
Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 388 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Role of Domain-Driven Design in Successful

Microservices Migration Strategies

Ashwin Chavan
Software Architect, Pitney Bowes, Austin, Texas, USA

Email: ashwin.chavan@gmail.com

ARTICLE INFO ABSTRACT

Received: 05 Mar 2025

Revised: 20 Apr 2025

Accepted: 02 May 2025

Organizations are increasingly turning their attention towards migrating from monolithic

architectures to microservices, which is meant to improve scalability, flexibility, and

maintainability. An application is broken down into smaller, independent services written using

a specific language that aligns with the capability of the business. Domain Driving Design (DDD)

is very important in this transition as they structures microservices based on business domains,

enabling us to establish independent services seamlessly aligned with business goals. This paper

discusses the challenges and benefits of migrating to microservices from legacy systems,

emphasizing how the work of Domain Driving Design can simplify the migration. Decomposing

the monolithic system, ensuring that consistency in data across services is maintained, and

performing efficient service communication are key challenges. These challenges are addressed

by the Bounded Contexts, which are defined by the principles of Bounded Contexts and

Ubiquitous language, which encourages better collaboration between business and development

teams. Additionally, event-driven architectures and patterns such as event sourcing and CQRS

are explored to ensure consistency in data and communication between microservices. Finally,

the paper discusses trendy microservices and Domain Driving Design. It shows that

microservices and Domain Driving Design are becoming essential in cloud-native environments,

and the more components they play in creating scalable, resilient, and business-aligned software

architecture.

Keywords: Microservices Migration, Domain-Driven Design, Bounded Contexts, Event-

Driven Architecture, Data Consistency

1. INTRODUCTION TO MICROSERVICES MIGRATION

Microservices architecture is a software architecture in which an application is segmented into a series of small-level

services, also known as microservices. While the components of an application communicate with each other through

lightweight APIs in these services, other traditional monolithic architectures completely couple all parts of an

application as one entity. Microservices are dependent systems that are more modular, scalable, and easy to maintain.

Microservices typically craft services around a single business capability to scale, update, and deploy services

independently. This is a major advantage compared to a monolithic system, where scaling often means deploying the

whole application, which can be inefficient and costly. By using microservices, businesses can scale up only those

needed by the demand to assist in maximum resource allocation and system performance.

Such applications are usually first adopted by organizations in a monolithic form, and then they face challenges as

these applications grow. Scalability is one of the most pressing issues in the scalability of monolithic architecture. If

only one part of the app, the order processing system, requires scaling, then the entire application must be scaled.

The lack of this flexibility can cost the business resources and time. Lastly, maintaining the monolithic application

becomes more difficult as the application grows. A small change may involve developers having to understand and

test the whole system, making it harder to release updates quickly.

In monolithic systems, minor updates demand long deployment, and changes in these systems require the release of

new features and patches very slowly. These issues coerce companies into seeking solutions such as microservices

that help break down a monolithic application into microservices that can be small and manageable. This enables

these parts to be deployed independently, providing flexibility, scalability, and overall maintainability. Now that the

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 389 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

benefits of microservices in the monolithic system have been realized, it is necessary to move away from it and

migrate to microservices, but there are challenges to this. One of the first hurdles is to know how to break the

monolithic application into smaller services. For every microservice, there is a right amount of granularity, a granular

level to be precise: if they are too ill-structured, that is a lot of extra management effort; if they are too flat, then there

is no inherent benefit from microservices. In monolithic systems, databases are shared across the entire application.

In migration to microservices, it often becomes necessary for each microservice to have its database, which

complicates data management and consistency. To solve these challenges approaches such as event sourcing and

eventual consistency are often implemented, although teams accustomed to monolithic systems need to change their

mindset. Moreover, microservices, communicating with each other constantly across networks, introduce concerns

such as latency, message consistency, and failure handling. Although common solutions like Apache Kafka,

RabbitMQ, or RESTful APIs are popular mechanisms to drive communication between services, they add complexity

to managing the communication between networked services. Much of that has to do with the cultural and

organizational change that comes from leaving the exception rather than the rule. In a monolithic architecture, the

whole application is architected and developed by cross-functional teams, which are usually large groups. For

individual services in a microservices environment, teams must be restructured and retrained, and their ability to

work together does indeed shift.

Domain-driven design (DDD), however, provides a general way of solving these challenges by tying up the system's

design with what is being targeted by the business domain. Microservices migration requires the execution of Domain

Driving Design, in which teams can identify Bounded Contexts that match the business capabilities and

simultaneously represent the boundaries to the location in which a particular model must apply. Adherence to models

influenced by traditional business processes helps teams create business-oriented software that solves business

problems in a derived but flexible form. Domain Driving Design helps break down the monolithic system into

bounded contexts by focusing on. Each microservice (Bounded Context) is related to business logic, databases, and

APIs. This ensures that the microservices don't rely on each other and should evolve independently without breaking

the other integrated services. In addition, Domain Driving Design encourages the creation of a Ubiquitous Language

to facilitate both technical and business stakeholders to have the same understanding of the domain, which is good

for collaboration.

Migrating from a monolithic architecture to a microservices architecture can provide scalability, flexibility, and

maintainability. Therefore, Domain-Driven Design provides a good structural pattern to apply microservices based

on business needs, facilitates the transition, and leads to long-term flexibility. With an application of Domain Driving

Design principles, the microservices architecture of an organization is assured to be congruent with business goals.

Thus, migration will be much smoother and more effective and support future growth and adaptability.

2. UNDERSTANDING DOMAIN-DRIVEN DESIGN (DDD)

2.1 Principles of Domain-Driven Design

Domain Driving Design philosophy is to align the software model with the business domain, and it is a methodology

adopted while developing complex software systems. Some design rules of Domain Driving Design are that the

software's design should be based on the business that the software serves and its needs and operations. This

approach allows business experts and software developers to collaborate and eventually deliver an application

opposite to business logic and domain processes. Ubiquitous Language is one of the foundational principles of

Domain Driving Design. It brings a common vocabulary between the different developers, business stakeholders, and

other teams involved in the project. Ubiquitous Language ensures that everyone has a shared understanding of the

domain, which is crucial for building effective systems. Defining precise terms for key concepts and processes is

important to avoid miscommunication and misinterpretation and create a complete understanding of how

engineering and other related fields work throughout the development lifecycle, especially when coordinating

complex strategies such as dual sourcing across teams (Goel & Bhramhabhatt, 2024).

The Bounded Context is another important Domain Driving Design concept. A Bounded Context is the area in which

a particular model is correct. So, this context has constant terminology, rules, and models. A Bound context is a part

of the business domain considered complex, such that a single bound context can make up a complex system, but it

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 390 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

could have multiple bound contexts. On an e-commerce platform, e.g. the Sales context could deal with product

orders, and the Inventory context would be concerned with stock levels. Domain Driving Design ensures that the

business domain is represented by enforcing the business domain in a series of easily manageable contexts with a

topic of their own and specific logic and rules.

Figure 1: Understanding Domain-Driven Design (DDD) Architecture

2.2 Key Domain Driving Design Concepts

Domain-driven design (DDD) provides important ideas that help developers define systems that match business

needs well (Khononov, 2021). Entities are objects that have a unique existence and time persistence. It is one of the

core concepts. An entity's attributes are not what defines it; they are what determine an entity. A Customer, for

example, is an entity with, e.g., a name and address that may change, but the identity does not change. The other

important concept here is Value Objects as their attribute defines them, and once created, it is immutable. Some

examples are currency and phone Numbers. These objects have no unique identity and are concerned only with what

value they bring to the business. A group of related entities or value objects formed into an aggregate to be managed

as a single unit. Aggregates enforce business rules and keep things nice, consistent, and in line with an e-commerce

system, having an Order aggregate with the Order entity and Line Item entities.

