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In this study, we rely on adaptive kernel estimation to improve the non-parametric estimation of 

the probability density function (pdf) using the hyperbolic secant kernel (HSK). Previous 

research has demonstrated that adaptive kernel estimators with diverse and different 

bandwidths yield superior performance. This paper introduces an enhancement to the 

hyperbolic secant kernel estimator (HSKE) through the use of Quartile Deviation (QD), 

Coefficient of Variation (CV), and Variance-to-Mean Ratio (VMR). These proposed methods 

have also been applied to nonparametric Nadaraya-Watson (NW) regression. The mean squared 

error (MSE) is a measure used to evaluate the performance the new estimators that have been 

suggested. A lower MSE indicates a more accurate estimator or model, reflecting its effectiveness 

in making precise predictions. The simulation study results showed that very positive results, 

demonstrating that our modification of HSKE shows good performance in all cases. The two real 

data sets are showed improvement in the regression model when using the new methods. 

Keywords: Non-parametric, Adaptive Kernel estimates, Estimation, Regression, Mean squared 

error, Bandwidth, Hyperbolic Secant, standard deviation, mean. 

 

1. INTRODUCTION AND MOTIVATIONS 

One of the most researched problems in statistics is estimating an underlying distribution from data. In general, the 

methods used to estimate pdf can be sorted into two principal types: parametric and non-parametric methods. A 

major non-parametric method is the kernel-based approach, commonly known as Kernel Density Estimation (KDE). 

In econometrics, the KDE technique is sometimes referred to as the Parzen-Rosenblatt window approach. It’s a 

method built around the histogram methodology. This method is vital tool in statistics, machine learning, signal 

processing and other fields and that’s because its flexibility and ability to represent complex data distributions 

without relying on a specific parametric model, for more details see [6], [10], [15] and [25]. Rosenblatt (1956) and 

Parzen (1962) laid the theoretical foundations for KDE, see [13] and [14]. The bandwidth parameter (b) is crucial to 

the quality of KDE. It determines the width of the kernel used to smooth the data. It is also crucial to control the 

balance between bias and variance in the density estimate. The correct choice of b is essential to achieve a good 

density estimate that accurately reflects the basic distribution of the data. There are two types of band width in the 

kernel estimator, either fixed or variable. Fixed-bandwidth KDE involves using a constant bandwidth parameter b is 

applied across all data points. The KDE is expressed as: 

 

                                                     𝑓(𝑥) =
1

𝑛𝑏
∑ 𝐾(

𝑥−𝑋𝑖

𝑏
) ,

𝑛

𝑖=1
 (1) 

 

 where n represents the number of observations, Xi be the individual data points and b stands for the fixed bandwidth. 
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The fixed bandwidth is simple, easy to implement, and computationally efficient, and it gives a smoothing effect to 

the estimation; the choice of bandwidth directly affects the smoothness of the density estimate: A small bandwidth 

leads to a less smooth and more sensitive estimate and may capture more data noise, while a large bandwidth leads 

to a smoother and more general estimate and may over smooth and obscure details of the data distribution.  

There exist several methods for selecting a fixed bandwidth in (KDE) such as, plug-in methods: it is aim to estimate 

the optimal bandwidth by minimizing an approximation of the mean integrated squared error (MISE) [18] and [23], 

cross-validation: The goal of cross-validation techniques is to determine the best bandwidth by evaluating the 

prediction error performance of various bandwidths. These approaches, which are typically more data-driven and 

aim to minimize the estimation error by evaluating the performance of the density estimate on unseen data. An 

overview of a few popular techniques for cross-validation: Least-Squares Cross-Validation (LSCV), Leave-One-Out 

Cross Validation (LOOCV) and Biased Cross-Validation for more details see, [15], [19] and [21].  

