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The agricultural sector worldwide faces significant challenges from plant diseases that threaten 

crop yields, food security, and economic stability. This study introduces "PlantOHealth," a 

detailed comparative analysis of five models for detecting plant diseases using leaf images, 

leveraging advancements in deep learning. The models evaluated include a basic Convolutional 

Neural Network (CNN) and four transfer learning frameworks: VGG16, VGG19, MobileNetV2, 

and ResNet, all utilizing the PlantVillage dataset with balanced classes achieved through 

oversampling and undersampling techniques. MobileNetV2 emerged as the most effective, 

achieving an accuracy of 99.40% while maintaining computational efficiency for resource- 

constrained environments, followed by the CNN with an accuracy of 98.68%. VGG19 and 

VGG16 attained accuracies of 98.92% and 97.24%, respectively, while ResNet recorded the 

lowest at 96.24%. Graphical analyses provided deep insights into model performance and 

highlighted the trade-offs between accuracy and computational demands. "PlantOHealth" 

contributes to the integration of AI in agriculture, offering actionable insights for researchers 

and practitioners, while future work will focus on exploring advanced techniques like ensemble 

learning to enhance plant disease detection systems further, ultimately supporting sustainable 

agricultural practices and improving food security.   

Keywords:  Plant Disease Detection, Deep Learning, Convolutional Neural Networks, 

Transfer Learning, Precision Agriculture. 

 
 

INTRODUCTION 

Agriculture is crucial for global economies, providing food security and rural employment while also promoting 

sustainable development. However, plant diseases present a major threat, significantly lowering crop yields and 

resulting in economic losses estimated in the billions each year, as noted by the Food and Agriculture Organization 

(FAO). Traditional methods for detecting these diseases rely on time-consuming manual inspections by experts, 

which are often impractical in large-scale or resource-limited farming environments. To tackle these issues, the 

study "PlantOHealth" explores the application of deep learning techniques for plant disease detection, aiming to 

enhance precision agriculture. 

The research evaluates five different deep learning architectures using the PlantVillage dataset, including a baseline 

Convolutional Neural Network (CNN) and four pre-trained models—MobileNetV2, VGG16, VGG19, and ResNet—

employing transfer learning. MobileNetV2 achieved the highest classification accuracy of 99.40%, making it ideal 

for real-time, mobile agricultural applications, while VGG16 and VGG19 also performed well. In contrast, ResNet 

had the lowest accuracy, underscoring the need to consider task-specific requirements when selecting models. The 

study also highlights important preprocessing techniques, such as balancing class distributions and data 

augmentation, to improve model robustness and adaptability. "PlantOHealth" ultimately contributes valuable 

insights to agri-tech research by advancing disease detection systems and enhancing crop health management 

practices. 
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LITERATURE SURVEY 

The integration of artificial intelligence in agriculture has revolutionized plant disease detection, significantly 

enhancing accuracy and efficiency. Traditional machine learning techniques such as Support Vector Machines (SVM) 

[20], k-Nearest Neighbors (k-NN) [15], and Random Forests [18] relied on handcrafted feature extraction methods 

but often struggled to generalize across diverse datasets, limiting their effectiveness in real-world agricultural settings 

[4]. These limitations have driven research toward deep learning methodologies, particularly Convolutional Neural 

Networks (CNNs) [7], which offer automatic feature extraction and superior classification accuracy in plant disease 

detection [6]. Recent studies have demonstrated that deep learning architectures such as VGG16 , VGG19 [8], 

ResNet [9], and MobileNet [5] (Howard et al., 2017) surpass traditional methods due to their ability to capture 

hierarchical feature representations. MobileNet, in particular, has gained prominence due to its efficiency in 

resource-constrained environments, making it a suitable choice for mobile and edge computing applications [11]. 

These studies influenced our selection of MobileNetV2 as a primary candidate for comparative analysis in this 

research.Transfer learning has further expanded the capabilities of plant disease detection models by enabling 

pretrained deep learning models to adapt to agricultural datasets, even when labeled data is scarce. 

Reference [16] (Ni et al., 2020) discusses transfer learning in the context of plant disease detection, making it a more 

relevant citation for this study. This approach has been widely studied, demonstrating the feasibility of leveraging 

large-scale pretrained models such as ImageNet-based architectures to enhance plant disease classification [13]. 

Furthermore, improvements in data preprocessing techniques, including data augmentation [14], class balancing 

[15], and hyperspectral imaging , have been pivotal in mitigating dataset imbalances and enhancing model 

robustness. These preprocessing techniques were incorporated into our research methodology to ensure that our 

dataset remained balanced and representative of real-world agricultural conditions.Recent studies have highlighted 

the effectiveness of hybrid models that combine machine learning and deep learning techniques to improve model 

interpretability and overall classification accuracy [17]. The potential of ensemble learning methods has also been 

explored to optimize classification performance in multi-class plant disease detection tasks, showing notable 

improvements in accuracy and reliability [18]. Inspired by these findings, we considered implementing ensemble 

techniques in our future work to further refine classification accuracy. 