In Domain Driving Design, repositories will expose aggregates to access it and thus play the "data access layer" role,

masking the details of data retrieval and persistence. However, they ensure that aggregates and business logic play

with each other efficiently. As domain logic that does not easily fit into entities or value objects doesn't naturally fit

into the entity or value object layer, services can be used to represent domain logic. For instance, the Order Service

might be responsible for managing the lifecycle of an order, which would involve coordinating the actions on

aggregates such as Order, Payment, and Inventory. These are Entities, Value Objects, Aggregates, Repositories, and

Services together, and they are what compose Domain-Driven Design and are the key means by which developers

write business-aligned, well-structured, and evolving business-changing software.

Table 1: Key Domain Driving Design Concepts and Their Role in Microservices

Domain-Driven Design

Concept
Description Role in Microservices

Entities
Objects with a distinct identity, persistent

over time

Represent core business objects like

Customer or Order

Value Objects
Immutable objects defined by attributes,

no distinct identity

Used for details that don’t require

individual identity

Aggregates
Groupings of related entities and value

objects
Ensure consistency across services

Repositories Abstraction layer for accessing aggregates
Used for persisting and retrieving

aggregate data

Services
Business logic that doesn’t fit in entities or

value objects

Coordinate complex operations across

services

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 391 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

2.3 The Strategic Role of Domain Driving Design in Software Architecture

Domain-driven design (DDD) plays an important role in the overall software architecture. It helps architect the

system based on business needs rather than technical concerns (Özkan et al., 2023). Domain-Driven Design focuses

the team on the business domain (the problems that need to be solved) rather than low-level implementation details,

allowing better alignment with evolving data strategies and technologies such as MongoDB, which aim to bridge the

gap between performance and reliability (Dhanagari, 2024). Breaking systems into bounded contexts can help

implement a microservices architecture because this can help modularize the system, which is a fundamental

requirement of a microservices architecture. Services will be related to the Bounded Contexts so each microservice

can evolve independently. This approach makes it easy to scale and maintain the system. It also helps to improve

Communication between the teams because they will have a dedicated team for each bound context, which makes it

more effective. Furthermore, it also supports thinking in terms of the business domain rather than the components

of the system, as the business domain is the domain that dictates the design and behavior of the elements of the

system. This alignment guarantees that as the different layers of the software evolve, it addresses the reality of real-

world business concerns rather than being limited by technological constraints or abstractions that may not resonate

with the business's core need (Mingers, 2015).

Figure 2: Introduction to Domain-Driven Design (DDD)

2.4 Impact of Domain Driving Design on Microservices Architecture

Domain Driving Design brings huge value to microservices by helping to break down a monolithic application into

smaller, business-oriented services (Jordanov & Petrov, 2023). Domain-Driven Design principles benefit

microservices by defining bound contexts and branching services from business domains. Typically, each separate

Bounded Context corresponds to one microservice in an architecture based on the Domain Driving Design. This

architecture allows us to easily avoid the complexity that normally occurs in monolithic applications in which

different parts of the application have conflicting models or share the same database. With a microservices

architecture, each service can have its own database; thus, the data model can be optimized for each service's purpose.

Furthermore, it alleviates any risk of data inconsistency occurring wherever multiple services access the same

database.

Domain Driving Design also encourages loose coupling and high cohesion in microservices. Ensuring service

independence by defining each service as focused on a specific business domain results in units that can be

independently developed, deployed, and scaled. However, independence has these and other benefits of

microservices: faster deployment cycles and freedom to pick different technologies for different services. Moreover,

the microservices model is complemented by Domain Driving Design emphasis on event-driven Communication

between services. If Communication between microservices is required to be asynchronous, then Domain Driving

Design focus on events and domain events helps in the design of interaction between these microservices. With the

precise use of event-driven architecture with Domain Driving Design, microservices can be kept decoupled by

exchanging essential data in real-time (Emily & Oliver, 2020).

3. CHALLENGES IN MIGRATING LEGACY SYSTEMS TO MICROSERVICES

3.1 Complexity of Legacy Systems

Legacy systems mitigate inherent complexity, and migrating to a Microservice-based architecture can be daunting

(Habibullah, 2021). Legacy systems usually take a long time to evolve (anywhere from a decade to even more than

two decades), have tightly coupled components, and components are deeply integrated; hence, it is hard to pick

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 392 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

exactly where and how to start the migration process—often built on outdated technologies that may not be

compatible with modern microservices frameworks or cloud-native infrastructures. These challenges are further

amplified when dealing with big data environments, where real-time processing becomes critical for system

responsiveness and scalability (Dhanagari, 2024). Legacy systems usually have massive centralized databases that

prevent the system from being broken down into independent, smaller services. Unfortunately, the tight coupling

between components and the database means that small changes in one part of the system might necessitate large

changes in all parts of the application, which usually slows the migration process and increases risks.

Figure 3: Microservices Architecture

3.2 Identifying Bottlenecks and Dependencies

The first challenge in migrating legacy systems onto microservices is identifying the bottlenecks and dependencies

that were not immediately apparent. Legacy systems invariably have many components that need to communicate

with each other in multiple ways. If these dependencies are not well understood, important dependencies may be

overlooked, leading to potential migration failures (Kula et al., 2018). Next is the data dependency between

components, which is a big challenge. Shared databases are common when data is stored in monolithic systems, and

all application parts can access the data. For migrating to micro services, each service should have its own database,

which complicates the management of data consistency and transactional integrity. To make migration, it is

important to identify the points in the system where services need to interact.

3.3 Data Consistency and Migration

The biggest challenge when migrating from monolithic to microservices is managing data consistency (Kalske et al.,

2017). Since all components have access to the same central database, maintaining consistency is much easier in

monolithic applications. But in a microservices approach, each service usually has its own database, and consistency

across services becomes more complicated. To overcome this challenge, businesses typically use eventual consistency

models, event sourcing, and CQRS (Command Query Responsibility Segregation) techniques. These patterns can

help manage data integrity and ensure the system continues to function even if changes in data are not immediately

synchronized across every service. These techniques provide a solution, though complexity is introduced to prevent

data anomalies and maintain overall system reliability.

Table 2: Key Challenges in Microservices Migration

Challenge Description

Complexity of Legacy Systems
Legacy systems have tightly coupled components and centralized

databases.

Identifying Bottlenecks and

Dependencies

Legacy systems have complex dependencies that must be identified for

migration.

Data Consistency and Migration
Managing consistency across independent microservice databases is

complex.

Handling Monolithic Data Structures
Converting monolithic data models into service-specific models is

challenging.

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 393 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

3.4 Handling Monolithic Data Structures in Microservices Migration

A big problem is handling the existing monolithic data structures when migrating (Ren et al., 2018). A monolithic

database schema is often a commonality in legacy systems, and it is not designed for independent microservices. To

create smaller, decoupled data models for microservices, these monolithic data structures should be converted with

careful planning and gradual data migration strategies. The most commonly used approach would begin by creating

a database-per-service pattern, in which each microservice is provided with its own dedicated set of databases. The

migration may also involve breaking a composite data model into more simply expressed domain models. This can

be done incrementally; teams can move data and services step by step without breaking the system while maintaining

functionality and stability (Sardana, 2022).

4. DOMAIN-DRIVEN DESIGN'S ROLE IN MICROSERVICES MIGRATION

4.1 Defining Bounded Contexts

Bounded Context is one of the most important concepts of Domain Domain Design (DDD). A restricted domain

model distinguishes the scope of the business domain to be served by a single microservice. Bounded Context in

migration to microservices is useful because it divides the responsibilities and allows each microservice to relate to a

certain business capability. One of the first tasks when migrating monolith to microservices is to define and identify

Bounded Contexts (Newman, 2019). The components within a monolithic system tend to have relatively tightly

coupled business logic and data. Doing so poses a great challenge when decomposing the system into independent

microservices. Domain Driving Design acquires the boundary of the monolith into a series of smaller, more

manageable services that enable the realization of the business goals by mapping out different business domains and

setting up Bounded Contexts. Suppose there are Bounded Contexts for Inventory, Order Processing, and Customer

Management for an e-commerce platform, respectively. Each of these Bounded Contexts is a part of the business with

its own logic and database—it can be developed and deployed independently of others. By reducing the complexity of

managing large applications, it is less complex to scale and update only services.