Another method is rule-of-thumb method (Silverman’s Rule of Thumb), which is particularly effective for unimodal 

and symmetric distributions see [20]. The formula for Silverman’s Rule of Thumb is as follows: 

                                                              𝑏 = (
4 𝜎̂5

3𝑛
)

1

5
, (2) 

where b is the bandwidth,   expresses the standard deviation and n is the number of data points. Another formula 

for Silverman’s bandwidth is: 

                                                      

1

50.9min , ,
1.34

IQR
b n

−
 

=  
 

 (3) 

where, The interquartile range is represented by IQR. 

Adaptive kernel density estimation (AKDE) enhances and extends traditional kernel density estimation (KDE) by 

adjusting the bandwidth of the kernel function according to the local data density, thus improving the efficiency and 

accuracy of density estimations. AKDE is more flexible than standard KDE and can handle multimodal distributions 

and varying data densities more effectively.  

This adaptive approach allows for more accurate and detailed estimation of the underlying data distribution, which 

is particularly useful when dealing with complex data sets where the distribution is not known or is too complex to 

be modeled with parametric methods. The bandwidth (smoothing parameter) is fixed across the entire data range, 

which may lead to over-smoothing in regions with high data density and low smoothing in Areas with low data 

density. AKDE employs a different bandwidth (bi) than standard KDE, which has a fixed bandwidth, for more details 

see [16], [22] and [4].  

The basic KDE is expressed as: 

                                           𝑓(𝑥) =
1

𝑛𝑏
∑ 𝐾(

𝑥−𝑋𝑖

𝑏
)

𝑛

𝑖=1
,                              𝑥 ∈ ℝ, (4) 

where n is the sample size (the number of observations or data points), while b denotes the bandwidth, serving as a 

smoothing parameter. The kernel function is represented by K, and Xi denotes the data points. 

Hence, we can define the adaptive Kernel Density Estimation as the following: 

 

                                              𝑓(𝑥) =
1

𝑛𝑏𝑖
∑ 𝐾(

𝑥−𝑋𝑖

𝑏𝑖
)

𝑛

𝑖=1
,                              𝑥 ∈ ℝ, (5) 

where K(x) refers to kernel function and bi is the new bandwidth. 
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Abramson (1982) [1] proposed an adaptive method to vary the bandwidth according to the local density of the data, 

rather than using a fixed bandwidth for all data points. This approach improves the performance of kernel density 

estimators, especially when dealing with varying local density. The adaptive bandwidth bi for a data point Xi is 

expressed as: 

𝑏𝑖 =
𝑏

√𝑓(𝑋𝑖)

 ,  

where f˜(Xi) expresses a pilot estimate of the density at Xi. 

In Silverman [20], especially in the context of adaptive kernel density estimation, he presents an algorithm that 

improves a basic kernel estimator (such as the one proposed by Abramson) by incorporating local bandwidth 

modulation based on local density. 

Here’s how the algorithm typically works, in four steps: 

1. Compute the pilot density estimate 𝑓(𝑋𝑖), which is used to determine the bandwidth variation for the 

final adaptive estimate. 

2. Determine the local bandwidth factor λi, which is defined as: 

𝜆𝑔𝑖 = [
𝑓(𝑋𝑖)

𝑔
]

−𝛼

, 

 

where α is the sensitivity parameter and the value of α ∈ [0,1]. In (1982), Abramson selected α = 0.5; since this value 

yields good and effective forecasting results. Estimation using the geometric mean (g) of 𝑓(𝑋𝑖) is called (GM.KDE) 

3. Define the new bandwidth bi = λi ∗ b. 

4. Define the adaptive kernel estimator as shown in Equation (5). 

In 2010, Demir and Toktami¸s [9], [11] modified and improve the kernel estimator by using the arithmetic mean 

(M.KDE) rather than the geometric mean to compute λi. It can be expressed as follows: 

𝜆𝑥̅𝑖 = [
𝑓(𝑋𝑖)

𝑥̅
]

−𝛼

. 

