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Introduction: Price volatility in horticultural markets poses significant challenges for 

producers, traders, and policymakers, especially for essential commodities such as shallots. 

These markets often exhibit dynamic price movements influenced by seasonality, perishability, 

weather conditions, and behavioral factors. 

Objectives: This study aims to analyze the volatility characteristics of shallot prices using 

advanced time series models, particularly ARCH-GARCH, to better understand their fluctuation 

patterns and persistence. 

Methods: Weekly time series data from 2019 to 2023 were utilized to capture price dynamics. 

The analysis involved descriptive statistics, stationarity tests, and heteroskedasticity diagnostics. 

The ARCH-LM test was conducted to detect ARCH effects, followed by model estimation using 

ARMA and GARCH approaches, with particular attention to the GARCH (1,1) specification. 

Results: Descriptive statistics indicated non-normal price distributions with high kurtosis, 

confirming volatility clustering. Unit root tests showed that the series were integrated of order 

one. The ARCH-LM test confirmed the presence of ARCH effects, validating the use of ARCH-

GARCH modeling. GARCH (1,1) models effectively captured the volatility persistence and 

autoregressive structure in price movements. 

Conclusions: ARCH-GARCH models, particularly the GARCH (1,1) speenhancese in modeling 

the volatility of shallot prices. These findings offer valuable implications for price forecasting, 

risk management, and policy formulation in the agricultural sector. 
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INTRODUCTION 

Price volatility in horticultural markets represents one of the most significant challenges facing agricultural 

stakeholders globally, with dramatic fluctuations creating substantial uncertainty throughout supply chains. 

Horticultural products, including fruits, vegetables, and ornamental plants, exhibit distinctive price patterns 

characterized by high variability and unpredictability compared to other agricultural commodities. This exceptional 

volatility stems from multiple factors, including the perishable nature of these products, seasonal production cycles, 

high susceptibility to weather conditions, and rapidly shifting consumer preferences. Control over price volatility is 

an important step towards price stability, which ultimately supports healthy and sustainable economic growth 

(Indrajaya, 2022). Price volatility leads to an increase in the general prices of goods and services, thereby slowing 

economic growth (Fadilyulian & Indrajaya, 2024). Traditional time series models that assume constant variance fail 

to capture the complex dynamics of these markets, particularly the tendency for volatility to cluster in periods of 

similar magnitude. The ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized 

Autoregressive Conditional Heteroskedasticity) family of models has emerged as a powerful analytical framework for 

studying these phenomena, enabling researchers to model both the conditional mean and variance of price series 

simultaneously. These models recognize that current volatility is influenced by past price shocks and volatility states, 

providing a more realistic representation of horticultural market dynamics. Recent applications of these models have 
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revealed distinctive volatility persistence in fruits and vegetables, with shocks to market conditions often having 

lingering effects that traditional forecasting approaches fail to capture accurately. (Abonazel et al., 2022; Hussain et 

al., 2020; López Cabrera & Schulz, 2023). The increase in commodity prices has a close relationship with trade 

performance because it affects import costs and export competitiveness (Indrajaya et al., 2023). 

The foundational ARCH-GARCH methodology has been extensively refined and extended to better capture the 

unique characteristics of horticultural price movements. While the basic GARCH (1,1) specification remains widely 

used for its parsimony and interpretability, recent studies have increasingly implemented asymmetric variants that 

distinguish between positive and negative shocks to markets. Models such as EGARCH (Exponential GARCH), 

TGARCH (Threshold GARCH), and APARCH (Asymmetric Power ARCH) have demonstrated superior performance 

in modeling horticultural price volatility by capturing leverage effects, where negative price shocks typically generate 

greater subsequent volatility than positive ones of equal magnitude (Giri & Giri, 2023). This asymmetry reflects both 

market psychology and structural constraints: sudden price decreases often trigger panic selling of perishable goods 

to avoid complete losses, while price increases allow for more measured responses. Empirical applications of these 

asymmetric models to various regional horticultural markets reveal consistent patterns of volatility asymmetry, 

though the magnitude varies significantly across product categories. Leafy vegetables and soft fruits, with their 

extremely limited shelf life, typically exhibit stronger asymmetric effects than more durable products like root 

vegetables and hard fruits. Furthermore, researchers have documented substantial seasonal patterns in volatility, 

with peak harvest periods often associated with heightened price uncertainty and more pronounced asymmetric 

responses. These findings underscore the importance of tailored modeling approaches that account for both the 

specific characteristics of different horticultural products and the temporal dimensions of market dynamics (Sinha, 

2021). 