Figure 4: Breakdown of an example domain model in a sport-tech scenario.

4.2 Decomposing the Monolith Using Domain Driving Design

Decomposing a relatively large application into microservices can often be daunting, but there are tools in Domain

Driving Design to assist with this process, aka decomposition. The main purpose is to decompose the monolithic

system into many independent services based on Bounded Contexts that are respectively related to a business

domain. Start by decomposing the monolith in practice, which involves analyzing the system's domain and

understanding which business capabilities make up the system (Taibi & Systä, 2019). These capabilities are then

mapped to microservices responsible for a portion of the business process. For example, account management,

transaction processing, and customer support could be microservices in an online banking system. Each one of these

services will have its own database and business logic about that domain (Chavan, 2023).

With Domain Driving Design, Aggregates are introduced as collections of related entities and value objects that must

be treated as a unit. The service is guaranteed to have business rules and operations consistently applied across it.

Most important when decomposing the monolith is to assign Aggregates per each Bounded Context to ensure the

business logic stays intact as the application transforms into microservices. Random decomposition must be done

stepwise. Rather than trying to peer decompose a single-sized monolith into smaller microservices, they can begin

breaking a part of the monolith into the microservice and moving it at a small scale. The main advantage of this

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 394 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

approach is that it allows testing and validating each microservice before fully migrating the whole system, avoiding

failure and providing a smooth transition (Mazzara et al., 2018).

4.3 Aligning Microservices with Business Domains

The main benefit of applying Domain Driven Design when migrating microservices is that it promotes following the

pattern of aligning microservices to the business domains and not to the technical concerns. In traditional software

architecture, technical considerations such as database partitions or scaling requirements are the reasons for creating

services. Although these factors matter, Domain Driving Design focuses on each service's business value and how to

ensure that each microservice is a single business goal. For example, in a customer relationship management (CRM)

system, creating microservices around business processes such as Lead Management, Opportunity Tracking, and

Customer Engagement may be appropriate.

This service organization lets teams understand and continue to prioritize business goals based on better decision-

making and faster development cycles. Furthermore, the system becomes more flexible when microservices align

with business domains. Each microservice can evolve per changing business requirements without adversely

impacting other system parts (Fowler, 2016). A more solid link between the microservices and business domain also

brings better collaboration between the development teams and business stakeholders. The Ubiquitous Language

created through Domain Driving Design allows all team members, technical or nontechnical, to communicate very

well on the business logic. This alignment also means that the organization remains agile despite changes in the

market through the evolution of software that directly addresses business needs (Raju, 2017).

4.4 Domain Driving Design as a Tool for Managing Complexity during Migration

Migrating microservices from a large monolithic environment can be complex. One of the predominant properties of

developing with Domain-Driven Design is its capacity to deal with complexity by plainly centering on the business

domain and dividing the framework into smaller, increasingly overseen pieces. One of the reasons it is helpful to

define Bounded Contexts is to help avoid complexity when migrating a large, tightly coupled application into a

collection of microservices. Domain Driving Design allows teams to take ownership and funnel a service without

having to relinquish control, as the registration shows. It is especially useful when migrating from a monolithic

system since parts of the application can be refactored and moved to microservices piece by piece. However, the

Bounded Contexts can be evolved overtime in parallel without needing to disrupt the whole system.

Domain Driving Design also introduces concepts like domain events and event-driven architectures to microservices

so they can talk asynchronously without becoming tightly coupled. Using events helps Domain-Driven Design keep

services decoupled, allowing services to evolve and scale gracefully with ease, greatly reducing the opportunity for

tight coupling and dependency. Domain Driving Design also stresses taking on one of the continuous feedbacks

during the migration process. As microservices are implemented and delivered piecemeal, Domain Driving Design

involves steady engagement with the business people to make sure services stay responsive to the change demanded

by the business. The migration acts with business goals in mind through an iterative process, and any issues or

bottlenecks are fixed as early as possible.

5. EVENT-DRIVEN ARCHITECTURES IN MICROSERVICES MIGRATION

5.1 Introduction to Event-Driven Architectures

Event-driven architectures (EDA) are a fundamental pattern in microservice architecture and enable asynchronous

communication between services. In an event-driven system, microservices communicate by exposing events to be

called when other services need to know about the system's state. These events cause actions in other services,

resulting in a decoupled, scalable, and flexible system behavior. In this context, an event is a big change or change in

the system that no services on the system should ignore. Examples of events can be an order being placed in an online

store, a payment being processed, or a customer account being updated. Event listeners, consumers of these events,

refer to themselves as processing the event data in their own way, maybe taking some further action or state change.

Communication in a monolithic system is mostly synchronous, highly coupled, and therefore not scalable (Felisberto,

2024). However, event-driven architectures circumvent these barriers, as services operate independently and

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 395 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

respond to events as they happen. This decoupling is especially important when migrating legacy systems to

microservices; each service stays decoupled from the others and can evolve in isolation.

Figure 5: Microservices Event-Driven Architecture

5.2 Role of Events in Microservices Communication

Events in microservices are important to ensure communication between services without having direct

dependencies. Event-driven systems differentiate themselves from other synchronous communication systems, like

making API calls, in that the services can interface without waiting for a response. This makes it possible to reduce

tight coupling between services and be more scalable. In an e-commerce system, an Order Service emits an event

when an order is successfully placed. However, other services such as Inventory Service, Shipping Service, and

Payment Service can be listeners for this event. The asynchronous communication ensures that each service runs

independently without affecting the whole system should one service fail. Some event-driven communication benefits

include loose coupling, which enables evolving service scaling independently, asynchronous processing for better

performance, and fault tolerance, as events can queue until later or during failures, and the system will remain

functional (Kumar, 2019).

Table 3: Event-Driven Design in Microservices

Event Type Example in Microservices Architecture Role and Impact

Domain Event Order Placed event emitted by Order Service
Triggers actions in Inventory, Shipping, and

Payment

Integration Event
Customer Updated event emitted when

customer details change

Other services adjust customer data in real-

time

Asynchronous

Event
Inventory Updated event for stock management

Allows other services to react to stock levels

asynchronously

5.3 Integrating Event-Driven Design with Domain-Driven Design

Event-Driven Design (EDD) is easy to integrate into Domain-Driven Design (DDD) and is well-suited to aid in

deploying Domain Driving Design to microservice migration. As part of Domain Driving Design, Domain Events are

used to notify other services to react when the state of the domain model changes and is emitted. A good example of

such an event is Order Placed, which can trigger other services like Inventory, Shipping, and Payment to perform

their respective tasks in an order management system. With Domain Driving Design and EDA combined, the

microservice is in charge of emitting its domain events. These are events of state change and business logic on a

service; other services can listen to them and do their business logic. This approach ensures the system's business-

driven nature and decoupling from each other.

Event sourcing is one of the key concepts in event-driven Domain Driving Design. It refers to persisting state changes

as a sequence of immutable events (Overeem et al., 2017). The system can then replay the events to reconstruct any

previous state. This approach works well, particularly for microservices, as services can have their own event logs to

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 396 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

enforce data consistency and provide an easy history of all changes made to the system. Combining Domain Driving

Design with EDA provides high service cohesion and loose coupling, basic prerequisites for a successful microservices

architecture. Additionally, it helps the system react to changes in a very maintainable and scalable manner.

5.4 Event Sourcing and CQRS in Microservices

Event Sourcing and CQRS (also known as Command Query Responsibility Segregation) are common in event-driven

microservices architecture, and they resolve state management and consistency issues in distributed systems. Event

Sourcing means storing a stream of events and nothing else about an entity, which is all the state of an entity — right

or wrong. An Event store stores each action or change in the system as an event. These events can then be replayed

to recreate the state of a given entity and guarantee the existence of all changes and logs. This is particularly helpful

when data consistency and history are required, such as in financial systems.

