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When there is a lag between generation and load in a power system, frequency deviation 

happens. The frequency deviation in the deregulated power system is caused by consumers 

switching to various DISCOs, which causes the load on DISCOs to fluctuate the frequency which 

causes the undesirable operation in the the power system. The EV aggregators are introduced in 

each control area to supply power to the DISCOs in the event of a contract violation. This paper 

presents a reinforcement learning controller for load frequency control of a Smart Deregulated 

Power System (SDPS) that consists of two control areas, each of which contains thermal, solar 

PV plants, and hydro, wind plants respectively. The superiority of reinforcement learning 

controller over model predictive and robust controllers is that the neural network is trained from 

the control and system parameters of the open access power system under various operating 

scenarios. The Reinforcement learning controller is called Actor-Critic agent based Deep 

Deterministic Policy Gradient (DDPG) controller tested on two area model of deregulated power 

system under different possible contract scenarios and under various operating conditions. The 

Actor-Cretic reinforcement learning approach for LFC compared to FOPI and PI controllers 

under different possible contract scenarios in smart deregulated environment. 

Keywords:  Control Area (CA); Load Frequency Control (LFC), Smart Deregulated Power 

System (SDPS), EV Aggregators, Reinforcement learning. 

 

INTRODUCTION 

The electric power system evolved over many decades, in this period, traditional networks evolved into sophisticated, 

reliable, efficient, and sustainable smart grids thanks to financial, technological, environmental, and political 

incentives [1-3]. Smart grids allow customers to actively participate in the electrical markets. The rapid advancements 

in vehicle-to-grid technology mean that plug-in electric vehicles, one type of distributed energy storage, are set to 

play a significant part in emergency reliability services [4-6]. Electric vehicles (EVs) are growing in popularity because 

these vehicles consume less gasoline and release fewer greenhouse emissions into the atmosphere [7]. The state of 

the environment affects the output power of renewable resources. The regulation of frequency in power systems is 

significantly impacted by large-scale variable generation. In order to balance generation and demand, the power 

system must account for the unpredictability introduced by renewable energy sources, which calls for the addition of 

spinning reserve [ 8]. 

        Shifting from conventional to deregulated power systems in the early decades created additional uncertainty to 

power systems. A typical power system's generating, distribution as well as transmission components are held by a 

utility that is vertically integrated (VIU), which provides customers with regulated electricity rates. In a market of 

open energy, GENCO’s may choose to take part in the LFC duty or not. Distribution companies (Discos) may enter 

into agreements with generators (GENCO’s) or independent power producers (IPPs) to supply electricity in certain 

regions [9]. In a deregulated power system, frequency regulation becomes more complex. A fixed controller may not 

suffice the demand of deregulated system. In such cases, a robust controller significance increases for such a system.  

   The review of literature on LFC of deregulated power systems describes a number of different control strategies. 

The operating framework required for the deregulated power system's can be found in [10].In the deregulated 
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electricity system, a controller based on ramp following has been studied [11]. For a deregulated power system or 

electrical grid, a decentralized neural network controller is available [12]. In the case of a deregulated power system, 

traditional integral controller improvements have been modified through genetic algorithm optimization [13]. It was 

developed to use a genetic algorithm to optimize the PID controller architecture in the context of deregulated power 

[14]. The LFC design of the deregulated electricity system makes use of both reduced order observer techniques and 

optimal output feedback control [15]. For two levels of independence, the electrical system that is deregulated is 

designed using the LFC method and the Internal Model Control technique [16]. The LFC of the deregulated electrical 

system's robustness analysis was conducted using the structured singular value approach [17]. The LFC consisting of 

multiple area thermal system that have a PID controller of fractional order has been described by the researcher [18]. 