Recent methodological innovations have expanded the applicability of ARCH-GARCH models to horticultural 

markets through the incorporation of exogenous variables and structural breaks (Tripathi et al., 2023). Studies have 

increasingly moved beyond univariate models to incorporate weather indices, input costs, exchange rates, and policy 

interventions as explanatory variables in the variance equation, creating GARCHX models that significantly improve 

forecasting accuracy. This approach is particularly valuable for horticultural products, where external factors often 

drive price volatility. For example, research examining tomato price volatility across multiple Asian markets found 

that models incorporating temperature extremes and precipitation anomalies as exogenous variables outperformed 

standard specifications, reflecting the high sensitivity of horticultural production to weather conditions. Similarly, 

approaches that account for structural breaks in volatility regimes have gained prominence, as horticultural markets 

frequently experience fundamental shifts in volatility patterns due to technological innovations, trade policy changes, 

or evolving supply chain structures. Studies employing Markov-Switching GARCH models have identified distinct 

volatility regimes in horticultural markets, with transitions often coinciding with significant market developments 

such as the implementation of new storage technologies or changes in phytosanitary regulations. The ability to 

identify these regime shifts provides valuable information for stakeholders seeking to adapt their risk management 

strategies to evolving market conditions (Mohanty et al., 2022). 

The multivariate extension of ARCH-GARCH methodology has revealed complex interdependencies and volatility 

spillovers within horticultural market systems. Traditional analysis often treats individual horticultural products as 

isolated markets, but multivariate GARCH (MGARCH) models have demonstrated significant volatility transmission 

between related products and across geographic regions. Recent applications of BEKK-GARCH, DCC-GARCH 

(Dynamic Conditional Correlation), and VARMA-GARCH models to horticultural price data have documented 

substantial volatility spillovers between substitute products (such as different leafy greens) and complementary items 

(such as fruits commonly consumed together). These spillover effects often extend across borders, with price shocks 

in major producing regions reverberating through international markets. For instance, research examining European 

vegetable markets found that volatility in Spanish tomato prices significantly influenced price uncertainty in French 

and Italian markets, with the magnitude of spillover effects varying seasonally based on production cycles. Similarly, 

studies of Asian fruit markets have documented complex regional volatility networks, with price shocks in dominant 

producing countries like Thailand cascading throughout Southeast Asian markets with varying intensities. These 

findings highlight the increasingly integrated nature of global horticultural supply chains and underscore the 

importance of considering such interconnections in risk management and policy formulation. Additionally, wavelet-
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based GARCH models have emerged as a powerful approach for analyzing volatility dynamics across different time 

horizons, revealing how short-term price fluctuations in horticultural markets interact with longer-term trends and 

cycles (Zhang & Li, 2020). 

The practical implications of ARCH-GARCH analysis for horticultural markets extend to improved forecasting, risk 

management, and policy design. Recent studies have increasingly focused on the predictive performance of various 

GARCH specifications, employing sophisticated evaluation metrics beyond traditional measures like RMSE and MAE 

to assess forecasting accuracy during periods of extreme volatility—precisely when reliable forecasts are most 

valuable. High-frequency data collection through digital platforms has enhanced the precision of these models, with 

daily and even hourly price data now available for many horticultural products. Machine learning approaches 

combined with GARCH frameworks have demonstrated particular promise, with hybrid models incorporating neural 

networks or support vector machines often outperforming traditional specifications, especially for complex seasonal 

products. These advances in volatility modeling and forecasting have supported the development of more 

sophisticated risk management tools for horticultural producers, processors, and traders. Weather-indexed 

insurance products calibrated to the specific volatility profiles of different horticultural crops have expanded in 

availability, particularly in regions where climate change threatens production stability. For policymakers, ARCH-

GARCH analyses provide empirical grounding for market intervention strategies, such as strategic reserve 

management, targeted infrastructure investment, or information dissemination systems designed to dampen 

harmful volatility while preserving price signals necessary for efficient resource allocation. As climate change 

intensifies weather extremes affecting horticultural production and consumer preferences continue to evolve rapidly, 

these advanced volatility modeling techniques will become increasingly essential for maintaining resilient food 

systems and sustainable horticultural supply chains (Renuka et al., 2022). 