Event Sourcing often combines with CQRS to handle commands and queries differently: commands modify state,

while queries read it. Whereas, in traditional systems, the same data model is being used for both, CQRS

microservices have different data models for reading and writing data. This separation optimizes both operations. An

e-commerce system would be an example of Order Service that uses a write model for coordinating order updates

while a read model provides real-time order updates. By drawing on this approach, performance is improved,

scalability is increased via independent scaling of read and write services, and asynchronous event-driven updates

occur that keep the system responding. Combining Event Sourcing and CQRS allows organizations to stand out by

easily managing data and maintaining loosely coupled, scalable, and resilient microservices (Laigner et al., 2024).

6. SYSTEM DESIGN FOR MICROSERVICES MIGRATION

6.1 Designing for Scalability and Flexibility

Microservice architecture requires scalability and flexibility, especially when migrating from monolithic systems to

microservices. An approach of microservices enables horizontal scaling that allows each service to scale separately

depending on demand instead of scaling the whole application at once, as is typical in monolithic architecture. This

helps organizations put resources to best use and respond promptly to the changing load or business requirements

(Nyati, 2018). Take the Order Service, for instance. It can be quite heavily loaded during peak shopping season, while

the other services offered, such as customer service, are unlikely to be so busy. A microservices approach to Order

Service helps to scale the Order Service without scaling the other parts of the application. One of the main advantages

of using microservices is being able to scale at that granular level.

Organizations can use automated scaling capabilities in the cloud-native infrastructure commonly used on

microservices. Auto-scaling groups and Kubernetes, provided by cloud providers like AWS, Google Cloud, and Azure,

allow microservices to scale up or down as metrics, like CPU or memory utilization, change. This guarantees high

availability and responsiveness even during sudden traffic spikes. Scalability is not the only important factor,

however. It is also necessary to be flexible when designing the system (Adams & Adams, 2015). Not with the

microservices, where each service can be developed, deployed, and updated without affecting the rest of this

application. This flexibility allows each team to choose the technologies for the corresponding microservice that best

meets its particular needs, allowing the architecture to be flexible to changing needs.

Figure 6: Exploring the Potential Benefits of Microservices Architecture

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 397 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

6.2 API Design and Gateway Architecture

Effective API design is important to permit the communication of microservices. Since microservices usually operate

independently, APIs are the main method of interoperation. These APIs must also be easy to use, consistent, and

efficient in their design. One of the key principles behind microservices API design is the RESTful API design that

uses HTTP (GET, POST, PUT, and DELETE) methods to read and write to the resources. Microservices utilize the

REST APIs extensively because they are stateless, lightweight, and adhere to standard web protocol, which makes

them easy to implement and consume. For low latency, high-performance scenarios where one wants to use

microservices, and there is an internal network to communicate on, gRPC (a high-performance RPC framework)

might be used instead of REST for the communications (Stefanic, 2021).

API Gateway is a common pattern used in a microservices architecture. It makes all external client requests a single

entry point through API Gateway, then routes to the right microservices. This makes it easier for clients to interact

with the system as they do not need to know about the individual services and locations. Additionally, the API

Gateway can expose business logic, handle cross-cross-cuttings like authentication, logging, rate limiting, and load

balancing, and take off this responsibility of microservices themselves. Specifically, suppose the API Gateway is part

of an e-commerce application, and a client wants to view a product. The client would still send a request to this

gateway even if the underlying server were down; the request would then be routed to the Product Service, where the

data would be obtained and sent back to the client. If the data relies on another service, such as an Inventory Service,

the API Gateway can act on behalf of the client—communicating with the necessary services, combining results, and

returning the final output. This abstraction separates the internal service structure from external clients, enhancing

flexibility and simplifying system maintenance (Singh, 2022). Besides, an API Gateway will increase security if it

centralizes control over security protocols like OAuth and JWT (JSON Web Tokens). It reduces the security burden

on each microservice to deal with its own authentication and makes it easier to implement access controls at a higher

level of application.

6.3 Service Discovery and Orchestration

Service discovery is an integral part of the system design of microservices because microservices usually work in

dynamic and distributed environments. In a microservice architecture, services are scaled up or down, moved from

one server to another, or deployed to a completely different cloud region. Microservices can discover networked

services without requiring network addresses or endpoints to be hard-coded within the specific services involved in

the communication.

The Service Discovery tools, such as Consul, Eureka, and Kubernetes, take care of registration and finding services

by maintaining registries of available services and their location. To communicate with a service, a service may query

the service registry to obtain the address of the target service. In particular, this is extremely beneficial when

microservices are formed within cloud-native and containerized environments where they are scaled and change

frequently. Other than service discovery, orchestration is required to set up, spin, and coordinate microservices' life

cycles and interactions (Roda-Sanchez et al., 2023). To perform business operations, microservices have to interact

with each other in a coordinated way. For example, orchestration can combine transaction workflows, manage service

dependencies, or ensure data consistency across services.

Orchestration tools like Kubernetes and Docker Swarm automate service deployment, scaling, and management. For

instance, a service deployed using Kubernetes will ensure that services are deployed in an ordered way, with

dependencies taken care of. If services fail, the service will start or scale them accordingly. Orchestration tools can

also handle stateful services such as data storage, processing, and retrieval by ensuring the appropriate services are

present. This has the advantage of improving both systems' reliability and performance, as orchestration takes care

of the health and availability of services.

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 398 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

7. IMPLEMENTATION STRATEGIES FOR TAKE THE ORDER SERVICE, FOR INSTANCE. -BASED

MICROSERVICES MIGRATION

7.1 Incremental Migration vs. Big Bang Approach

Deciding on migrating from a monolith to a microservices architecture based on Domain-Driven Design (DDD)

involves whether to do an incremental or big-bang migration. As a rule, the incremental migration approach is

preferred for lessening risk and a more controlled transition. The strategy would be to break the monolithic

application into multiple smaller services, and many of those services would gradually migrate to microservices. In

particular, help for teams building these microservices out of jumbled rubble in the form of a monolith is provided

by Take the Order Service, for instance; specifically, identifying Bounded Contexts within the Monolith runs through

helping a team identify what these Contexts are, allowing the team to refactor it into individual microservices. Each

microservice then maps to a specific Bounded Context and is developed, tested, and deployed incrementally. This

approach also reduces risk, allows easy rollback in case of issues, and continuously adds business value. Moving

incrementally brings the benefits of microservices to business much faster than a complete migration. The

incremental approach, however, needs careful planning for concurrency, as the monolithic and microservices-based

ones can run concurrently, and communication or data consistency is not always possible. On the other hand, with

the Migration of the entire system at once, the Big Bang approach offers a fast transition; however, at the cost of

increased worries in the form of long downtime, inability to deal with large-scale problems and events, and

inconsistency in data. As a result, the Big Bang approach is not a popular choice unless the monolithic system is

outdated or involves problems (Cyburt et al., 2016).

Table 4: Comparison of Incremental vs. Big Bang Migration

Criteria Incremental Migration Big Bang Migration

Risk Reduced risk, gradual transition High risk, potential for system failure

Rollback Easier to roll back individual components Difficult to roll back once migration begins

Downtime Reduced downtime, services migrate incrementally Extended downtime during the entire transition

Scalability Services scale independently as migrated No independent scaling during migration

Complexity Manageable, allows phased transition High complexity, larger tasks all at once

7.2 Tools and Technologies for Domain-Driven Design in Microservices

Choosing appropriate tools and technology is critical when migrating to microservices following Domain Driven

Design (DDD) because the architecture relies on the proper tools and technology to support its needs during the

Migration. One such essential tool is containerization with Docker. Docker containers provide microservice

environments and promote lightweight, portable, and consistent environments for running and deploying multiple

services to different environments. Docker also makes it easy to test and deploy microservices with all their

dependencies pragmatically encapsulated. The main platform for managing containerized applications is Kubernetes

for orchestration. Deployment, scaling, and all that come with it are handled automatically, while it's also capable of

dynamic discovery and load balancing, which is crucial in handling the microservices' dynamic nature. Typically, this

message broker can be Apache Kafka, RabbitMQ, and ActiveMQ, which provide asynchronous communication,

ensuring that services are decoupled and scalable. API Gateway in tools like Zuul or Spring Cloud Gateway behaves

as a single entry point for the clients to direct the requests to proper microservices and also provides abilities like

authentication, rate limiting, and load balancing to manage API traffic. For distributed tracing and monitoring, there

are tools like Jaeger and Zipkin that help the teams trace their requests and find issues in the performance of services.