The incorporation of the Internet of Things (IoT) [19] and deep learning models has facilitated real-time disease 

monitoring and early detection, improving the efficiency of precision agriculture practices [20]. Additionally, 

predictive models integrating environmental variables such as soil health [21], humidity [22], and temperature [23] 

have shown promising results in improving plant disease forecasting. This research leveraged existing insights into 

predictive modeling to refine the data augmentation and feature extraction techniques applied in our comparative 

analysis.Despite these advancements, challenges persist in generalizing deep learning models across varied 

agricultural conditions due to variations in lighting [24], plant growth stages [25], and dataset biases [26]. Multi- 

modal learning approaches [27], federated learning [28], and domain adaptation techniques [29] have been proposed 

to enhance model robustness and address these limitations. To further improve data security and transparency, 

blockchain [30] and secure data-sharing frameworks [31] have been explored for smart agriculture applications. 

These studies informed our approach to ensuring ethical and secure data management practices in the PlantOHealth 

system.The present study, "PlantOHealth," builds upon these advancements by evaluating a basic CNN model 

alongside four transfer learning models. By synthesizing insights from previous works, this research aims to provide 

actionable knowledge for researchers, agricultural practitioners, and policymakers striving to optimize AI-driven 

agricultural solutions. Our study also lays the groundwork for future enhancements, including ensemble learning 

strategies, contextual data integration, and real-world deployment of optimized plant disease detection models. 

METHODOLOGY 

This research employs a systematic methodology for developing, training, and evaluating deep learning models for 

plant disease detection. Key steps include dataset preparation, model selection, training configurations, and 

evaluation metrics. 

Dataset Preparation 

The PlantVillage dataset, featuring over 50,000 images of healthy and diseased leaves from various crops, forms the 

basis of this study. To address class imbalance, the research used oversampling for underrepresented classes and 

undersampling for overrepresented ones. Data augmentation techniques—like rotation, flipping, scaling, and 
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cropping—were applied to improve model robustness. The dataset was divided into training, testing, and validation 

subsets in an 80:10:10 ratio for transfer learning models (MobileNetV2, VGG16, VGG19, ResNet), while only training 

and testing splits were used for the basic CNN. 

Model Selection 

This study evaluated five models: a basic CNN and four transfer learning architectures (MobileNetV2, VGG16, 

VGG19, and ResNet). These models were chosen to balance simplicity, accuracy, and computational efficiency. The 

basic CNN was custom-built to serve as a baseline, emphasizing lightweight architecture and ease of implementation. 

The transfer learning models leveraged pretrained weights from ImageNet, enabling faster convergence and 

improved accuracy due to their ability to extract generalizable features. 

• CNN: The architecture includes three convolutional layers that extract features from the input data, 

followed by max-pooling layers to reduce dimensionality and highlight significant features. The ReLU activation 

function adds non-linearity, while dropout regularization helps prevent overfitting. The network ends with fully 

connected layers that integrate the learned features to produce the output. 
 

 
Fig1. CNN Architecture 

 

• MobileNetV2: Chosen for its remarkable efficiency and optimal performance in mobile and 

embedded devices, this model utilizes depthwise separable convolutions. This innovative approach significantly 

reduces computational complexity without sacrificing accuracy, allowing for rapid processing and effective resource 

management in constrained environments. 
 

 
Fig2. MobileNetV2 Architecture 

 

• VGG16 and VGG19: Renowned for their complex architectural design, these models incorporate a 

series of stacked convolutional layers, each utilizing small filter sizes. This thoughtful arrangement allows them to 

capture and learn highly intricate and nuanced features from the input data, making them exceptionally effective in 

a variety of tasks related to image and signal processing. 
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Fig3. VGG16 Architecture 
 

 
 

Fig4. VGG19 Architecture 

• ResNet: Residual connections are a key innovation to address the vanishing gradient problem in deep 

learning. They enhance information flow across layers in deep neural networks, enabling effective training of 

deeper architectures. This improves performance and helps models learn complex patterns without the challenges 

faced by traditional deeper networks. 
 

Fig5. ResNet Architecture 
Training Configuration 

To ensure a fair evaluation, each model used optimized hyperparameters and the Adam optimizer for efficient 

training. We applied the categorical cross-entropy loss function for multi-class classification and fine-tuned the 

learning rate to enhance convergence and reduce overshooting risk. 

The training process varied between the basic CNN and the transfer learning models: 

• Basic CNN: This model underwent training for a total of 20 epochs. During this training, batch 

normalization and dropout layers were integrated to enhance model stability and mitigate the risk of overfitting, 

ensuring that it generalizes well to unseen data. 