Different trial and error methods and traditional tuning techniques like Ziegler-Nicholas are used to gradually modify 

PID controller gain values based on experience; nevertheless, these are approaches not perform better in a variety of 

operating circumstances and random load variations [19]. Over the years, different control strategies that are smart 

and optimized are utilized for LFC have been presented as research work by researchers. To adjust the PID 

parameters using fuzzy logic, the system that can be used is considered is an adaptive neural fuzzy inference system 

(ANFIS) [20-21]. However, due to its lack of adaptability, a fuzzy system necessitates ground experience to modify 

the membership functions and acquiring the necessary specialized knowledge can be difficult [22]. 

       The fractional order (FO) controller has attracted the attention due to its enhanced capability to modify the 

dynamics of the system [23-26]. Because of its intrinsic flexibility, a number of researchers have recommended the 

FO controller for the power industry over the conventional PI and PID controller [27],[28].It has recently been found 

that reinforcement learning (RL) based control strategies are promising for the current grid. In [29], a critical review 

of the literature on reinforcement learning-based control of electric power systems is presented. Because 

reinforcement learning can learn on its own through interactive trial and error using data it gathers from the ever-

changing environment, it performs better than standard control approaches. Therefore, reinforcement learning 

performs better while making decisions and solving control issues in the actual world. Numerous studies have been 

conducted in the literature that use reinforcement learning systems to control the frequency of an interconnected 

area. In the uninterrupted action domain, a new technique for controlling frequency via DRL is presented in [30]. 

However, due of the agents' parallel learning behavior, this kind of method is devoid of a continuous gradient signal 

[31]. 

The Deep Deterministic Policy Gradient (DDPG) does not call for the action division and states, which Lilliclip et al. 

[32] presented as a solution to continuous control problems. Overestimating Q-values is a drawback of DDPG, which 

is comparable to deep Q-networks (DQN), which update the Q-value and can lead to incremental bias and subpar 

policy [33-34]. Moreover, a given dataset may result in less-than-ideal convergence when load generation is 

continuously variable, since the authors [35] initially used to construct the PID controller to enable collect data for 

the agent's initialization.  

In this present paper, the Deep Deterministic Policy Gradient (DDPG) optimization technique is used to train the 

Actor Critic agent as an LFC controller for frequency management in SDPS in different transaction Scenarios. The 

paper is drafted as follows: model of the deregulated power system discussed in detail in section 2. Whereas section 

3. covers the Deep Deterministic Policy gradient technique for LFC of a SDPS. In section 4. discussed about 

simulation result and concussions are given in section-5. 

MODELLING OF VARIOUS COMPONENTS OF SMART DEREGULATED POWER SYSTEM (SDPS) 

This section presents the modelling of SDPS with integration of hydro, wind in CA-1and thermal, solar PV plants in 

CA-2 and EV Aggregators are integrated in each control area to supply power to the DISCOs under contract violation 

scenario. Any GENCOs can sell power to any DISCO at competitive pricing by utilizing "DISCO  Participation matrix" 

(DPM), it’s easy to comprehend the contract. The values in the rows (horizontal direction) and columns (vertical 

direction) of DISCO Participation matrix represent generating units and DISCOs respectively. The total number of 

the elements in the column is one. The entry in the column is zero, if the DISCO is not drawn any power [36-39].  

The DISCO Participation matrix (DPM) is given by 
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Figure 1. Two area system in deregulated power system 

𝑐𝑝𝑓𝑖𝑗 =
jth DISCO′Spower demand out of ith GENCO[p. u M. W]

jth DISCO′S total power demand[p. u. M. W]
 

∑ 𝑐𝑝𝑓𝑖𝑗 = 1 

𝑐𝑝𝑓𝑖𝑗 = for jth DISCOM load Contract Participation Matrix in terms of ith  GENCO. If there are more GENCOs in a 

given area in accordance with their involvement in AGC, ACE has to be divided among them; this is indicated by the 

"ACE participation factor" (apf). 