In 2014, the kernel estimator was modified to use the range rather than the arithmetic or geometric mean to compute 

λi, as described in [24]. The local bandwidth factor is expressed as follows: 

𝜆𝑅𝑖 = [
𝑓(𝑋𝑖)

𝑅
]

−𝛼

. 

In 2019, the kernel estimator was modified to use the median (MED.KDE) instead of the arithmetic, geometric mean 

and range to compute λi, as described in [9]. The local bandwidth factor is expressed as follows: 

𝜆𝑀𝑒𝑑𝑖 = [
𝑓(𝑋𝑖)

𝑀𝑒𝑑
]

−𝛼

. 

In 2021, a new approach was proposed to an adaptive kernel estimator [7]. Four statistical techniques were used, 

which are as follows: Interquartile Range (IQR.KDE), Standard Deviation (SD), Mean Absolute Deviation (MAD), 

and Median Absolute Deviation (MeAD) instead of the geometric mean, an arithmetic mean, median and range. 

𝜆𝑖 = [
𝑓̃(𝑋𝑖)

𝐼𝑄𝑅
]
−𝛼

, [
𝑓̃(𝑋𝑖)

𝑀𝐴𝐷
]
−𝛼

, [
𝑓̃(𝑋𝑖)

𝑀𝑒𝐴𝐷
]
−𝛼

 or [
𝑓̃(𝑋𝑖)

𝑆𝐷
]
−𝛼
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This research contains four sections. Section 2 improves and proposes other adaptive kernel estimation methods for 

application to HSKE. Section 3 test the performance of the improved HSKE and compares it with the logistic kernel 

estimator based on simulated data. In section 4 the adaptive Nadaraya-Watson (NW) regression kernel methods. In 

section 5 real data set used to evaluate the performance of our proposed methods for regression model. Finally, 

Section 6 provides our observations and conclusions. 

 

 

2 NEW PROPOSED OF ADAPTIVE KERNEL DENSITY ESTIMATOR 

We present a new approach to the adaptive kernel estimator that employs three different statistical techniques: 

quartile deviation (QD.KDE), coefficient of variation (CV.KDE), and variance rate (VR.KDE).  

We apply these methods to the hyperbolic secant kernel estimator (HSKE), then we can define the adaptive kernel 

estimator by the hyperbolic secant kernel function as 

                                                 𝑓(𝑥) =
1

𝑛𝑏𝑖

1

𝜋
∑ sech (

𝑥−𝑋𝑖

𝑏𝑖
)

𝑛

𝑖=1
,  (6) 

where, bi = λi ∗ b and we are calculated (b) by the rule in equation 3. 

 

The First Statistical Technique (QD.KDE). 

The local bandwidth factor is expressed as: 

                                                                𝜆𝑄𝐷𝑖 = [
𝑓̃(𝑋𝑖)

𝑄𝐷
]
−𝛼

,  (7) 

where QD is the quartile deviation, also known as the semi-interquartile range is calculated as 

𝑄𝐷 =
𝑄3−𝑄1

2
. 

Here, Q1 represents the lower (first) quartile and represents the number that falls halfway between the bottom 

number and the middle number, while Q3 represents the upper (third) quartile, which represents the number 

falling halfway between the middle number and the top number. From here, the new bandwidth is given by: 

𝑏𝑖 = [
𝑓(𝑋𝑖)

𝑄𝐷
]

−𝛼

𝑏. 

The adaptive kernel estimator become: 

                                               𝑓(𝑥) =
1

𝑛 𝜋[
𝑓̃(𝑋𝑖)

𝑄𝐷
]

−𝛼

𝑏

∑ sech(
𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)

𝑄𝐷
]

−𝛼

𝑏

)

𝑛

𝑖=1

.  (8) 

The Second Statistical Technique (CV.KDE). 