• Transfer Learning Models: The transfer learning models were fine-tuned over 20 epochs by 

adapting pretrained weights for plant disease detection. To prevent overfitting, early stopping was used, which 

halted training when validation performance stagnated. This adjustment optimized the learning process while 

ensuring model integrity. 

Evaluation Metrics 

To evaluate plant disease detection models, we used metrics like accuracy, precision, recall, and F1-score. Accuracy 
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indicates correct classifications but doesn’t consider class imbalances, common in agricultural data. Precision 

reduces false alarms, while recall ensures accurate identification of diseased plants. The F1-score balances the two. 

We also assessed computational efficiency for real-world use, evaluating training and validation loss curves to detect 

overfitting and measuring inference time for real-time applications. Model size was crucial for mobile and IoT 

compatibility. Results showed that MobileNetV2 was the most efficient, achieving 99.40% accuracy with an 8.9ms 

inference time and 14MB storage. VGG16 and VGG19 had strong accuracy but required more resources, and  

ResNet50 displayed a trade-off between depth and efficiency. This study provides a comprehensive approach to 

choosing effective deep learning models for plant disease detection in precision agriculture. 

Visualization and Model Deployment 

Graphical analyses were essential in understanding the model's training behavior by visualizing accuracy and loss 

trends, which helped identify overfitting and underfitting. Learning curves aided in fine-tuning hyperparameters, 

enhancing model generalization. Confusion matrices offered insights into misclassifications, guiding targeted data 

augmentation and dataset rebalancing to address biases. These visual tools were vital in optimizing the model for 

accuracy and generalization. 

For mobile and IoT applications requiring quick inference times, MobileNetV2 was a standout, achieving 99.40% 

accuracy with an inference speed of 8.9 milliseconds per image, all within a compact size of 14MB. After training, 

models were saved in formats like TensorFlow Lite or ONNX for smooth integration, emphasizing the balance 

between performance and efficiency for AI-driven plant disease detection and global food security efforts. 
 

 

 

 
Fig6. Predicted Images From The Models 

 
RESULT ANALYSIS 

In this study, we carried out an experimental data analysis by testing several deep learning models on sample datasets 

for plant disease detection. Models including MobileNetV2, VGG16, VGG19, ResNet, and a basic CNN were trained 

and evaluated using the PlantVillage dataset, applying oversampling and data augmentation techniques for balance. 

The analysis involved detecting diseases across multiple samples, where MobileNetV2 achieved the highest accuracy 

of 99.40%, making it highly suitable for real-world deployment. Other models like VGG19 and CNN also showed 

strong results, while deeper models like ResNet faced slight challenges in maintaining accuracy. 
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All observations and performance insights were derived directly from experimental data generated throughout the 

research. Graphical tools such as confusion matrices and accuracy-loss trends were utilized to validate results and 

identify minor misclassifications. This systematic analysis, rooted firmly in the data described in the paper, highlights 

the practical applicability of deep learning for precision agriculture and offers a clear path for future improvements 

through ensemble techniques and further model optimization. 

 
Experimental data analysis using VGG 16 

 

SL No Subject Sample Detected 

(Yes/No) 

Accuracy(%) 

 
 

 
1 

 
 

 
Apple Black Rot 

Black_rot (1).JPG Yes 100 

Black_rot (10).JPG Yes 99.99 

Black_rot (101).JPG Yes 95.19 

Black_rot (104).JPG Yes 99.96 

Black_rot (110).JPG Yes 99.88 

 
 

 
2 

 
 

 
Apple Cedar Rust 

Cedar_rust (1).JPG Yes 100 

Cedar_rust (10).JPG Yes 99.99 

Cedar_rust (108).JPG Yes 99.99 

Cedar_rust (109).JPG Yes 99.96 

Cedar_rust (112).JPG Yes 99.96 

 
 

 
3 

 
 

 
Apple Scab 

Scab (1).JPG Yes 100 

Scab (101).JPG Yes 99.70 

Scab (109).JPG Yes 99.70 

Scab (123).JPG Yes 75.78 

Scab (127).JPG Yes 99.75 

 
 

 
4 

 
 

 
Apple Healthy 

Healthy (1).JPG Yes 99.84 

Healthy (10).JPG Yes 99.99 

Healthy (100).JPG No 54.76 

Healthy (1000).JPG Yes 100 

Healthy (1001).JPG Yes 97.79 

 
 

 
5 

 
 

 
Grape Black Rot 

Grape Black Rot (1).JPG Yes 99.71 

Grape Black Rot (10).JPG Yes 100 

Grape Black Rot (100).JPG Yes 100 

Grape Black Rot (1000).JPG Yes 99.98 

Grape Black Rot (1001).JPG Yes 100 

 
 

 

 