 The area control error in the multi area power system  

ACE=B∆𝑓 + ∆𝑃𝑇𝑖𝑒         (1) 

The Area Contract Error Participation facto 

∑ 𝑎𝑝𝑓𝑗𝑖
𝑛𝑖
𝑗=1 =1                (2) 

The total Load Demand  

∆𝑃𝑇𝑜𝑡𝑎𝑙 = ∆𝑃𝑙𝑜𝑐,𝑖+∆𝑃𝑑𝑖                   (3) 

The local contracted load demand given as 

∆𝑃𝑙𝑜𝑐,𝑖 = ∑ ∆𝑃𝐿 𝑗−𝑖
𝑚𝑖
𝑗=1   (4) 

The un contracted load demand given as 

∆𝑃𝑑𝑖 = ∑ ∆𝑃𝑈𝐿  𝑗−𝑖
𝑚𝑖
𝑗=1  (5) 

The deviation in scheduled tie line power flow   

𝜁1 = ∑ ∆𝑃𝑇𝑖𝑒,𝑖𝑘,𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
𝑁
𝑘=1
𝑖≠𝑘

      (6) 

∆𝑃𝑇𝑖𝑒,𝑖𝑘 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 = ∑ ∑ 𝑎𝑝𝑓(𝑠𝑖+𝑗)(𝑠𝑘+𝑖)∆𝑃𝐿 𝑡−𝑘
𝑚𝑘
𝑡=1

𝑛𝑖
𝑗=1  -∑ ∑ 𝑎𝑝𝑓(𝑠𝑘+𝑖)(𝑠𝑖+𝑗)∆𝑃𝐿 𝑗−𝑖

𝑚𝑖
𝑗=1

𝑛𝑘
𝑡=1  (7) 

∆𝑃𝑡𝑖𝑒 ,𝑖𝑘 𝑒𝑟𝑟𝑜𝑟 =∆𝑃𝑡𝑖𝑒,𝑖,𝑎𝑐𝑡𝑢𝑎𝑙 − 𝜁1  (8) 

Generation of power of each GENCO 

∆𝑃𝑚,𝑘−𝑖 = 𝜌𝑘𝑖+𝑎𝑝𝑓𝑘𝑖 ∑ ∆𝑃𝑈𝐿  𝑗−𝑖
𝑚𝑖
𝑗=1  k=1, 2….𝑛𝑖  (9) 

𝜌𝑘𝑖  is contracted load demand 𝐺𝐸𝑁𝐶𝑂𝑘−𝑖 
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𝜌𝑘𝑖 = ∑ ∑ 𝑐𝑝𝑓(𝑠𝑖+𝑘)(𝑠𝑗+𝑡)
𝑚𝑖
𝐼=1

𝑁
𝑗=1 ∆𝑃𝐿 𝑗−𝑖  (10) 

∫ 𝐴𝐶𝐸1𝑑𝑡̇ = {𝐵1∆𝑓1 + ∆𝑃𝑡𝑖𝑒12 − (∑ ∑ 𝑐𝑝𝑓𝑖𝑗∆𝑃𝐿𝑗 −4
𝑗=3

2
𝑖=1 ∑ ∑ 𝑐𝑝𝑓𝑖𝑗∆𝑃𝐿𝑗

2
𝑗=1

4
𝑖=3 )}                      

       (11) 

Similarly for the other area it is given by  

∫ 𝐴𝐶𝐸2𝑑𝑡̇ = {𝐵2∆𝑓2 + 𝑎12∆𝑃𝑡𝑖𝑒12 − 𝑎12(∑ ∑ 𝑐𝑝𝑓𝑖𝑗∆𝑃𝐿𝑗 −4
𝑗=3

2
𝑖=1 ∑ ∑ 𝑐𝑝𝑓𝑖𝑗∆𝑃𝐿𝑗

2
𝑗=1

4
𝑖=3 )}       

 (12) 

A. MODEL OF THERMAL PLANT 

The thermal power plant [36] can be described in terms of various models as follows: 

Governor Model, 𝐺𝑔 =
Kg

TgS+1     
  

Reheater Model,  𝐺𝑟 =
K𝑟 𝑇𝑟𝑆+1

𝑇𝑟𝑆+1
  

Steam turbine Mode, 𝐺𝑡 =
𝐾𝑡

𝑇𝑡𝑆+1
  

Generator Model = 
Kp

𝑇𝑃 𝑆+1
  

With Tp, Tr, Tg and Tt representing the generator, reheater governor time and turbine constants, and Kp, Kr, Kg and 

Kt representing the generator, reheater governor time and turbine gains. 