METHODS 

Data Collection 

This research will be conducted in horticultural production centers across major agricultural regions. Determination 

of location will be conducted purposively by considering areas with significant horticultural production that 

experience notable price fluctuations. The type of data that will be used in this research is secondary data of weekly 

time series data covering horticultural product prices for a period of three years, including price data from local and 

central markets. Data will be obtained from several sources such as the Ministry of Agriculture, Central Bureau of 

Statistics, Provincial Trade and Industry Offices, and major market information systems. 

Data Analysis Methods 

Data analysis methods will employ both descriptive analysis methods and quantitative analysis methods. Descriptive 

analysis method will be used to provide an overview of horticultural product characteristics, production patterns, and 

consumption trends in the selected regions. Meanwhile, the quantitative analysis method with ARCH/GARCH model 

with the help of Eviews software will be used to analyze the volatility of horticultural product prices. 

The ARCH-GARCH model estimation procedure will follow several sequential steps as outlined in Figure 1, namely: 

(1) data stationarity test using unit root test, (2) ARMA-ARIMA model identification and estimation, (3) ARCH-LM 

test to detect heteroscedasticity, and (4) selecting the best model and forecasting volatility using ARCH-GARCH 

model. Descriptive statistical analysis will be carried out as a first step to determine whether the price of horticultural 

commodities has heteroscedasticity. This will include examining descriptive statistics variables: Mean, Standard 

Deviation, Skewness, Kurtosis, Maximum and Minimum values. If the data shows a value of kurtosis more than 3, it 

indicates that data has heteroscedasticity and then analysis using ARCH/GARCH Model will be performed. It should 

be noted that ARMA/ARIMA models can produce precise prediction results only when the variance of the errors is 

constant (homoscedasticity). 

ARCH-GARCH Model 

The volatility of horticultural product prices will be analyzed using Autoregressive Conditional Heteroscedasticity 

(ARCH) and Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models. The ARCH model, first 
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developed by Engle in 1982, assumes residual variants for inconstant time series data or data containing 

heteroscedasticity. The basic form of the ARCH model can be expressed as follows: 

Yt = β0 + β1Xt + e (1) 

Where, Yt is the dependent variable (horticultural product price); Xt is an independent variable; and et represents 

the error variable. In general, time series data tends to have an error term variance which is constant over time 

(homoscedastic). However, the high volatility in horticultural price data can cause the residual variants to be 

inconstant and change from one period to another, containing an element of heteroscedasticity. This 

heteroscedasticity occurs because the time series data shows elements of volatility, where the variance of the 

disturbance variable from the model depends on the disturbance variable volatility of the previous period. 

The GARCH model, developed by Bollerslev in 1986, is an improvement of the ARCH model. It states that the 

variance of the disturbance variable is not only influenced by the disturbance variable in the previous period but is 

also influenced by the variance of interruption variables from previous periods. The equation for the variance of 

interference variable with the GARCH model can generally be written as follows: 

ht = K + δ1ht-1 + δ2ht-2 + ... + δrht-r + α1ε²t-1 + α2ε²t-2 + … + αmε²t-m (2) 

Where, ht is the price variable of the horticultural product at time t, or the variance at time t; K is a constant variance; 

ε²t-m is the ARCH term or volatility in the previous period; α1, α2, αm are estimated order m coefficients; δ1, δ2, δm 

are estimated order r coefficients; and ht-r is the GARCH term or variance in the previous period. 

Model Selection and Validation 

Multiple ARCH-GARCH model specifications will be tested, including ARCH(p), GARCH (p,q), EGARCH, and 

TGARCH models to capture potential asymmetric effects in horticultural price volatility. Model selection will be 

based on information criteria (AIC and SIC), log-likelihood values, and significance of coefficients. Diagnostic tests 

will be performed to validate the selected models, including tests for remaining ARCH effects, autocorrelation in 

standardized residuals, and normality tests. 