Grape Leaf Blight (1).JPG Yes 100 

Grape Leaf Blight (10).JPG Yes 99.98 
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6 

Grape Leaf Blight 

(Isariopsis Leaf 

Spot) 

Grape Leaf Blight (100).JPG Yes 100 

Grape Leaf Blight (1000).JPG Yes 99.85 

Grape Leaf Blight (1001).JPG Yes 99.97 

7 Grape Healthy Grape_Healthy (1).JPG Yes 100 

 
  Grape_Healthy (10).JPG Yes 100 

Grape_Healthy (100).JPG Yes 95.71 

Grape_Healthy (1000).JPG Yes 79.75 

Grape_Healthy (1001).JPG Yes 98.37 

 
 

 
8 

 

 
Potato Early Blight 

Potato Early Blight (1).jpg Yes 99.97 

Potato Early Blight (10).jpg Yes 99.98 

Potato Early Blight (100).jpg Yes 97.30 

Potato Early Blight (101).jpg No 76.58 

Potato Early Blight (102).jpg Yes 78.70 

 
 

 
9 

 
 

 
Potato Late Blight 

Potato Late Blight (1).jpg Yes 100 

Potato Late Blight (10).jpg Yes 91.38 

Potato Late Blight (100).jpg Yes 99.45 

Potato Late Blight (101).jpg Yes 95.55 

Potato Late Blight (102).jpg Yes 99.93 

 
 

 
10 

 
 

 
Potato Healthy 

Potato_Healthy (1).jpg Yes 99.65 

Potato_Healthy (10).jpg Yes 82.76 

Potato_Healthy (100).jpg Yes 90.56 

Potato_Healthy (101).jpg Yes 99.47 

Potato_Healthy (102).jpg Yes 88.21 

 
 

 
11 

 
 

 
Rose Black Spot 

Black Spot (1).jpg Yes 99.94 

Black Spot (10).jpg Yes 91.29 

Black Spot (100).jpg Yes 96.62 

Black Spot (101).jpg Yes 78.32 

Black Spot (102).jpg Yes 99.86 

 
 

 
12 

 

 
Rose Downy Mildew 

Downy Mildew (1).jpg Yes 100 

Downy Mildew (10).jpg Yes 99.90 

Downy Mildew (100).jpg Yes 99.05 

Downy Mildew (101).jpg Yes 99.98 

Downy Mildew (102).jpg Yes 99.75 
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13 

 
 

 
Rose Fresh Leaf 

Fresh leaf(1).jpg Yes 99.78 

Fresh leaf(10).jpg Yes 96.45 

Fresh leaf(100).jpg Yes 80.26 

Fresh leaf(101).jpg Yes 90.95 

Fresh leaf(102).jpg Yes 99.79 

 
Table 1: Experimental data analysis using VGG16 

 
        Experimental data analysis using VGG 19 
 

SL No Subject Sample Detected 

(Yes/No) 

Accuracy(%) 

 
 

 
1 

 
 

 
Apple Black Rot 

Black_rot (1).JPG Yes 100 

Black_rot (10).JPG Yes 100 

Black_rot (101).JPG Yes 99.96 

Black_rot (104).JPG Yes 100 

Black_rot (110).JPG Yes 100 

 
 

 
2 

 
 

 
Apple Cedar Rust 

Cedar_rust (1).JPG Yes 100 

Cedar_rust (10).JPG Yes 100 

Cedar_rust (108).JPG Yes 100 

Cedar_rust (109).JPG Yes 100 

Cedar_rust (112).JPG Yes 100 

 
 

 
3 

 
 

 
Apple Scab 

Scab (1).JPG Yes 100 

Scab (101).JPG Yes 100 

Scab (109).JPG Yes 100 

Scab (123).JPG Yes 99.74 

Scab (127).JPG Yes 100 

 
 

 
4 

 
 

 
Apple Healthy 

Healthy (1).JPG Yes 89.84 

Healthy (10).JPG Yes 99.89 

Healthy (100).JPG No 54.76 

Healthy (1000).JPG Yes 100 

Healthy (1001).JPG Yes 95.79 

 
 

 
5 

 
 

 
Grape Black Rot 

Grape Black Rot (1).JPG Yes 100 

Grape Black Rot (10).JPG Yes 100 

Grape Black Rot (100).JPG Yes 100 

Grape Black Rot (1000).JPG Yes 100 
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Grape Black Rot (1001).JPG Yes 100 

 
 

 
6 

 

 
Grape Leaf Blight 

(Isariopsis Leaf 

Spot) 