B. MODEL OF HYDRO PLANT 

The hydal power plant is described as follows [36]: 

Governor Model, 𝐺𝑔 =
Kgh

𝑇𝑔ℎ  𝑆+1
  

Transient droop compensator =  
𝑇𝑅𝑆 𝑆+1

𝑇𝑅ℎ 𝑆+1
  

Turbine Model, 𝐺𝑡 = −
TW S+1

0.5TW S+1
  

Where in the penstock, Tw is the nominal start time of water, Tgh, TRs, and TRh are the governor's time constants, 

transient droop, and reset time constants of the hydro governor, and Kgh is the governor's gain. 

C. MODEL OF WIND POWER PLANT 

The doubly-fed induction generator (DFIG) of a wind turbine (WT) is the subject of this study. The following output 

power parameters are achieved by wind turbines when they transform wind energy into electricity [34]. 

𝑃𝑊 = 0.5𝜌 𝐴𝐶𝑝𝑣𝑤
3   

In this case, ρ, A, Cp, and V stand for, respectively, air density, blade swept area, power coefficient, and wind speed. 

The power coefficient of a wind turbine is 

(0.44 − 0.0167𝛽)𝑠𝑖𝑛 (
𝜋(𝜆 − 2)

15 − 0.3𝛽
) − 0.00184(𝜆 − 3) 

where  

λ -tip speed ratio  

β - Blade pitch angle. 

The transfer function can be obtained using the equation [40] 
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𝐺𝑊= 
𝐾𝑃𝑊1 (1+𝑆 𝑇𝑃𝑊1 )

1+𝑆
 

𝐾𝑃𝑤2 

1+𝑆 𝑇𝑃𝑊2

𝐾𝑃𝑊3

1+𝑆
 

where TPW1 and TPW2 are the wind plant system constants and KPW1, KPW2, and KPW3 are the wind power plant's gains. 

D. PHOTO VOLTAIC PLANT 

Both series and parallel connections are made between the photovoltaic cells. The nonlinear relationship between 

voltage and current results from variations in solar energy throughout the day. A maximum power point tracker 

(MPPT) is used to boost the power output from a solar PV panel. The solar photo voltaic plant's transfer function is 

explained as follows [40]: 

                   𝐺𝑝𝑣 =
𝐾𝑃𝑉1 𝑆+ 𝐾𝑃𝑉2

𝑆2+𝑇𝑃𝑉1 𝑆+ 𝑇𝑃𝑉2
         

Where TPV1 and TPV2 are the PV system's time constants and KPV1 and KPV2 are the gains of the Photo voltaic system with 

MPPT. Under some circumstances, a PV system's MPPT can be recovered using the incremental conductance (IC) 

technique. 

At the right  
 𝑑𝑃𝑝𝑣

𝑑𝑉𝑝𝑣

> 0 

𝐴𝑡 𝑀𝑃𝑃
dPpv

dVpv
= 0   

𝐴𝑡 𝑡ℎ𝑒 𝑙𝑒𝑓𝑡 
dPpv

dVpv

< 0 

E. MODEL OF EV AGGREGATORS 

In Figure 2. is a block diagram model of electrical vehicle fleets as a whole, including battery chargers, PFCs, and 

LFCs. The battery chargers are utilized to regulate the power transaction between the grid and batteries. If all the EVs 

suddenly disconnect from the grid, it will lead to undesirable frequency response. Usually, every electric vehicle may 

have droop characteristics that are defined by a dead band function to solve this problem. The dead bandies' 

minimum limit (ΔfLL) and maximum limit (ΔfUL) are measured at 10 MHz and -10 MHz, respectively. TEVi is the 

battery's time constant, and KEVi is the EV gain. The SOC of EVs reveals the value of KEVi. ∆𝑃𝐴𝐺
𝑚𝑎𝑥  and ∆𝑃𝐴𝐺

𝑚𝑖𝑛  indicate 

the maximum limit and minimum limit of the power output of electric vehicle fleets [41]. 