Event sourcing and CQRS are also provided by tools such as Event Store and Axon Framework for data management,

which do so in a manner that maintains consistency and efficient data handling among microservices. The use of

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 399 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

these tools will help organizations to adopt microservices using Take the Order Service, for instance. Principles

successfully.

Table 5: Tools for DDD Implementation in Microservices

Tool/Technology Description Role in Microservices Implementation

Docker
Containerization tool for encapsulating

microservices

Provides consistent environments across

development and production

Kubernetes
Orchestration platform for containerized

microservices

Manages the deployment, scaling, and

management of microservices

Apache Kafka Distributed event streaming platform
Manages communication between microservices

asynchronously

API Gateway Single entry point for client requests
Routes requests to appropriate microservices,

handles load balancing and security

EventStore
Event sourcing and CQRS tool for

managing event-driven data

Provides reliable event storage and handles

eventual consistency

Zipkin
Distributed tracing tool for monitoring and

debugging service interactions

Helps track requests through multiple services

and identify bottlenecks

7.3 Refactoring Legacy Code into Microservices

It is also necessary to refactor legacy code into microservices to facilitate migration. The goal is to decompose the

monolithic application into smaller, more specific services that can be deployed and scaled independently. Typically,

this process starts with the most critical or independent components that are easiest to isolate. The first step is to

identify the Bounded Contexts in the legacy system. These Bounded Contexts represent individual business domains

or processes, such as Orders, Inventory, and Payments that can be broken down and transformed into separate

microservices. Once these contexts are identified, the team's first task is to refactor the monolithic system by creating

independently deployable microservices one at a time. This approach helps limit the overall system complexity and

ensures each service works on a specific business function (Singh, 2022).

In this process, several refactoring strategies are common. One such technique to strangle the Monolith is

incrementally replacing the monolithic application with the microservices with the functionality of the Monolith

intact. As time goes by, the Monolith becomes "strangulated"; microservices replace the different dimensions of the

application. A different approach is decomposed by business capabilities, where each microservice is responsible for

one particular business capability, such as order management or inventory management. These microservices respect

Take the Order Service, for instance. Bounded Contexts and are kept orthogonal to each other, evolving

independently and optimizing for their respective domain. Database Refactoring is one of the most difficult things

related to Migration. When migrating the database, it needs to be split into smaller service-based databases, as

monolithic systems always share a single, central database. The integrity and consistency of the database have to be

maintained across these microservices, and an improper separation of the database can result in synchronization and

inconsistency problems (dos Santos Silva, 2024).

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 400 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 7: the microservice architecture

7.4 Cross-Cutting Concerns (Security Logging Monitoring)

With increasing microservices, systems come many cross-cutting concerns or aspects of the system that affect several

services but are not part of any service's core logic. Security, Logging and Monitoring, and Fault Tolerance are the

concerns of these problems. In a microservices architecture, services must be secured at both the base and

communication levels. Centralized authentication and authorization systems such as OAuth 2.0 and JWT (JSON Web

Token) are commonly used to achieve this. These systems secure the communication between microservices and

handle the authorization and authentication of users and services. By centralizing security management, these

systems simplify the complexity of authenticating across multiple services, thereby enabling the consolidation of

better and more robust security protocols (Chavan, 2022).

In the case of a microservices environment, logging and monitoring are equally important. With microservices being

distributed and messages between microservices being sent asynchronously, it is important to track system

performance and logs across multiple services when there is a problem and detect it early. The ELK stack (Elastic

Search, Logstash, Kibana) and Prometheus facilitate centralized dealing with logs and overall system monitoring,

including the application logs, system performance, and errors across all services. They allow teams to detect and fix

defects quickly to keep the system stable and ready to serve. Centralized logging and monitoring also allow tracing

requests from one service to another, making debugging and troubleshooting much easier. The other big concern in

microservices is Fault Tolerance. Microservices are independent and distributed, so one failure on one service

shouldn't impact the entire system. To solve this, circuit breakers and retry mechanisms can be implemented. Circuit

breakers monitor service calls, and when they will not allow a service to be called, it halts all attempts to access a

failing service and prevents cascading failures of the system. Temporary errors will not compromise the whole system

if some automatic retry mechanisms can retry them. These processes ensure the system's resilience to fast recovery

without disturbing other services.

8. BEST PRACTICES FOR SUCCESSFUL MICROSERVICES MIGRATION

8.1 Establishing Clear Business and Technical Objectives

Before leaping into a microservices environment, it is essential to define clear business and technical objectives. This

ensures that migration aligns with the organization's broader goals and delivers value at each stage. For example,

business objectives could include improving customer experience, faster feature releases, or scaling the application

more efficiently. Technical objectives might focus on increasing system reliability, improving system performance,

or accelerating system development (Karwa, 2023). Of course, clearly defining objectives is a prerequisite to making

informed decisions on which services to migrate first, how to prioritize the migration efforts and a means to measure

success during and after the migration process. These objectives also help align different teams in the organization

so that the business and technical aspects are taken care of (Patterson, 2020).

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 401 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 8: Microservice

8.2 Continuous Integration and Continuous Deployment (CI/CD)

Implementing CI/CD pipelines ensures that microservices are deployed in a streamlined manner and without

interruption. Continuous Integration (CI) is the automation of merging code changes into a shared repository and

running tests to verify that the code works. It can also be referred to as Integrated Continuous Delivery (ICD).

Applying the concept of Continuous Deployment (CD) automates the deployment of changes to production,

shortening the lead time of releasing new features and fixes. Integrating security measures such as SAST, DAST, and

SCA tools within these pipelines is a critical component of a DevSecOps approach, enhancing the overall resilience

and safety of the deployment process (Konneru, 2021). One of the most important things about CI/CD practices in

these kinds of architectures is the nature of deploying several independent services simultaneously horizontally.

Automated testing and deployment enable organizations to verify that changes to one service don’t accidentally break

other parts of the system. Additionally, CI/CD pipelines enable the incremental migration validation and testing of

each microservice until it is fully integrated into the system.

8.3 Testing Strategies in Microservices Migration

The stability and reliability of microservices during migration depend on the effectiveness of the testing strategies.

Because microservices are independent and communicate with one another asynchronously, traditional testing

methods cannot fully accomplish the task. There are several testing strategies to address these unique challenges.

The first strategy is unit testing, where each microservice is tested separately to ensure it works as it should. The unit

tests are created to test the individual components and the interaction with the service to identify problems early in

the development process. Another important approach in testing is integration testing, which checks if the different

services interact properly. Integration testing comes into play because microservices usually communicate via APIs,

and it is very important to check that the services can work together correctly even when their implementations are

somehow independent. Contract Testing also ensures that services agree upon and follow their API contracts; should

one service change its interface, other services shouldn’t see it break. Lastly, end-to-end testing ensures that the

system works properly with real-world usage. This tests that all services that work together to carry out a business

process would work as expected. By using these strategies together, microservice teams can guarantee that although

the migration from legacy systems to modern distributed services is complicated, their microservices architecture is

robust and reliable and can meet their needs (Kazanavičius & Mažeika, 2019).

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 402 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

8.4 Monitoring and Observability in Microservices Environments

In microservices, monitoring and observability are key as monitoring and understanding the relationships between

many services becomes hard. Thus, monitoring the health and performance of each service at hand is essential since

microservices communicate asynchronously and can be deployed to different environments, such as the cloud or on-

premise. One of the key practices is centralized logging, where a central logging system, such as the ELK Stack (Elastic

search, Log stash, Kibana), is used to collect and aggregate logs from multiple microservices into one system. It allows

teams to easily detect errors, diagnose performance bottlenecks, and trace issues in a combination of services.