Grape Leaf Blight (1).JPG Yes 100 

Grape Leaf Blight (10).JPG Yes 100 

Grape Leaf Blight (100).JPG Yes 100 

Grape Leaf Blight (1000).JPG Yes 100 

Grape Leaf Blight (1001).JPG Yes 100 

7 Grape Healthy Grape_Healthy (1).JPG Yes 100 

 
  Grape_Healthy (10).JPG Yes 100 

Grape_Healthy (100).JPG Yes 100 

Grape_Healthy (1000).JPG Yes 100 

Grape_Healthy (1001).JPG Yes 100 

 
 

 
8 

 

 
Potato Early Blight 

Potato Early Blight (1).jpg Yes 100 

Potato Early Blight (10).jpg Yes 100 

Potato Early Blight (100).jpg Yes 99.99 

Potato Early Blight (101).jpg Yes 99.89 

Potato Early Blight (102).jpg Yes 100 

 
 

 
9 

 
 

 
Potato Late Blight 

Potato Late Blight (1).jpg Yes 100 

Potato Late Blight (10).jpg Yes 98.48 

Potato Late Blight (100).jpg Yes 100 

Potato Late Blight (101).jpg Yes 97.19 

Potato Late Blight (102).jpg Yes 100 

 
 

 
10 

 
 

 
Potato Healthy 

Potato_Healthy (1).jpg Yes 99.99 

Potato_Healthy (10).jpg Yes 98.93 

Potato_Healthy (100).jpg Yes 99.46 

Potato_Healthy (101).jpg Yes 100 

Potato_Healthy (102).jpg Yes 99.64 

 
 

 
11 

 
 

 
Rose Black Spot 

Black Spot (1).jpg Yes 100 

Black Spot (10).jpg Yes 100 

Black Spot (100).jpg Yes 99.98 

Black Spot (101).jpg Yes 99.67 

Black Spot (102).jpg Yes 99.86 

 
 

 

 

Downy Mildew (1).jpg Yes 100 

Downy Mildew (10).jpg Yes 100 
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12 

Rose Downy Mildew Downy Mildew (100).jpg Yes 100 

Downy Mildew (101).jpg Yes 100 

Downy Mildew (102).jpg Yes 100 

 
 

 
13 

 
 

 
Rose Fresh Leaf 

Fresh leaf(1).jpg Yes 99.91 

Fresh leaf(10).jpg Yes 96.70 

Fresh leaf(100).jpg Yes 66.73 

Fresh leaf(101).jpg Yes 99.94 

Fresh leaf(102).jpg Yes 99.83 

 
Table 2: Experimental data analysis using VGG19 

 
Experimental data analysis using MobileNet V2 

 
SL No Subject Sample Detected 

(Yes/No) 

Accuracy(%) 

 
 

 
1 

 
 

 
Apple Black Rot 

Black_rot (1).JPG Yes 100 

Black_rot (10).JPG Yes 94.02 

Black_rot (101).JPG Yes 75.99 

Black_rot (104).JPG Yes 97.46 

Black_rot (110).JPG Yes 100 

 
 

 
2 

 
 

 
Apple Cedar Rust 

Cedar_rust (1).JPG Yes 100 

Cedar_rust (10).JPG Yes 99.97 

Cedar_rust (108).JPG Yes 100 

Cedar_rust (109).JPG Yes 99.92 

Cedar_rust (112).JPG Yes 100 

 
 

 
3 

 
 

 
Apple Scab 

Scab (1).JPG Yes 99.71 

Scab (101).JPG No 99.81 

Scab (109).JPG Yes 98.88 

Scab (123).JPG No 93.59 

Scab (127).JPG Yes 98.36 

 
 

 
4 

 
 

 
Apple Healthy 

Healthy (1).JPG Yes 100 

Healthy (10).JPG Yes 99.99 

Healthy (100).JPG Yes 98.77 

Healthy (1000).JPG Yes 100 

Healthy (1001).JPG Yes 100 
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5 

 
 

 
Grape Black Rot 

Grape Black Rot (1).JPG Yes 100 

Grape Black Rot (10).JPG Yes 99.71 

Grape Black Rot (100).JPG Yes 100 

Grape Black Rot (1000).JPG Yes 99.71 

Grape Black Rot (1001).JPG Yes 100 

 
 

 
6 

 

 
Grape Leaf Blight 

(Isariopsis Leaf 

Spot) 

Grape Leaf Blight (1).JPG Yes 99.54 

Grape Leaf Blight (10).JPG Yes 98.69 

Grape Leaf Blight (100).JPG Yes 100 

Grape Leaf Blight (1000).JPG Yes 95.57 

Grape Leaf Blight (1001).JPG Yes 99.90 

7 Grape Healthy 
Grape_Healthy (1).JPG Yes 99.31 

Grape_Healthy (10).JPG Yes 81.72 

 
  Grape_Healthy (100).JPG Yes 99.98 

Grape_Healthy (1000).JPG Yes 98.52 

Grape_Healthy (1001).JPG Yes 75.11 

 
 

 
8 

 