 

Figure 2. Electric Vehicle model 
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Figure 3. Two Area Interconnected Deregulated Power System (Environment) 

DEEP DETERMINISTIC POLICY GRADIENT 

The Reinforcement Learning (RL) is a subset of machine learning that focuses on making decisions to maximize 

cumulative rewards in a given scenario. Unlike supervised learning, which uses a training dataset with predefined 

answers, RL learns from experience. In RL, an agent learns to achieve a goal in an uncertain and potentially 

complicated environment by taking actions and receiving feedback in the form of rewards or penalties. Optimal action 

selection is a difficult challenge in continuous control problems, as the agent must select from a much larger and 

frequently infinite array of actions. Policy gradients like Soft Actor-Critic, Proximal Policy Gradient (PPO), Deep 

Deterministic Policy Gradient (DDPG), Trust Region Policy Optimization (TRPO), are commonly employed in 

reinforcement learning (RL) applications for continuous control problems. Under these circumstances, the agent 

picks up a policy that associates states with acts directly. The purpose of this study is to look at DDPG. 

Inspired by Deep Q-Network, Deep Deterministic Policy Gradient (DDPG) is an off-policy deep reinforcement 

technique that does not require a model. Actor-Critic Policy Gradient serves as its basis. The Deterministic policy 

ensures that the RL environment always performs the same action for a given state. In model-free RL, the agent 

learns by exploring its surroundings and acquiring experience through trial and error. The agent tests numerous 

actions to see which ones give better results and then updates its policy accordingly. The Actor-Critic RL seeks to 

determine the best policy for the agent in a given environment by combining two components: actor and critic. It 
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combines value-based and policy-based techniques, with the Actor controlling agent behaviour using the Policy 

gradient and the Critic evaluating the Agent's action based on the value-function. 

A INTRODUCTION TO ACTOR-CRITIC AGENT BASED DEEP DETERMINISTIC POLICY GRADIENT 

Actor: The Actor learns the ideal policy by investigating the surroundings. 

Critic: The Critic evaluates the value of each action done by the Actor to decide whether it will result in a greater 

reward, advising the Actor on the best course of action to take [42].  

The Actor then uses the Critic's remarks to alter its policies and make informed decisions, resulting in better overall 

performance [42]. 

 

Figure 4. Actor critic Control training 

Based on DQN techniques, DDPG, or Deep Deterministic Policy Gradient, is a reinforcement learning 

algorithm. DDPG specifically makes use of two DQN approaches, Replay buffer and Target network. In addition to 

these techniques, DDPG uses two sets of Actor-Critic neural networks for function approximation. Both sets are made 

up of an Actor network and a Critic network, which have the same structure and parameters [43]. 

 

Figure 5. Deep Deterministic Policy gradient 

Soft Target Updates 

Soft target updates are used in DDPG to gradually update the target network weights rather than copying them 

immediately from the Actor-Critic network [43].The Soft Target approach significantly enhances the stability of 

learning, and soft target updates are implemented as follows:  

 𝜃𝑄′ = 𝜏𝜃𝑄 + (1 − 𝜏)𝜃𝑄′
  

 𝜃𝜇′ =  𝜏𝜃𝜇 + (1 − 𝜏)𝜃𝜇′
 

At each time step, just a small portion of the weights from the Actor-Critic network are passed on to the target 

network. This proportion is set by a hyperparameter called the target update rate (τ). 