The local bandwidth factor is expressed as: 

                                                                  𝜆𝐶𝑉𝑖 = [
𝑓̃(𝑋𝑖)

𝐶𝑉
]
−𝛼

,  (9) 

Coefficient of variation is symbolized by (CV). It compares the standard deviation (σ) of a data set to its mean (µ), 

and it is often expressed as a percentage. Mathematically, it is represented as: CV



= . From here, the new 

bandwidth is given by: 
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𝑏𝑖 = [
𝑓(𝑋𝑖)

𝐶𝑉
]

−𝛼

𝑏. 

The adaptive kernel estimator become: 

                                     𝑓(𝑥) =
1

𝑛 𝜋[
𝑓̃(𝑋𝑖)

𝐶𝑉
]

−𝛼

𝑏

∑ sech(
𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)

𝐶𝑉
]

−𝛼

𝑏

)

𝑛

𝑖=1

. (10) 

The Third Statistical Technique (VR.KDE). 

The local bandwidth factor is expressed as: 

                                                                                   𝜆𝑉𝑀𝑖 = [
𝑓̃(𝑋𝑖)

𝑉𝑅
]
−𝛼

,  (11) 

where VM, or variance rate, is calculated as the ratio of the variance σ2 to the mean, it is represented as: 

2

VR



= . 

From here, the new bandwidth is given by: 

( )
.i

i

f X
b b

VR

−
 

=  
 

 

The adaptive kernel estimator become: 

 𝑓(𝑥) =
1

𝑛 𝜋[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏

∑ sech(
𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏

)

𝑛

𝑖=1

. (12) 

 

3 SIMULATION OF ADAPTIVE KERNEL DENSITY ESTIMATOR 

We were conducted to evaluate the effectiveness and performance of the estimators by using two simulated data. The 

first simulation study, samples were drawn from an exponential distribution with a parameter of 2, and the analysis 

was performed for various sample sizes (100, 200, 300, 400, and 500). Each experiment was repeated 8000 times 

using Mathematica software. 

We calculated (MSE) to evaluate the performance of fixed bandwidth KDE and AKDE methods (including M.KDE, 

GM.KDE, HM.KDE, MED.KDE and IQR.KDE), and the new proposed methods (QD.KDE, CV.KDE, VR.KDE) using 

HSK. 

The table 1 shows that the MSE decreases with increasing sample size, we are observed that all adaptive kernel 

estimators perform better than the fixed bandwidth kernel density estimation, and the new proposed estimators 

outperforms them as they have the lowest MSE, especially the CV.KDE method. 

Table 1 indicates that the greater the sample size, the greater the MSE reduction ratio. 

Table 1: MSE values of fixed bandwidth kernel estimation and new proposed methods of kernel estimation by 

using HSK. 

n 
Fixed 

KDE 
M.KDE GM.KDE HM.KDE 

MED.KD

E 

IQR.KD

E 
QD.KDE VR.KDE CV.KDE 

100 0.326412 0.324113 0.32305

8 

0.322158 0.321809 0.317598 0.30564

8 

0.307011 0.301721 
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20

0 

0.28922

6 

0.28809 0.28757 0.28714

8 

0.28671 0.28390

5 

0.277077 0.27684

9 

0.26503

4 

30

0 

0.277713 0.27692

6 

0.276571 0.27628

9 

0.275886 0.273601 0.26860

5 

0.26842

6 

0.25385 

40

0 

0.26324

8 

0.26256

5 

0.26229

3 

0.26207

7 

0.261738 0.25987

4 

0.255897 0.25511 0.24100

2 

50

0 

0.2397 0.23923

8 

0.23904

6 

0.23889

7 

0.238602 0.23664

2 

0.23329

5 

0.232831 0.21889

4 

 

The second simulation study, samples were drawn from a normal distribution with mean 4 and variance 6. The 

analysis was conducted for various sample sizes (100, 200, 300, 400, and 500). Each experiment was repeated 8000 

times using Mathematica software.  