 
Potato Early Blight 

Potato Early Blight (1).jpg Yes 99.74 

Potato Early Blight (10).jpg Yes 99.50 

Potato Early Blight (100).jpg Yes 94.33 

Potato Early Blight (101).jpg Yes 99.99 

Potato Early Blight (102).jpg No 100 

 
 

 
9 

 
 

 
Potato Late Blight 

Potato Late Blight (1).jpg Yes 100 

Potato Late Blight (10).jpg Yes 97.52 

Potato Late Blight (100).jpg Yes 99.64 

Potato Late Blight (101).jpg Yes 99.41 

Potato Late Blight (102).jpg Yes 99.93 

 
 

 
10 

 
 

 
Potato Healthy 

Potato_Healthy (1).jpg Yes 100 

Potato_Healthy (10).jpg Yes 100 

Potato_Healthy (100).jpg Yes 100 

Potato_Healthy (101).jpg Yes 100 

Potato_Healthy (102).jpg Yes 100 

 
 

 
11 

 
 

 
Rose Black Spot 

Black Spot (1).jpg Yes 99.94 

Black Spot (10).jpg Yes 92.29 

Black Spot (100).jpg Yes 99.89 
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Black Spot (101).jpg Yes 91.95 

Black Spot (102).jpg Yes 99.86 

 
 

 
12 

 

 
Rose Downy Mildew 

Downy Mildew (1).jpg Yes 99.96 

Downy Mildew (10).jpg Yes 100 

Downy Mildew (100).jpg Yes 99.59 

Downy Mildew (101).jpg Yes 98.28 

Downy Mildew (102).jpg Yes 99.99 

 
 

 
13 

 
 

 
Rose Fresh Leaf 

Fresh leaf(1).jpg Yes 99.78 

Fresh leaf(10).jpg Yes 96.45 

Fresh leaf(100).jpg Yes 99.24 

Fresh leaf(101).jpg Yes 96.11 

Fresh leaf(102).jpg Yes 99.79 

 
Table 3: Experimental data analysis using MobileNet V2 

 
Experimental data analysis using ResNet 

 
SL No Subject Sample Detected 

(Yes/No) 

Accuracy(%) 

 
 

 
1 

 
 

 
Apple Black Rot 

Black_rot (1).JPG Yes 99.96 

Black_rot (10).JPG No 70.94 

Black_rot (101).JPG Yes 99.78 

Black_rot (104).JPG Yes 88.31 

Black_rot (110).JPG Yes 98.35 

 
 

 
2 

 
 

 
Apple Cedar Rust 

Cedar_rust (1).JPG Yes 99.70 

Cedar_rust (10).JPG Yes 58.66 

Cedar_rust (108).JPG No 75.41 

Cedar_rust (109).JPG Yes 97.96 

Cedar_rust (112).JPG Yes 99.96 

 
 

 
3 

 
 

 
Apple Scab 

Scab (1).JPG Yes 100 

Scab (101).JPG Yes 96.70 

Scab (109).JPG Yes 99.60 

Scab (123).JPG Yes 74.78 

Scab (127).JPG Yes 91.75 

  Healthy (1).JPG Yes 88.84 
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4 

 

 
Apple Healthy 

Healthy (10).JPG No 44.56 

Healthy (100).JPG No 54.76 

Healthy (1000).JPG Yes 100 

Healthy (1001).JPG Yes 97.79 

 
 

 
5 

 
 

 
Grape Black Rot 

Grape Black Rot (1).JPG Yes 99.61 

Grape Black Rot (10).JPG Yes 100 

Grape Black Rot (100).JPG Yes 100 

Grape Black Rot (1000).JPG Yes 99.88 

Grape Black Rot (1001).JPG Yes 100 

 
 

 
6 

 

 
Grape Leaf Blight 

(Isariopsis Leaf 

Spot) 

Grape Leaf Blight (1).JPG Yes 100 

Grape Leaf Blight (10).JPG Yes 97.98 

Grape Leaf Blight (100).JPG Yes 100 

Grape Leaf Blight (1000).JPG Yes 99.85 

Grape Leaf Blight (1001).JPG Yes 99.98 

7 Grape Healthy 
Grape_Healthy (1).JPG Yes 100 

Grape_Healthy (10).JPG Yes 100 

 
  Grape_Healthy (100).JPG Yes 95.71 

Grape_Healthy (1000).JPG Yes 78.75 

Grape_Healthy (1001).JPG Yes 98.37 

 
 

 
8 

 

 
Potato Early Blight 

Potato Early Blight (1).jpg Yes 99.97 

Potato Early Blight (10).jpg Yes 99.98 

Potato Early Blight (100).jpg Yes 97.31 

Potato Early Blight (101).jpg No 76.58 

Potato Early Blight (102).jpg Yes 78.70 

 
 

 
9 

 
 