The DDPG optimization approach is used to train the Actor Critic-based agent as an LFC controller. The following 

elements comprise the proposed interconnected deregulated system, with each area having its own frequency 

controller (agent) trained in it: 
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ENVIRONMENT  

The term "environment" refers to everything in a linked system except the agent. Based on observations from the 

environment, an agent selects an appropriate action at each time step; the environment reacts by providing a reward 

and by gathering new observations opposing the chosen action. 

STATE 

In the proposed deregulated system, the agent's input and state is called the ACE. 

REWARD 

The environment gives response to assess whether the system is accomplishing its objectives by comparing the agent's 

behavior to each observation. To fulfill objective functions, the agent is thereby guided by the reward function to 

engage in activities that maximize values.  

Rt = -∑ 𝐵∆𝑓 +  𝑇
𝑖=1  ∆𝑃𝑡𝑖𝑒,𝑒𝑟𝑟𝑜𝑟  

Where negative value minimizes the error, thus maximizes the reward. 

ACTION  

It is the output of the agent to the power system which occurs as a control signal (∆Pc) and the policy that maximizes 

reward at a given state determines its value.  

In the proposed deregulated interrelated system, the agent's input/state are represented by the area control error 

(ACE). To compute the agent's action in both areas, the states are given as proportionate integrals of the ACE. 

B.DESIGN OF ACTOR CRITIC CONTROLLER FOR LFC OF SMART DEREGULATED POWER SYSTEM 

WITH EV AGGRAGATORS 

The primary goal is to integrate renewable energy sources (RES) and choose random step disruptions in the power 

system to direct actor critic agents, thereby minimizing frequency as well as the tie-line power under uncertain 

circumstances. Agent outputs the signal to the environment after accepting the frequency response will be in the form 

of an ACE from the environment. The networks of actor and critic comprise the agent. The state is given as input to 

the actor which gives control signal as the action which is given as the input to the critic. The critic compares the 

action of the actor with the new state value and gives value based on the reward and tells the actor how good the 

action was. The critic is an estimated value function, whereas actor is a policy framework that decides what to do. We 

improved the actor critic agent by adding a new layer made up of the function y = abs(weights) ∗ x in place of the 

actor-network's fully connected layer. While gradient descent optimization may provide negative results, this new 

layer guarantees positive weights. Table-I lists the actor critic controller's parameters. 

C.STEPS FOR THE IMPLEMENTATION OF ACTOR CRITIC CONTROLLER 

1. Initialize: 

1. Initialize the actor network (policy network) with random weights (ф). 

2. Initialize the critic network (value function) with random weights(θ). 

3. Initialize the environment and start from an initial state st(ACE) 

4. Set the discount factor γ and learning rates αa(for the actor) and αc (for the critic). 

2. For each episode: 

1. Set the initial state st(ACE) 

2. Repeat for each time step until the episode ends: 

3. Actor: Choose an action at (ΔPc) according to the policy π(ΔPc ∣ACE). 

4. Take action at in the environment, observe the reward rt, and transition to the next state st+1. 

5. Critic: Compute the temporal difference (TD) error: δt= Rt+γV(st+1)−V(ACE)  
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                                   Where: Rt = -∑ 𝐵∆𝑓 +  𝑇
𝑖=1  ∆𝑃𝑡𝑖𝑒,𝑒𝑟𝑟𝑜𝑟  

3.Update the Critic: Update the critic by minimizing the TD error: θ←θ+αcδt∇θV(ACE) 

4.Update the Actor: Update the actor's policy using the TD error ф ← ф +αaδt∇θπlogπ(ΔPc ∣ACE) 

5. Repeat until convergence (i.e., until the agent’s performance stops improving or reaches the desired number of 

episodes). 