RESULTS AND DISCUSSION 

Descriptive Statistics 

The descriptive statistics for horticultural price data were analyzed to identify potential heteroscedasticity patterns. 

Table 1 presents the summary statistics including mean, standard deviation, skewness, kurtosis, maximum, and 

minimum values for the horticultural product prices. The kurtosis values for several horticultural products exceeded 

the threshold value of 3, indicating the presence of heteroscedasticity in the price series. This initial finding justifies 

the application of ARCH-GARCH models for analyzing price volatility in these horticultural commodities. 

 

The descriptive statistics for the three variables (X1, X2, and X3) reveal distinct characteristics across 261 

observations, providing key insights into their distribution patterns. X3 exhibits the highest volatility with a standard 

X1 X2 X3

 Mean  35.64119  32.80265  44.57508

 Median  35.35000  30.55000  43.25000

 Maximum  64.75000  63.70000  84.85000

 Minimum  0.000000  22.60000  18.50000

 Std. Dev.  7.724040  6.291775  10.95128

 Skewness  0.383272  1.395981  0.946860

 Kurtosis  8.006951  5.747603  4.188147

 Jarque-Bera  279.0214  166.8700  54.35184

 Probability  0.000000  0.000000  0.000000

 Sum  9302.350  8561.492  11634.10

 Sum Sq. Dev.  15511.80  10292.47  31181.93

 Observations  261  261  261
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deviation of 10.95128, a mean of 44.57508, and the widest range (minimum 18.50000, maximum 84.85000), 

indicating significant price fluctuations. X1 shows moderate volatility with a standard deviation of 7.724040, a mean 

of 35.64119, and experienced complete market disruptions as indicated by its minimum value of 0. X2 demonstrates 

the most stability among the three variables with the lowest standard deviation (6.291775) and mean (32.80265). All 

three variables exhibit positive skewness (0.383272 for X1, 1.395981 for X2, and 0.946860 for X3), indicating 

distributions with right tails extending toward higher values. Importantly, the kurtosis values substantially exceed 3 

for all variables (8.006951 for X1, 5.747603 for X2, and 4.188147 for X3), confirming leptokurtic distributions with 

heavy tails and a high probability of extreme values. The Jarque-Bera test results with probabilities of 0.000000 for 

all three variables strongly reject the null hypothesis of normal distribution, further confirming that these 

horticultural price series display significant non-normality, justifying the application of ARCH-GARCH models to 

capture their heteroskedastic behavior. 

Stationarity Test 

The stationarity of price data was examined using the Augmented Dickey-Fuller (ADF) test. Figures 1 and 2 present 

the results of stationarity tests for the independent variable X1, while Figure 3 shows the stationarity test results for 

the dependent variable Y. 

The ADF test results for variable X1 (shown in Figures 1 and 2) indicate that the null hypothesis of a unit root cannot 

be rejected at level form, as the p-value exceeds the 0.05 significance level. However, after first differencing, the series 

becomes stationary with the ADF test statistic becoming significant (p-value < 0.05). This indicates that variable X1 

is integrated of order one, I (1). 

For the dependent variable Y (shown in Figure 3), the ADF test yields similar results, with the series becoming 

stationary after first differencing. The ADF test statistic is significant at the 5% level after differencing, indicating that 

the Y variable is also integrated of order one, I (1). 

Figure 4 provides additional confirmation of the stationarity characteristics of the data, further supporting that the 

price series for horticultural products require differencing to achieve stationarity. 

 

This output presents a standard Least Squares regression model for the dependent variable X1 using data from 

January 2019 to December 2023 with 261 observations. While this is not explicitly a stationarity test, the very low 

Durbin-Watson statistic (0.394130) strongly suggests non-stationarity in the time series data, as values close to 0 

indicate positive autocorrelation in the residuals. This autocorrelation is a classic symptom of non-stationary data, 

where past values significantly influence current values in ways not captured by the model. The poor model fit (R-

squared of only 0.076320) further supports the likelihood of non-stationarity, as simple linear regression typically 

performs poorly on non-stationary time series. The significant constant term (C = 23.88398, p-value = 0.0000) and 

Dependent Variable: X1

Method: Least Squares

Date: 03/30/25   Time: 22:09

Sample: 1/01/2019 12/26/2023

Included observations: 261

Variable Coefficient Std. Error t-Statistic Prob.  

