEdge) was applied, ensuring that the images remained consistent in scale 

without distortion, which improved the overall performance.                                                                

The Figure 5 illustrates the model’s progress throughout the training process. There is a clear downward trend in the 

total loss, indicating consistent improvement. The most significant drop is seen in the classification loss, showing 

that the model became more accurate at recognizing objects. Losses related to object location and region detection 

also decreased steadily, reflecting a growing precision in identifying and localizing targets. Overall, the training 

followed a stable and efficient course, without any irregular spikes or setbacks. 
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Figure 5: Training Loss Dynamics over Iterations 

6.3 Fabric Defect Detection Outputs 

The fabric images in Figure 6 - (a), (b), (c) and (d) shows different types of fabric defects detected and highlighted by 

the proposed model. The defect in each fabric image is highlighted by the surrounding box. The image (a) shows a 

thread error, which shows irregularity in the thread, caused by the slight misalignment in the weave. The image (b) 

shows a Hole error, which is caused due to weak yarns, friction, machine problem or during weaving or handling 

process. he model has identified cut or tear in the fabric caused by machine fault or accidental damage during weaving 

process as shown in Figure ( c). It detects the presence of metal particles in the fabric image as shown in Figure (d) , 

such as broken needles, staples, or machine fragments that may have accidentally become embedded during the 

manufacturing process. 

 

Figure 6: (a), (b), (c), (d) - Visualization of predicted defects 

6.4 Effectiveness in Fabric Defect Detection 

Table 3 Performance Comparison of Fabric Defect Detection Models 
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The fabric defect detection results show a clear trend of improvement throughout the training process. Total loss and 

classification loss consistently decreased, indicating steady progress in learning. An initial increase in classification 

loss was observed, suggesting opportunities for refining the early stages of training. Loss values eventually stabilized, 

with total loss converging around 0.3, reflecting effective handling of both classification and localization tasks. 

Classification accuracy also improved over time. Both cls_accuracy and fg_cls_accuracy approached values near 

1.0. The faster increase in fg_cls_accuracy, despite slight oscillations, along with the gradual improvement in 

cls_accuracy, points to progressive refinement in classification performance. Further support comes from additional 

evaluation metrics. Mean Average Precision (mAP) ranged from 93% to 97%, with the highest score observed for the 

"Cut" defect category. Recall reached up to 97%, indicating a low rate of missed defects, and F1-scores remained 

between 95% and 96%, showing a strong balance between precision and recall. As shown in Table 3, this approach 

achieved the highest overall performance, with an mAP of 96.45% and Recall of 97.75%. In comparison, other 

techniques using the same backbone—such as Faster R-CNN with FPN, Soft-NMS, and ROI Align—reached only 

82.6% mAP and 85.0% Recall. Additional methods, including DCFE-YOLO, YOLOv8n, YOLOv5n, Fab-ME, and 

MobileNetSSD-FPNLite, displayed lower results in mAP, Recall, or both. These outcomes demonstrate a clear 

advantage in accuracy and consistency across various defect types as shown in Table 3 [58] [59] [60] [61]. 

VII. CONCLUSION AND FUTURE SCOPE 

This study presents a practical and reliable framework for automated fabric defect detection using a high-

performance image analysis system built on the Detectron2 platform. The approach integrates a ResNet-101 

backbone with a Region Proposal Network (RPN) and Mask R-CNN to accurately identify, classify, and localize 

various types of defects found in textile materials. The training process demonstrated consistent progress, with the 

total loss decreasing from 1.882 at the beginning to 0.2163 at the final iteration. Classification loss saw the most 

substantial improvement, reflecting enhanced recognition capabilities over time. The full training run was completed 

in under 19 minutes, highlighting the system’s overall efficiency and practicality for industrial use. 

Evaluation results across multiple defect categories—including Hole, Cut, Thread Error, and Metal Contamination—

showed high levels of accuracy and consistency. Mean Average Precision (mAP@50) scores ranged from 93% to 97%, 

recall values reached up to 97%, and F1-scores remained between 95% and 96%. Even for the Cut category, which 

showed slightly lower recall, the system still maintained strong overall performance. 

Accuracy trends observed during the training process confirmed the framework's ability to consistently improve over 

time. Both class-level and foreground-level accuracy steadily increased, ultimately stabilizing near maximum values, 

indicating precise and reliable performance in identifying detailed features and defect boundaries. 

Overall, the results confirm the system’s suitability for real-world fabric inspection tasks, where both speed and 

accuracy are critical. Future efforts will focus on improving early-stage training behavior, extending support to a 

wider variety of fabric types and defect categories, and optimizing the solution for real-time operation within 

production environments. 
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