We calculated (MSE) to evaluate the performance of logistic kernel estimator and hyperbolic secant kernel estimator 

in two cases: fixed bandwidth and the proposed method using (CV).  

Table 2 shows that the MSE decreases with increasing sample size. Additionally, the hyperbolic kernel estimator 

outperforms the logistic kernel estimator in both scenarios. Furthermore, the new method using (CV) is more 

effective than the fixed bandwidth method for both types of estimators. 

Table 2: Comparison between HSKDE and logistic kernel density estimator using fixed bandwidth and the new 

propose method (CV.KDE). 

n Kernel 
Fixed 

Method 

Proposed Method 

(CV) 

100 

Hyperbolic 

Secant 
0.000704107 0.000656121 

Logistic 0.00163183 0.00154305 

200 

Hyperbolic 

Secant 
0.0000453472 0.0000398762 

Logistic 0.000110101 0.0000994557 

300 

Hyperbolic 

Secant 
7.48021*10−6 6.229*10−6 

Logistic 0.0000183295 0.000015857 

400 

Hyperbolic 

Secant 
1.5156*10−6 1.17625*10−6 

Logistic 3.72749*10−6 3.05155*10−6 

500 
Hyperbolic 

Secant 
4.86315*10−7 3.56578*10−7 



Journal of Information Systems Engineering and Management 

2025, 10(46s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 652 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Logistic 1.19769*10−6 9.37819*10−7 

 

4 THE ADAPTIVE NADARAYA-WATSON (NW) KERNEL METHODS FOR NONPARAMETRIC 

REGRESSION 

Regression analysis is one of the primary topics in applied statistics. This is because this area of study is widely used 

in engineering, economics, medicine, and agriculture. Finding a functional relationship between the components of 

two sets, X and Y, where X stands for the independent variable and Y for the dependent variable, is the main goal.  

Determining this function presents challenges, especially in establishing the functional form of the relationship from 

a set of Y observations for unobserved X values. These issues can be resolved through a variety of methods. The two 

classifications of approaches that are now in use are parametric and non-parametric.  

Assuming that the data has a defined functional form, parametric regression is a statistical method for modeling the 

relationship between one or more independent variables (predictors) and a dependent variable (response).  

The data is used to estimate the model’s parameters. While non-parametric regression can be useful for studying 

relationships in data when the underlying functional form is unknown or cannot be easily defined, making it an 

appropriate approach for modeling complex phenomena like disease outbreaks, for more details see [2] and [8].  

We have random variables Xi and Yi ∈R, the regression formula is: 

                                 ( ) , 1,2,3, , ,i i iY X i n = + =   (13) 

where εi are observation errors and β(Xi) the unknown regression function which can estimated by the following 

equation: 

𝛽̂(𝑥) =
∑ 𝑦𝑖 
𝑛
𝑖=1  𝐾𝑏(𝑥−𝑋𝑖)

∑ 𝐾𝑏(𝑥−𝑋𝑖)
𝑛
𝑖=1

. (14) 

where, 

𝛽̂(𝑥): The estimated value of the regression function. 

K(.): The kernel function. 

b: The bandwidth, which controls the smoothness of the estimate. 

Xi: The values of the independent variable.  

yi: The values of the dependent variable.  

n: The number of observations. 

The NW estimator was introduced by researchers Nadaraya and Watson in 1964 as a non-linear approximation to 

regression models that rely on empirical data [12]. The NW kernel estimator can be fixed or variable, and it is 

dependent on the smoothing parameter h (bandwidth).  

Traditional kernel regression with fixed bandwidth sometimes faces some challenges, including over smoothing: in 

regions where data points are dense, using a large bandwidth can hide the fine details of the relationship, and 

undersmoothing: in sparse regions, a small bandwidth can lead to noisy estimates.  