Distributed Tracing, another important technique, tracks requests from several services using Jaeger or Zipkin. These

tools provide good performance, latency, and actual bottleneck information. Metrics and alerts are also critical ways

to monitor system performance. Key performance indicators, such as response time, error rates, and throughput, can

be set up to see how well the system is performing to see how well the system is performing. They need to be tracked

in real-time, and when there are issues, alerts should be set up to get notified to the teams. With these, firms can

focus on these practices to ensure that their microservices architecture functions, is optimized, resilient, and can

guarantee a smooth customer experience.

9. CASE STUDIES OF SUCCESSFUL MICROSERVICES MIGRATION USING DDD

9.1 Case Study 1: A Financial Institution’s Legacy to Microservices Transformation

A global financial institution had a monolithic, legacy application that was difficult to scale and maintain. To increase

performance, scalability, and the speed of feature releases, the organization decided to transform its architecture

toward microservices (Karwa, 2024). Legacy system challenges: These systems had tightly coupled components and

a shared database, which made it difficult to decompose the application and migrate to microservices. The system

also handled critical financial transactions and had to maintain data consistency and system reliability. An

organization can adopt Domain-Driven Design (DDD) to help decompose the monolith. For example, using Domain-

Driven Design as an approach, the development team identified some Bounded Contexts, such as Account

Management, Transaction Processing, and Risk Assessment. Each Bounded Context was split up into its own

independent microservice with a different database.

Migration was incremental concerning the criticality of the service, where the least critical services, like Transaction

Reporting, were migrated first, and then the most complex services, like Payment Processing and Risk Management,

as the migration progressed. For inter-service communication, Kafka was used to run the system so that transactions

could be processed asynchronously without blocking and waiting for other services' responses. The migration was

achieved, the company could release new features quicker, the service should operate independently, and the system

performance was enhanced. Domain-Driven Design usage helped guarantee that the new microservices considered

the business goals, and the approach adopted for the incremental migration minimized the risks (Kaloudis, 2024).

Figure 9: Modular Monoliths

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 403 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

9.2 Case Study 2: E-Commerce Platform Adopting Microservices with Domain-Driven Design

A monolithic e-commerce platform wanted to go to microservice to achieve better performance, scalability, and agility

in development. The platform supported millions of users and transactions, and the existing monolith could take the

monolith down even during large traffic spikes. The monolith comprised several core business functionalities: Order

Management, Inventory Management, and Payment Processing. These capabilities were complex to break down into

independent microservices while ensuring a seamless customer experience.

The company used domain-driven design to identify the important Bounded Contexts in the business: Shopping Cart,

Product Catalog, and Customer Management. Each microservice was created to handle a certain business function

and supplied with a data store to freely intertwine services. The steps of migration were phased, starting with Product

Catalog and Customer Management. Later, when the initial microservices stabilized, the shopping cart and payment

processing services were also migrated. RabbitMQ was used to implement event-driven communication and teamed

up with CQRS to manage the complex queries properly. Migration allowed the platform to scale more easily,

specifically when events like holiday sales were especially crowded. However, the company's new features could be

released faster, and the company could manage traffic spikes better with microservices. Domain Driving Design

helped the team focus on the business priorities and create microservices optimized for each specific business

function.

9.3 Lessons Learned and Key Takeaways from These Case Studies

The case studies emphasize that both incremental migration and the use of microservices architecture must be

carefully implemented for a monolithic system-to-microservices transition (Villaca, 2022). By refactoring the

monolith and initiating less critical services individually, teams can test and validate each migration stage, reducing

the likelihood of a broad failure. A more controlled and systematic transition is allowed. Using Domain-Driven Design

(DDD) will enable microservices to be aligned with business needs and reduce complexity and maintainability. The

key takeaways from the case studies are based on the particularity of the event-driven communication between the

services, making them decoupled and scalable. This permits microservices to operate independently while remaining

usable with each other. In addition, the discovery of services and API gateways are two key tools for microservice

communication management and the isolation of microservices. CI/CD pipelines and automated testing add further

weight to the reliance and speed of the microservices delivery process by which each service may be tested and

deployed as safely as possible.

10. FUTURE TRENDS IN MICROSERVICES AND DOMAIN-DRIVEN DESIGN

10.1 Emerging Trends in Microservices Architecture

In recent years, the adoption of microservices architecture has only been growing. At the same time, several trends

have emerged regarding the future of microservices architecture. The first trend is building serverless computing

together with microservices. Microservices can be deployed serverless to these platforms, allowing organizations to

deploy them without keeping up with the underlying infrastructure. This decreases operational overhead and will

allow the teams to expend most of their energies in writing the codes rather than managing the resources, making

microservices extremely scalable and feasible (Ruiu et al., 2016). Another significant trend is the introduction of so-

called service meshes (Istio, Linkerd.) to manage the complex networking needs of microservices. Service meshes are

helpful for controlling service-to-service communication, as they provide facilities like load balancing, traffic

management, and access control policies. They help organizations boost the resilience and reliability of their

microservices-based systems.

API management platforms are evolving to support microservices architectures. Centralized API gates are offered as

tools such as Kong and Apigee, with additional features such as authentication, rate limiting, and API versioning.

These platforms allow organizations to handle the increasing number of microservices and their interactions with

external consumers, allowing them to have more control and governance on service endpoints. Cloud-native

technologies will drive microservices architecture forward. Finally, organizations will increasingly rely on

Kubernetes, container, and container orchestration tools to deploy, scale, and monitor microservices as cloud

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 404 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

computing platforms evolve. More specifically, Kubernetes is expected to grow in strength, supporting only stateful

workloads natively and working together with serverless and event-driven architectures.

Figure 10: Monolith vs Microservices Architecture

10.2 The Future of Event-Driven Architectures in Microservices

Event-driven architectures (EDA) will become even more vital for microservices as they become a good option for

services to talk asynchronously (Ok & Eniola, 2024). Managing direct service-to-service communication becomes

difficult as more microservices are created in the organization's ecosystem. EDA allows loosely coupled services,

whereby the services don't need to call each other directly synchronously but can communicate via events. This

enables system scalability and reduces bottlenecks. In EDA's future, more event stream platforms like Apache Kafka,

Amazon Kinesis, and Azure Event Hubs will be approached. Disposing these platforms enables real-time data

processing and high throughput messaging between the microservices. It empowers the organization not to let too

much time go to a change in the system. This will allow applications to respond to events in real time and improve

the responsiveness of applications across industries such as e-commerce, finance, and IoT, where fast decision-

making is essential.

These event sourcing and CQRS (Command Query Responsibility Segregation) styles of architectures will become

more prevalent as microservices architectures evolve. These patterns are helpful because they allow for better data

consistency and enable the microservice to process the data changes asynchronously while recording the historical

event logs. It benefits systems that want to monitor state changes and maintain data integrity in several services.

Distributed event-driven architecture is the future. As more microservices evolve, better services can be coordinated,

scaled, and fault-tolerant.

10.3 The Growing Role of Domain Driving Design in Future Software Architectures

Domain-driven design (DDD) is about to assume the dominant role in future architectures, both in old times and in

novel ways of development. With organizations moving towards microservices, it becomes even more important for

organizations to have clear boundaries, well-defined business logic, and software development practices. This way,

Domain Driving Design supports soft and business goals by concentrating domains built around business capabilities

rather than technical constraints. In the future, Domain Driving Design will likely have deeper integration with cloud-

native technologies, serverless architecture, and containerized environments (Scholl et al., 2019). Domain Driving

Design will still enable teams as an organization to adopt microservices to define Bounded Contexts and structure

services around the boundaries of a particular business domain. In a microservices architecture using Domain

Driving Design, Ubiquitous Language can be used to better communicate between technical and business

stakeholders and ensure that stakeholders' business logic in a microservices architecture is aligned with company

goals. Domain Driving Design will move towards an expandability that covers data-driven design and supports the

initial new paradigm evolving AI and machine learning. As machine learning becomes more woven into business

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 405 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

processes, Domain Driving Design can lend itself to defining clear boundaries around data models and machine

learning models and ensuring that designing these systems adheres to the business objectives and can grow

independently without affecting the existing system.