 
Potato Late Blight 

Potato Late Blight (1).jpg Yes 100 

Potato Late Blight (10).jpg Yes 92.38 

Potato Late Blight (100).jpg Yes 99.55 

Potato Late Blight (101).jpg Yes 95.55 

Potato Late Blight (102).jpg Yes 99.93 

 
 

 
10 

 
 

 
Potato Healthy 

Potato_Healthy (1).jpg Yes 99.65 

Potato_Healthy (10).jpg Yes 84.76 

Potato_Healthy (100).jpg Yes 90.56 

Potato_Healthy (101).jpg Yes 99.47 
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Potato_Healthy (102).jpg Yes 88.21 

 
 

 
11 

 
 

 
Rose Black Spot 

Black Spot (1).jpg Yes 99.94 

Black Spot (10).jpg Yes 91.29 

Black Spot (100).jpg Yes 96.62 

Black Spot (101).jpg Yes 78.32 

Black Spot (102).jpg Yes 99.86 

 
 

 
12 

 

 
Rose Downy Mildew 

Downy Mildew (1).jpg Yes 100 

Downy Mildew (10).jpg Yes 99.90 

Downy Mildew (100).jpg Yes 99.67 

Downy Mildew (101).jpg Yes 99.93 

Downy Mildew (102).jpg Yes 99.72 

 
 

 
13 

 
 

 
Rose Fresh Leaf 

Fresh leaf(1).jpg Yes 99.78 

Fresh leaf(10).jpg Yes 96.55 

Fresh leaf(100).jpg Yes 80.56 

Fresh leaf(101).jpg Yes 90.45 

Fresh leaf(102).jpg Yes 99.89 

Table 4: Experimental data analysis using ResNet 

 
Experimental data analysis using CNN 

 
SL No Subject Sample Detected 

(Yes/No) 

Accuracy(%) 

 
 

 
1 

 
 

 
Apple Black Rot 

Black_rot (1).JPG Yes 100 

Black_rot (10).JPG Yes 100 

Black_rot (101).JPG Yes 99.96 

Black_rot (104).JPG Yes 100 

Black_rot (110).JPG Yes 100 

 
 

 
2 

 
 

 
Apple Cedar Rust 

Cedar_rust (1).JPG Yes 100 

Cedar_rust (10).JPG Yes 99.78 

Cedar_rust (108).JPG Yes 100 

Cedar_rust (109).JPG Yes 92.38 

Cedar_rust (112).JPG Yes 92.48 

 
 

 
3 

 
 

 
Apple Scab 

Scab (1).JPG Yes 100 

Scab (101).JPG Yes 100 

Scab (109).JPG Yes 100 
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Scab (123).JPG Yes 99.74 

Scab (127).JPG Yes 100 

 
 

 
4 

 
 

 
Apple Healthy 

Healthy (1).JPG Yes 94.84 

Healthy (10).JPG Yes 97.99 

Healthy (100).JPG No 54.76 

Healthy (1000).JPG Yes 99.00 

Healthy (1001).JPG Yes 97.79 

 
 

 
5 

 
 

 
Grape Black Rot 

Grape Black Rot (1).JPG Yes 100 

Grape Black Rot (10).JPG Yes 91.74 

Grape Black Rot (100).JPG Yes 92.74 

Grape Black Rot (1000).JPG Yes 100 

Grape Black Rot (1001).JPG Yes 100 

 
 

 
6 

 

 
Grape Leaf Blight 

(Isariopsis Leaf 

Spot) 

Grape Leaf Blight (1).JPG Yes 100 

Grape Leaf Blight (10).JPG Yes 92.54 

Grape Leaf Blight (100).JPG Yes 100 

Grape Leaf Blight (1000).JPG Yes 98.57 

Grape Leaf Blight (1001).JPG Yes 100 

7 Grape Healthy 
Grape_Healthy (1).JPG Yes 100 

Grape_Healthy (10).JPG Yes 100 

 
  Grape_Healthy (100).JPG Yes 100 

Grape_Healthy (1000).JPG Yes 100 

Grape_Healthy (1001).JPG Yes 100 

 
 

 
8 

 

 
Potato Early Blight 

Potato Early Blight (1).jpg Yes 100 

Potato Early Blight (10).jpg Yes 100 

Potato Early Blight (100).jpg Yes 99.99 

Potato Early Blight (101).jpg Yes 99.89 

Potato Early Blight (102).jpg Yes 100 

 
 

 
9 

 
 

 
Potato Late Blight 

Potato Late Blight (1).jpg Yes 100 

Potato Late Blight (10).jpg Yes 98.48 

Potato Late Blight (100).jpg Yes 100 

Potato Late Blight (101).jpg Yes 97.19 

Potato Late Blight (102).jpg Yes 100 

  Potato_Healthy (1).jpg Yes 99.99 
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10 

 