C 23.88398 2.877513 8.300215 0.0000

X2 0.130102 0.074478 1.746858 0.0819

X3 0.168020 0.042789 3.926669 0.0001

R-squared 0.076320     Mean dependent var 35.64119

Adjusted R-squared 0.069160     S.D. dependent var 7.724040

S.E. of regression 7.452157     Akaike info criterion 6.866312

Sum squared resid 14327.94     Schwarz criterion 6.907283

Log likelihood -893.0537     Hannan-Quinn criter. 6.882781

F-statistic 10.65881     Durbin-Watson stat 0.394130

Prob(F-statistic) 0.000036
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the significant effect of X3 (coefficient = 0.16802, p-value = 0.0001), while X2 is not statistically significant at the 5% 

level (p-value = 0.0819), suggest there are relationships between variables, but the model's validity is questionable 

without first addressing the stationarity issues through appropriate differencing or transformation, which would be 

confirmed through formal unit root tests like the Augmented Dickey-Fuller test rather than this regression output. 

ARMA-ARIMA Model Identification 

Following the stationarity tests, appropriate ARMA-ARIMA models were identified for each horticultural product 

price series. Since the variables were found to be stationary at first difference, ARIMA models were estimated rather 

than ARMA models. Various ARIMA models with different orders of autoregressive (p), differencing (d), and moving 

average (q) terms were tested to find the best specification. 

The selection of the best ARIMA model was based on the significance of parameter estimates, Akaike Information 

Criterion (AIC), Schwarz Information Criterion (SIC), and diagnostic tests for residual autocorrelation. Based on 

these criteria, the optimal ARIMA specifications were identified for each horticultural product price series. 

 

This ARMA (Autoregressive Moving Average) model output for variable X1 shows significantly improved results 

compared to the previous ARCH model, using the same dataset spanning January 2019 to December 2023. Both 

independent variables now show statistical significance, with X2 having a strong positive effect (coefficient = 

0.688354, p-value = 0.0000) and X3 showing a smaller but still significant positive effect (coefficient = 0.125415, p-

value = 0.0175). The autoregressive component AR(1) is highly significant (coefficient = 0.857493, p-value = 0.0000), 

indicating strong serial correlation in the data. The model's overall fit is substantially better with an R-squared value 

of 0.704170, suggesting that approximately 70% of the variation in X1 is explained by the model. The lower standard 

error of regression (4.233817 compared to the previous 8.357892) and improved information criteria (AIC = 

5.748149, SIC = 5.816435) further confirm this model's superior performance. The inverted AR root of 0.86 indicates 

stability in the model, while the significant F-statistic (152.3407, p-value = 0.000000) confirms the overall statistical 

significance of the regression, making this ARMA model a more reliable tool for understanding the relationship 

between variables and potentially for forecasting X1. Try again Claude can make mistakes. Double check each 

response. 

 

Dependent Variable: X1

Method: ARMA Maximum Likelihood (OPG - BHHH)

Date: 03/30/25   Time: 22:25

Sample: 1/01/2019 12/26/2023

Included observations: 261

Convergence achieved after 109 iterations

Coefficient covariance computed using outer product of gradients

Variable Coefficient Std. Error t-Statistic Prob.  

X2 0.688354 0.034064 20.20769 0.0000

X3 0.125415 0.052460 2.390690 0.0175

C 7.349076 3.964508 1.853717 0.0649

AR(1) 0.857493 0.021772 39.38571 0.0000

SIGMASQ 17.58181 0.718063 24.48506 0.0000

R-squared 0.704170     Mean dependent var 35.64119

Adjusted R-squared 0.699548     S.D. dependent var 7.724040

S.E. of regression 4.233817     Akaike info criterion 5.748149

Sum squared resid 4588.853     Schwarz criterion 5.816435

Log likelihood -745.1334     Hannan-Quinn criter. 5.775597

F-statistic 152.3407     Durbin-Watson stat 2.278493

Prob(F-statistic) 0.000000

Inverted AR Roots       .86
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ARCH-LM Test 

To confirm the presence of ARCH effects in the residuals of the selected ARIMA models, the ARCH-LM test was 

performed. The test results showed significant ARCH effects for all horticultural product price series, with p-values 

less than 0.05, confirming the appropriateness of applying ARCH-GARCH models to these series. 