10.4 How Domain Driving Design Will Evolve in the Context of Microservices and Cloud-Native

Applications

Domain Driving Design will have to evolve to support new architectural challenges, but as it does, the need to move

to a Domain Driving Design solution will become less dire (Oukes et al., 2021). The biggest change will be

incorporating Domain Driving Design with the current Kubernetes and container orchestration platforms. Domain

Driving Design principles, namely B, rounded Contexts, and Aggregates will be very helpful in designing independent

inhalable microservices in a containerized environment. For example, Domain Driving Design is expected to be used

even more as an event-driven (micro) service bus, among other microservices that communicate via events rather

than direct API calls. In such conditions, Domain Driving Design will aim to provide services for business events

based on event sourcing and CQRS so that the microservice state remains consistent and traceable.

Domain Driving Design has also begun to mingle with DevOps and CI/CD practices. Using Domain Driving Design

to align the microservices with the relevant business capabilities will enable the organization to adopt agile

development practices and continuous delivery. By doing this, the business can iterate quickly and release the feature

faster, leaving the business logic untouched while serving customer needs. Domain Driving Design will move to fit

the needs of distributed, event-driven, and scalable environments in the future of microservices and the cloud-native

world (Suleiman & Murtaza, 2024). By focusing on business alignment, autonomous service, and agile practices,

Domain Driving Design emphasis will continue to help organizations build microservices architectures that are

durable, scalable, and capable of fulfilling the requests of cloud-backed modern systems.

11. CONCLUSION

Domain Driven Design (DDD) is a critical path to microservices from monoliths. Domain Driving Design guarantees

that a microservice is centered on a specific business capability by focusing on business domains and trying to align

the microservices with the Bounded Contexts. This alignment is simpler in nature and scale, but also, for

organizational adaptation to its system needs, the process is far easier. By breaking the monolith into vacuum-sealed,

well-defined microservices, which have their own data model and business logic that guides the migration process,

Domain Driving Design focuses on Ubiquitous Language, which helps with clearer communication between business

and development teams and, therefore, fosters better collaboration and migration, and the final system will closely

adhere to the company’s business objectives.

One of the main benefits of Domain Driving Design for solving microservices migration is that it solves several

common problems encountered during migration. Migration is one of the hardest tasks when dealing with legacy

systems, and Domain Driving Design makes it easier by splitting Bounded Contexts into business capabilities. These

bounded contexts offer a good framework for developing independent microservices, ensuring that each service

knows its role and scope. Domain Driving Design provides effective solutions to the problem of synchronization of

data and microservices by applying methods like Event Sourcing and CQRS. With these patterns, all data changes are

recorded audibly and consistently in case any data anomaly or inconsistency occurs from splitting a single monolith

database into multiple service-specific databases.

Domain Driving Design emphasis on event-driven architectures is also helpful in addressing another major challenge

in microservices migration, which is service communication. Domain Driving Design promotes asynchronous

communication between services, resulting in stronger topological decoupling, removing dependencies, decreasing

tight coupling, and helping us build much more scalable and resilient systems that don’t compromise on systemic

goods. Moreover, it makes Domain Driving Design ensure that the microservices architecture matches the business

goals via appropriation in the services of the business domains they are serving. Faster iteration and a more agile

response to change are critical for businesses in competitive markets that must adapt rapidly, and this alignment

supports it.

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 406 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

A few words on the benefits of applying Domain Driving Design for microservices in the long term. Scalability is one

of the most significant ones. Domain Driving Design Microservices built are self-available. They can be scaled

independently based on demand to play to the company’s advantage regarding capital utilization and expediency to

changing requirements. Another long-term benefit of Domain Driving Design is that it is maintainable. This is

because microservices focus exclusively on a single business capability and have well-defined boundaries. With

business needs changing, updating these microservices can be done independently, keeping the system flexible and

adaptive without impacting other services.

Domain Driving Design helps to keep the business aligned in the life of the microservices system. Domain Driving

Design takes advantage of the fact that microservices are great examples of an isolated part of a complex system to

take advantage of them by designing microservices around business capabilities, which allows the system to continue

representing the organization’s goals; hence, it is ready to adapt faster to new markets conditions and customer

demands. Domain Driving Design also promotes collaboration between teams — business and technical — by using

Ubiquitous Language so that both sides speak the same language, understand the same thing, and work toward the

same objective. This shared understanding limits miscommunication and treaties in building the system consistent

with technical or business needs. Marching toward the benefits of microservices is ensured by Domain Driving Design

of providing a clear methodology for microservices grouping and implementing the business capabilities. The benefits

of all this are faster time to market, better scalability, and improved agility. With Domain-Driven Design, businesses

can create a system that is not only aligned with their current operations but also adaptable enough to handle future

challenges.

REFERENCES;

[1] Adams, K. M., & Adams, K. M. (2015). Adaptability, flexibility, modifiability and scalability, and

robustness. Nonfunctional Requirements in Systems Analysis and Design, 169-182.

[2] Blinowski, G., Ojdowska, A., & Przybyłek, A. (2022). Monolithic vs. microservice architecture: A performance

and scalability evaluation. IEEE access, 10, 20357-20374.

[3] Chavan, A. (2022). Importance of identifying and establishing context boundaries while migrating from

monolith to microservices. Helina. http://doi.org/10.47363/JEAST/2022(4)E168

[4] Chavan, A. (2023). Managing scalability and cost in microservices architecture: Balancing infinite scalability

with financial constraints. Journal of Artificial Intelligence & Cloud Computing, 2, E264.

http://doi.org/10.47363/JAICC/2023(2)E264

[5] Cyburt, R. H., Fields, B. D., Olive, K. A., & Yeh, T. H. (2016). Big bang nucleosynthesis: Present status. Reviews

of Modern Physics, 88(1), 015004.

[6] Dhanagari, M. R. (2024). MongoDB and data consistency: Bridging the gap between performance and reliability.

Journal of Computer Science and Technology Studies, 6(2), 183-198.

https://doi.org/10.32996/jcsts.2024.6.2.21

[7] Dhanagari, M. R. (2024). Scaling with MongoDB: Solutions for handling big data in real-time. Journal of

Computer Science and Technology Studies, 6(5), 246-264. https://doi.org/10.32996/jcsts.2024.6.5.20

[8] dos Santos Silva, A. F. (2024). Detection of transaction consistency problems in microservices (Doctoral

dissertation, UNIVERSIDADE DE LISBOA).

[9] Emily, H., & Oliver, B. (2020). Event-Driven Architectures in Modern Systems: Designing Scalable, Resilient,

and Real-Time Solutions. International Journal of Trend in Scientific Research and Development, 4(6), 1958-

1976.

[10] Felisberto, M. (2024). The trade-offs between Monolithic vs. Distributed Architectures. arXiv preprint

arXiv:2405.03619.

[11] Fowler, S. J. (2016). Production-ready microservices: building standardized systems across an engineering

organization. " O'Reilly Media, Inc.".

[12] Goel, G., & Bhramhabhatt, R. (2024). Dual sourcing strategies. International Journal of Science and Research

Archive, 13(2), 2155. https://doi.org/10.30574/ijsra.2024.13.2.2155

[13] Habibullah, S. (2021). Evolving legacy enterprise systems with microservices-based architecture in cloud

environments (Doctoral dissertation).

http://doi.org/10.47363/JEAST/2022(4)E168
http://doi.org/10.47363/JAICC/2023(2)E264
https://doi.org/10.32996/jcsts.2024.6.2.21
https://doi.org/10.32996/jcsts.2024.6.5.20
https://doi.org/10.30574/ijsra.2024.13.2.2155

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 407 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[14] Jordanov, J., & Petrov, P. (2023). Domain driven design approaches in cloud native service architecture. TEM

Journal, 12(4), 1985.