Adaptive kernel regression addresses these problems by allowing the bandwidth to vary according to the density of 

the data. Dense regions use a smaller bandwidth to obtain finer accuracy, while sparse regions use a larger bandwidth 

to ensure smoother estimates.  

For more details see, [9], [17] and [4]. The adaptive NW kernel estimator can be written as follow: 
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1

1

( ) ,
1

n
i i

i i i

ANW n
i

i i i

y x X
K

b b
x

x X
K

b b


=

=

 −
 
 =
 −
 
 





 (15) 

where, bi = b ∗ λi. 

As outlined in Section (2), various improvement methods were proposed. In this section, we implement both the 

previously discussed techniques and the newly proposed methods to enhance the performance of the Nadaraya-

Watson regression model.  

The adaptive NW kernel estimators are given by the hyperbolic kernel function, respectively, as follows: 

 

𝛽̂𝐴𝑁𝑊(𝑥) =

∑
𝑦𝑖

[
𝑓̃(𝑋𝑖)
𝑄𝐷

]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)
𝑄𝐷

]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

∑
1

[
𝑓̃(𝑋𝑖)
𝑄𝐷

]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)
𝑄𝐷

]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

.                 (16) 

𝛽̂𝐴𝑁𝑊(𝑥) =

∑
𝑦𝑖

[
𝑓̃(𝑋𝑖)
𝐶𝑉

]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)
𝐶𝑉

]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

∑
1

[
𝑓̃(𝑋𝑖)
𝐶𝑉

]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)
𝐶𝑉

]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

.                      (17) 

𝛽̂𝐴𝑁𝑊(𝑥) =

∑
𝑦𝑖

[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

∑
1

[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏

 sech

(

 
 𝑥−𝑋𝑖

[
𝑓̃(𝑋𝑖)

𝑉𝑅
]

−𝛼

𝑏
)

 
 

𝑛

𝑖=1

.                           (18) 

 

5 REAL DATA FOR THE ADAPTIVE NADARAYA-WATSON (NW) KERNEL METHODS 

In this section, two real data sets used to evaluate the performance of our proposed methods for regression model. 

The first data set: the data on daytime eruptions of Old Faithful Geyser in Yellowstone National Park from August 

1–4, 1978, comprises observations for the first 32 eruptions, out of a total of 52. The variables of interest are x, 

representing the duration of an eruption (in minutes), and y, which indicates the interval until the next eruption (also 

in minutes). It has been suggested that a non-parametric regression can effectively model the relationship between 

variable x and variable y, allowing for successful predictions of y based on values of x, see [3].  

x = 1.70, 1.70, 1.70, 1.80, 1.80, 1.80, 1.80, 1.90, 1.90, 1.90, 2.00, 2.30, 2.30, 2.50, 3.10, 3.20, 3.40, 3.40, 3.50, 3.50, 

3.60, 3.70, 3.70, 3.70, 3.70, 3.80, 3.80, 3.80, 3.80, 3.80, 3.90, 3.90. 

y = 55.00, 58.00, 56.00, 42.00, 51.00, 51.00, 45.00, 53.00, 49.00, 51.00, 51.00, 50.00, 53.00, 66.00, 57.00, 79.00, 

75.00, 86.00, 80.00, 82.00, 86.00, 69.00, 79.00, 73.00, 67.00, 60.00, 86.00, 72.00, 75.00, 75.00, 74.00, 80.00. 

The second data set: the data represents COVID-19 mortality rates in Italy over 59 days, recorded from February 

27 to April 27, 2020, as described in [5]. 
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The data are as follows: 

4.571,7.201,3.606,8.479,11.41,8.961,10.919,10.908,6.503,18.474,11.01,17.337,16.561,13.226,15.137,8.697,15.787,13.3

33,11.822,14.242,11.273,14.33,16.046,11.95,10.282,11.775,10.138,9.037,12.396,10.644,8.646,8.905,8.906,7.407,7.44

5,7.214,6.194,4.64,5.452,5.073,4.416,4.859,4.408,4.639,3.148,4.04,4.253,4.011,3.564,3.827,3.134,2.78,2.881,3.341,

2.686,2.814,2.508,2.45,1.518. 