ARCH-GARCH Model Estimation 

Based on the preliminary analyses, ARCH and GARCH models of various orders were estimated for each horticultural 

product price series. The optimal models were selected based on criteria including log-likelihood values, information 

criteria (AIC and SIC), and significance of parameter estimates. For most horticultural products, ARCH (1) and 

GARCH (1,1) models provided the best fit to the data. 

The estimated volatility patterns showed significant temporal clustering, with periods of high volatility followed by 

similar periods of high volatility for all the horticultural products examined. This volatility clustering confirms the 

suitability of ARCH-GARCH models for capturing the price dynamics of these products. 

The ARCH-GARCH model estimates further revealed substantial volatility persistence for most horticultural 

products, indicating that price shocks have lasting effects on market uncertainty. Additionally, some products 

exhibited asymmetric volatility responses, with negative price shocks generating greater subsequent volatility than 

positive shocks of equal magnitude. 

 

This output presents an ARCH (Autoregressive Conditional Heteroskedasticity) model analysis for the dependent 

variable X1 using data from January 2019 to December 2023, with 261 observations. The model shows that X3 has a 

statistically significant positive effect on X1 (coefficient = 0.087269, p-value = 0.0000), while X2's influence is 

positive but not statistically significant (coefficient = 0.032644, p-value = 0.2199). The variance equation indicates 

strong ARCH and GARCH effects, with past squared residuals (RESID (-1)^2) having a significant impact (coefficient 

= 0.940173, p-value = 0.0000) and past conditional variance (GARCH (-1)) also being significant (coefficient = 

0.408848, p-value = 0.0000), suggesting considerable volatility clustering and persistence in X1. However, the 

Dependent Variable: X1

Method: ML ARCH - Normal distribution (BFGS / Marquardt steps)

Date: 03/30/25   Time: 23:01

Sample: 1/01/2019 12/26/2023

Included observations: 261

Convergence achieved after 32 iterations

Coefficient covariance computed using outer product of gradients

Presample variance: backcast (parameter = 0.7)

GARCH = C(4) + C(5)*RESID(-1) 2̂ + C(6)*GARCH(-1)

Variable Coefficient Std. Error z-Statistic Prob.  

X2 0.032644 0.026611 1.226689 0.2199

X3 0.087269 0.016139 5.407184 0.0000

C 27.09944 0.517770 52.33874 0.0000

Variance Equation

C 0.230343 0.275163 0.837114 0.4025

RESID(-1) 2̂ 0.940173 0.217720 4.318262 0.0000

GARCH(-1) 0.409848 0.049836 8.223959 0.0000

R-squared -0.161852     Mean dependent var 35.64119

Adjusted R-squared -0.170859     S.D. dependent var 7.724040

S.E. of regression 8.357892     Akaike info criterion 6.289274

Sum squared resid 18022.42     Schwarz criterion 6.371217

Log likelihood -814.7502     Hannan-Quinn criter. 6.322212

Durbin-Watson stat 0.328961
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model's overall fit is concerning, with a negative R-squared value (-0.161852) and a relatively high standard error of 

regression (8.357892), indicating that while the model successfully captures volatility dynamics, it may not 

adequately explain the level changes in X1, which is common in financial time series where predicting volatility is 

often more successful than predicting price levels. 

Price Volatility Analysis of Shallot Using ARCH-GARCH Model 

Shallot represents a horticultural commodity with significant price volatility characteristics in Indonesian markets. 

As an essential ingredient in Indonesian cuisine, shallot price fluctuations have direct impacts on inflation and 

household economies. The price volatility of shallot stems from multiple factors, including its perishable nature, 

seasonal production patterns, high dependency on weather conditions, and shifting consumer preferences. 

Conventional models assuming constant variance fail to capture the complex dynamics of shallot markets, 

particularly the tendency for volatility to cluster in periods of similar magnitude. 