[15] Kaloudis, M. (2024). Evolving Software Architectures from Monolithic Systems to Resilient Microservices: Best

Practices, Challenges and Future Trends. International Journal of Advanced Computer Science &

Applications, 15(9).

[16] Kalske, M., Mäkitalo, N., & Mikkonen, T. (2017, June). Challenges when moving from monolith to microservice

architecture. In International Conference on Web Engineering (pp. 32-47). Cham: Springer International

Publishing.

[17] Karwa, K. (2023). AI-powered career coaching: Evaluating feedback tools for design students. Indian Journal of

Economics & Business. https://www.ashwinanokha.com/ijeb-v22-4-2023.php

[18] Karwa, K. (2024). The role of AI in enhancing career advising and professional development in design education:

Exploring AI-driven tools and platforms that personalize career advice for students in industrial and product

design. International Journal of Advanced Research in Engineering, Science, and Management.

https://www.ijaresm.com/uploaded_files/document_file/Kushal_KarwadmKk.pdf

[19] Kazanavičius, J., & Mažeika, D. (2019, April). Migrating legacy software to microservices architecture. In 2019

Open Conference of Electrical, Electronic and Information Sciences (eStream) (pp. 1-5). IEEE.

[20] Khononov, V. (2021). Learning Domain-Driven Design. " O'Reilly Media, Inc.".

[21] Konneru, N. M. K. (2021). Integrating security into CI/CD pipelines: A DevSecOps approach with SAST, DAST,

and SCA tools. International Journal of Science and Research Archive. Retrieved from

https://ijsra.net/content/role-notification-scheduling-improving-patient

[22] Kula, R. G., German, D. M., Ouni, A., Ishio, T., & Inoue, K. (2018). Do developers update their library

dependencies? An empirical study on the impact of security advisories on library migration. Empirical Software

Engineering, 23, 384-417.

[23] Kumar, A. (2019). The convergence of predictive analytics in driving business intelligence and enhancing

DevOps efficiency. International Journal of Computational Engineering and Management, 6(6), 118-142.

Retrieved from https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-

IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf

[24] Laigner, R., Almeida, A. C., Assunção, W. K., & Zhou, Y. (2024). An Empirical Study on Challenges of Event

Management in Microservice Architectures. arXiv preprint arXiv:2408.00440.

[25] Mazzara, M., Dragoni, N., Bucchiarone, A., Giaretta, A., Larsen, S. T., & Dustdar, S. (2018). Microservices:

Migration of a mission critical system. IEEE Transactions on Services Computing, 14(5), 1464-1477.

[26] Mingers, J. (2015). Helping business schools engage with real problems: The contribution of critical realism and

systems thinking. European Journal of Operational Research, 242(1), 316-331.

[27] Newman, S. (2019). Monolith to microservices: evolutionary patterns to transform your monolith. O'Reilly

Media.

[28] Nyati, S. (2018). Transforming telematics in fleet management: Innovations in asset tracking, efficiency, and

communication. International Journal of Science and Research (IJSR), 7(10), 1804-1810. Retrieved from

https://www.ijsr.net/getabstract.php?paperid=SR24203184230

[29] Ok, E., & Eniola, J. (2024). Optimizing Performance: Implementing Event-Driven Architecture for Real-Time

Data Streaming in Microservices.

[30] Oukes, P., Van Andel, M., Folmer, E., Bennett, R., & Lemmen, C. (2021). Domain-Driven Design applied to land

administration system development: Lessons from the Netherlands. Land use policy, 104, 105379.

[31] Overeem, M., Spoor, M., & Jansen, S. (2017, February). The dark side of event sourcing: Managing data

conversion. In 2017 IEEE 24th international conference on software analysis, evolution and reengineering

(SANER) (pp. 193-204). IEEE.

[32] Özkan, O., Babur, Ö., & Brand, M. V. D. (2023). Domain-Driven Design in Software Development: A Systematic

Literature Review on Implementation, Challenges, and Effectiveness. arXiv preprint arXiv:2310.01905.

[33] Patterson, M. (2020). A structured approach to strategic alignment between business and information

technology objectives. South African Journal of Business Management, 51(1), 1-12.

[34] Raju, R. K. (2017). Dynamic memory inference network for natural language inference. International Journal of

Science and Research (IJSR), 6(2). https://www.ijsr.net/archive/v6i2/SR24926091431.pdf

https://www.ashwinanokha.com/ijeb-v22-4-2023.php
https://www.ijaresm.com/uploaded_files/document_file/Kushal_KarwadmKk.pdf
https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://ijcem.in/wp-content/uploads/THE-CONVERGENCE-OF-PREDICTIVE-ANALYTICS-IN-DRIVING-BUSINESS-INTELLIGENCE-AND-ENHANCING-DEVOPS-EFFICIENCY.pdf
https://www.ijsr.net/getabstract.php?paperid=SR24203184230
https://www.ijsr.net/archive/v6i2/SR24926091431.pdf

Journal of Information Systems Engineering and Management

2025, 10(45s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 408 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[35] Ren, Z., Wang, W., Wu, G., Gao, C., Chen, W., Wei, J., & Huang, T. (2018, September). Migrating web

applications from monolithic structure to microservices architecture. In Proceedings of the 10th Asia-Pacific

Symposium on Internetware (pp. 1-10).

[36] Roda-Sanchez, L., Garrido-Hidalgo, C., Royo, F., Maté-Gómez, J. L., Olivares, T., & Fernández-Caballero, A.

(2023). Cloud–edge microservices architecture and service orchestration: An integral solution for a real-world

deployment experience. Internet of Things, 22, 100777.

[37] Ruiu, P., Scionti, A., Nider, J., & Rapoport, M. (2016, July). Workload management for power efficiency in

heterogeneous data centers. In 2016 10th International Conference on Complex, Intelligent, and Software

Intensive Systems (CISIS) (pp. 23-30). IEEE.

[38] Sardana, J. (2022). The role of notification scheduling in improving patient outcomes. International Journal of

Science and Research Archive. Retrieved from https://ijsra.net/content/role-notification-scheduling-

improving-patient

[39] Scholl, B., Swanson, T., & Jausovec, P. (2019). Cloud native: using containers, functions, and data to build next-

generation applications. O'Reilly Media.

[40] Singh, V. (2022). Integrating large language models with computer vision for enhanced image captioning:

Combining LLMS with visual data to generate more accurate and context-rich image descriptions. Journal of

Artificial Intelligence and Computer Vision, 1(E227). http://doi.org/10.47363/JAICC/2022(1)E227

[41] Singh, V. (2022). Visual question answering using transformer architectures: Applying transformer models to

improve performance in VQA tasks. Journal of Artificial Intelligence and Cognitive Computing, 1(E228).

https://doi.org/10.47363/JAICC/2022(1)E228

[42] Stefanic, M. (2021). Developing the guidelines for migration from restful microservices to grpc. Masaryk

University, Faculty of Informatics, Brno, 1-81.

[43] Suleiman, N., & Murtaza, Y. (2024). Scaling microservices for enterprise applications: comprehensive strategies

for achieving high availability, performance optimization, resilience, and seamless integration in large-scale

distributed systems and complex cloud environments. Applied Research in Artificial Intelligence and Cloud

Computing, 7(6), 46-82.

[44] Taibi, D., & Systä, K. (2019). From monolithic systems to microservices: A decomposition framework based on

process mining. In International Conference on Cloud Computing and Services Science (pp. 153-164).

SciTePress.

[45] Villaca, G. L. D. (2022). Strategies to mitigate anti-patterns in microservices before migrating from a monolithic

system to microservices.

https://ijsra.net/content/role-notification-scheduling-improving-patient
https://ijsra.net/content/role-notification-scheduling-improving-patient
http://doi.org/10.47363/JAICC/2022(1)E227
https://doi.org/10.47363/JAICC/2022(1)E228