The proposed methods estimators were more accurate than all the previous classical methods based on MSE 

criterion. From the real data results, note that Tables 3 and 4 compares between the FNW, previous classical (M.NW, 

HM.NW, GM.NW) and proposed methods (QD.NW, VR.NW, CV.NW) by using the hyperbolic secant.  

The new proposed methods estimators were more accurate and efficient than all the previous classical methods based 

on MSE criterion. The results revealed that the CV.NW method outperformed other approaches by achieving the 

lowest Mean Squared Error (MSE). 

The graphs of the Nadaraya-Watson regression using HSK, obtained for the two real data through both the classical 

and proposed methods, with b determined using Silverman’s thumb rule, are presented in Figure 1 and 4 respectively.  

Figures 2 and 3 represent the graphs between the classical and proposed methods at b= (0.1, 0.6) for the first real 

data while figure 5 represent the graph between the classical and proposed methods at b=(0.4) for the second real 

data. 

Table 3: MSE values of fixed bandwidth NW kernel regression and new proposed methods by using HSK for the 

first data set. 

b FNW M.NW GM.NW HM.NW QD.NW VR.NW CV.NW 

Silverman’s Rule 

of Thumb 

44.1778 44.1755 44.1101 44.0440 38.2788 25.7906 18.3926 

0.1 31.3482 31.2445 31.1228 30.9974 21.1509 18.3774 18.3630 

0.4 44.2149 44.2145 44.1481 44.0815 38.3224 25.8252 18.3936 

0.6 53.0510 53.3468 53.1631 52.9766 41.2575 28.4328 18.7006 

0.9 77.2038 77.8992 77.7270 77.5518 42.3493 28.9046 19.4995 

 

Table 4: MSE values of fixed bandwidth NW kernel regression and new proposed methods by using HSK for the 

second data set. 

b FNW M.NW GM.NW HM.NW QD.NW VR.NW CV.NW 

Silverman’s Rule 

of Thumb 
5.6328 5.5785 5.3951 5.1902 3.9487 3.1837 2.6123 

0.4 0.4523 0.24617 0.17025 0.1069 0.03248 0.00616 0.0000109 

0.7 1.6855 1.2854 1.10122 0.8932 0.52404 0.13937 0.00122 

1 2.32067 2.04879 1.90211 1.71715 1.35987 0.56395 0.01488 
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Figure 1: Classical and Proposed methods at b is Silverman’s Rule of Thumb for the first data set. 
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Figure 2: Classical and Proposed methods at b =0.1 for the first data set. 
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Figure 3: Classical and Proposed methods at b =0.6 for the first data set. 
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Figure 4: Classical and Proposed methods at b is Silverman’s Rule of Thumb for the second data set. 
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Figure 5: Classical and Proposed methods at b =0.4 for the second data set. 

6 CONCLUSION 

In this paper, we enhance HSKE by employing the adaptive kernel estimation technique. The newly proposed 

estimators for (QD, CV, VR) KDE demonstrate superior reliability compared to alternative methods, as indicated by 

MSE criteria across various simulations.  The newly proposed estimator of CV.KDE was more efficient than any of 

the other methods in both simulations due to its low MSE values. In both simulations, the MSE decreases as the 

sample size increases. Moreover, we observed that the HSKE is more efficient than the logistic kernel estimation in 

fixed bandwidth case and the adaptive method CV. The result of the above study is that newly adaptive kernel 

estimation methods significantly enhance performance of the hyperbolic secant kernel estimator. We also noticed 

that when applying the proposed methods to nonparametric regression, it achieves high efficiency compared to other 

previous methods in studies, and it is clear that the best method was the CVNW method. 
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