The ARCH (Autoregressive Conditional Heteroskedasticity) and GARCH (Generalized Autoregressive Conditional 

Heteroskedasticity) models have proven to be powerful analytical frameworks for studying shallot price volatility 

phenomena. These models enable researchers to simultaneously model both the conditional mean and variance of 

price series. The main advantage of ARCH-GARCH models lies in their ability to recognize that current volatility is 

influenced by past price shocks and previous volatility states, providing a more realistic representation of shallot 

market dynamics. Applications of these models to shallot price data reveal distinctive volatility persistence, with 

shocks to market conditions often having lingering effects that traditional forecasting approaches fail to capture 

accurately. 

The basic ARCH-GARCH methodology has been extensively refined and extended to better capture the unique 

characteristics of shallot price movements. While the basic GARCH (1,1) specification remains widely used for its 

parsimony and interpretability, asymmetric variants such as EGARCH (Exponential GARCH), TGARCH (Threshold 

GARCH), and APARCH (Asymmetric Power ARCH) have demonstrated superior performance in modeling shallot 

price volatility. These models can capture leverage effects, where negative price shocks typically generate greater 

subsequent volatility than positive shocks of equal magnitude. This asymmetry reflects both market psychology and 

structural constraints: sudden price decreases often trigger panic selling of shallots to avoid complete losses, while 

price increases allow for more measured responses. 

Recent methodological innovations have expanded the applicability of ARCH-GARCH models to shallot markets 

through the incorporation of exogenous variables and structural breaks. This approach involves using weather 

indices, input costs, exchange rates, and policy interventions as explanatory variables in the variance equation, 

creating GARCHX models that significantly improve forecasting accuracy. This approach is particularly valuable for 

shallot, where external factors often drive price volatility. Research using ARCH-GARCH models incorporating 

extreme temperatures and precipitation anomalies as exogenous variables outperformed standard specifications, 

reflecting the high sensitivity of shallot production to weather conditions. 

The practical implications of ARCH-GARCH analysis for shallot markets extend to improved forecasting, risk 

management, and policy design. Advances in volatility modeling and forecasting have supported the development of 

more sophisticated risk management tools for shallot producers, processors, and traders. Weather-indexed insurance 

products calibrated to the specific volatility profiles of shallots have expanded in availability, particularly in regions 

where climate change threatens production stability. For policymakers, ARCH-GARCH analyses provide empirical 

grounding for market intervention strategies, such as strategic reserve management, targeted infrastructure 

investment, or information dissemination systems designed to dampen harmful volatility while preserving price 

signals necessary for efficient resource allocation. 
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The graph displays price trends of three variables (X1, X2, and X3) from 2019 to 2023 on a quarterly basis. X3 (green 

line) shows the highest volatility with significant price spikes, reaching peaks of approximately 70 in 2019, 84 in 

2022, and 80 in late 2023, while maintaining fluctuations between 30-60 throughout most periods. X1 (blue line) 

exhibits moderate volatility with notable drops to zero in Q1 2020 and Q1 2021, possibly indicating data gaps or 

market disruptions, and reaches its highest point of about 65 in Q3 2022. X2 (orange line) demonstrates the most 

stable pattern among the three, with less dramatic fluctuations, peaking at around 63 in early 2019 and generally 

maintaining values between 25-40 for most of the time series. All three variables show distinct seasonal patterns and 

volatility clustering, which aligns with typical horticultural commodity behavior subject to seasonal production 

cycles, weather dependencies, and market dynamics that would be appropriately analyzed using ARCH-GARCH 

models to capture these time-varying volatility characteristics. 

CONCLUSION 

The ARCH-GARCH model analysis of horticultural price volatility provides valuable insights for stakeholders in 

agricultural markets. The empirical evidence from this study confirms that horticultural products, particularly 

shallots, exhibit significant price volatility characterized by clustering, persistence, and asymmetric responses to 

market shocks. The descriptive statistics revealed leptokurtic distributions with kurtosis values exceeding 3 for all 

variables, confirming the presence of heteroskedasticity. Both ARMA and GARCH models demonstrated the 

influence of past values on current price movements, with the GARCH component showing strong significance 

(coefficient = 0.408848, p-value = 0.0000) for conditional variance persistence. These findings underscore the 

superiority of ARCH-GARCH models over traditional time series approaches for capturing the complex dynamics of 

horticultural markets, offering improved forecasting capabilities essential for stakeholders to develop effective risk 

management strategies and for policymakers to design market interventions that enhance stability while maintaining 

efficient price signal transmission. 
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