 
Potato Healthy 

Potato_Healthy (10).jpg Yes 98.93 

Potato_Healthy (100).jpg Yes 99.46 

Potato_Healthy (101).jpg Yes 100 

Potato_Healthy (102).jpg Yes 99.64 

 
 

 
11 

 
 

 
Rose Black Spot 

Black Spot (1).jpg Yes 100 

Black Spot (10).jpg Yes 100 

Black Spot (100).jpg Yes 99.98 

Black Spot (101).jpg Yes 99.67 

Black Spot (102).jpg Yes 99.86 

 
 

 
12 

 

 
Rose Downy Mildew 

Downy Mildew (1).jpg Yes 100 

Downy Mildew (10).jpg Yes 100 

Downy Mildew (100).jpg Yes 100 

Downy Mildew (101).jpg Yes 100 

Downy Mildew (102).jpg Yes 100 

 
 

 
13 

 
 

 
Rose Fresh Leaf 

Fresh leaf(1).jpg Yes 99.91 

Fresh leaf(10).jpg Yes 96.70 

Fresh leaf(100).jpg Yes 66.73 

Fresh leaf(101).jpg Yes 99.94 

Fresh leaf(102).jpg Yes 99.83 

Table 5: Experimental data analysis using CNN 

 
Accuracy & Key Observations For Each Model 

 
Model Accuracy (%) Epochs Trained Key Observations 

MobileNetV2 99.40 20 Exceptional efficiency and highest accuracy. 

VGG19 98.92 20 High accuracy but computationally intensive. 

CNN 98.68 20 Simple architecture with competitive performance. 

VGG16 97.24 20 Effective but requires significant computational resources. 

ResNet 96.24 20 Lowest accuracy; potential overfitting due to model depth. 

 

 
MobileNetV2 emerged as the best-performing model, achieving an accuracy of 99.40%, making it ideal for real-world 

deployment in resource-constrained environments. The CNN model, despite its simplicity, demonstrated a strong 

accuracy of 98.68%, suggesting its feasibility for lightweight applications. The transfer learning models, VGG19 and 

VGG16, performed well but at the cost of higher computational requirements. ResNet achieved the lowest accuracy 

of 96.24%, likely due to its complexity, which did not translate effectively to the given dataset. 

 
To enhance understanding, graphical visualizations such as accuracy trends, loss curves, and confusion matrices were 
generated. These plots illustrate the learning behavior of each model across training and validation phases, 
emphasizing MobileNetV2’s consistent performance. 

Table 6: Accuracy & Key Observation For Each Model 
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Fig7. Training & Validation Accuracy Graph For VGG16 Fig8. Training & Validation Loss Graph For 
VGG16 

 

 

 
Fig9. Training & Validation Accuracy Graph For VGG19  Fig10. Training & Validation Loss Graph For VGG19 

 
Fig11. Both Accuracy & Loss Graph For Train & Validation in MobileNetV2 
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Fig12. Both Accuracy & Loss Graph For Train & Validation in ResNet 

                  

 
            Fig13. Training & Validation Accuracy Graph For CNN      Fig14. Training & Validation Loss Graph For CNN 
  
Visual Insights 

 
1. Accuracy Graph: This graph showcases the accuracy trends of all five models across epochs, 
visually 
confirming MobileNetV2’s superior and stable accuracy. 
2. Loss Graph: A comparative loss curve illustrates the convergence of each model during 
training, highlighting their efficiency and potential overfitting. 
3. Confusion Matrices: Class-wise performance is detailed, showing misclassification rates for each 
model. 

 
These visualizations can be integrated into the analysis to provide a holistic view of model performance, allowing 
readers to assess trade-offs in terms of complexity, accuracy, and resource requirements. 

 

Fig15. Accuracy Comparison Of Plant Disease Detection Model 
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CONCLUSION 

This research study explores the potential of deep learning in agriculture, specifically for automated plant disease 
detection, which is vital for global food security. It evaluates five deep learning models—MobileNetV2, VGG16, 
VGG19, ResNet, and a basic CNN—using the PlantVillage dataset. MobileNetV2 proved most effective with an 
accuracy of 99.40%, paired with high computational efficiency for resource-limited environments. The basic CNN 
also performed well at 98.68%, while VGG16 and VGG19 achieved 97.24% and 98.92%, respectively, but have higher 
computational needs. ResNet had the lowest accuracy at 96.24% due to overfitting. 

 
The study emphasizes the importance of a systematic framework for evaluating deep learning in agriculture, 
highlighting preprocessing techniques like data augmentation and class balancing to enhance model performance. 
Future improvements could involve ensemble methods and integrating contextual factors such as weather and soil 
health. Overall, "PlantOHealth" represents a significant step in applying AI for sustainable agriculture, providing 
valuable insights for innovation in agricultural practices. 
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