 

Figure 6. Training plot for actor critic 

Table -I Hyper parameters of proposed Actor Critic Control 

Parameters Value 

No of Observations 2 

No of Actions 2 

Actor Network 

Hidden Layers 3 

Number of neurons in hidden layer 1 96 

Number of neurons in hidden layer 

2 

16 

Number of neurons in hidden layer 

3 

6 

Learning rate 1e-5 

Activation function Relu 

Critic Network 

Hidden Layers 3 

Number of neurons in hidden layer 1 64 

Number of neurons in hidden layer 

2 

32 

Number of neurons in hidden layer 

3 

32 

Learning rate 1e-5 

Training 

Sample Time 0.1 sec 

Max Episode 50 

 

RESULTS AND DISCUSSION 

Scenario-I: Poolco based transaction 

In this scenario, GENCOs of each area contribute equally in AGC, with ACE participation factors being represented 

in the DPM.  It is presumed that the load change affects area 1 only. The load is requested by DISCO 1 and DISCO 2, 
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for an assumption that a load demand of 0.1 MW per unit is there. The Disco participation matrix (DPM) is given by 

DPM =  [

0.5 0.5 0 0
0.5 0.5 0 0
0 0 0 0
0 0 0 0

] 

The total demand of DISCOs and the Contract Participation Factor (cpf) can be used to characterize the intended 

production of a GENCO in pu MW. 

∆PG1 = 0.5(0.1) + 0.5(0.1) = 0.1 puMW 

∆PG2 = 0.5(0.1) + 0.5(0.1) = 0.1 puMW 

∆PG3=0 puMW 

∆PG4=0 puMW 

∆Ptie1−2=0 puMW 

Poolco transactions shown from (a) to (c) with Pl, FOPI and Actor Critic controller. 

 

 

 

 

 

 

 

 

(a)  Change in frequency in Area 1                                       (b) Change in frequency in Area 2                                                                        

 

(c)   Tie line power 

Table 2 The dynamic response for LFC under Poolco Transaction given below. 

 PI Controller FOPI 

Controller 

Actor Critic 

Controller 

∆f1 -0.0013 -0.0006 0.0000 

∆f2 -0.0011 -0.0008 0.0000 

∆P_tie12 0.0057 0.0012 0.0000 
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Settling time 

(sec) 

25 22 15 

% overshoot 74% 70% 62% 

 

Scenario II: Bilateral transaction 

There is a contract in place for this kind of transaction between DISCOs and GENCOs from the same area as well as 

from the other locations. GENCOs are required to supply 0.1p.u. of power to each DISCO. The matrix's components 

are  

apf1 = 0.75; apf2 = 0.25; apf3 = 0.5; apf4 = 0.5 

 

DPM = [

0.5 0.25 0 0.3
0.2 0.25 0 0
0 0.25 1 0.7

0.3 0.25 0 0

] 

∆PG1 = cpf11 × ∆PL1 +cpf12 × ∆PL2+cpf13 × ∆PL3+cpf14 × ∆PL4 

             = 0.5*0.1 +0.25*0.1 +0*0.1+0.3*0.1= 0.105puM 

∆PG2 = 0.045puMW 

∆PG3 = 0.195puMW 

∆PG4 = 0.105puMW 

The responses for the bilateral transactions shown from (a) to (c) with Pl, FOPI and Actor- Critic controller. 

  

(a) Change in frequency in Area 1                                          (b) Change in frequency in Area 2 

 

        (c ) Tie line power 
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Table 3 The dynamic response for LFC under Bilateral transaction given below. 

 PI Controller FOPI 

Controller 

Actor Critic 

Controller 

∆f1 0.0090 -0.0008 0.0000 

∆f2 -0.0092 -0.0015 0.0000 

∆P_tie12 0.0043 0.0001 0.0000 

Settling 

time (sec) 

28 25 18 

% overshoot 72% 68% 60% 

 

Scenario III:  With contract violation Bilateral transaction 

The DISCO may sometime violate the bilateral transaction and may demand more power. Case two is taken into 

consideration for the cause of visualizing a contract violation, with DISCO's demand for 0.1puMW of extra power. 

This extra power is supplied by EVs.  

The total local load in area-1. 

 (∆PL1LOC) = Load of DISCO 1 + load od DISCO2 =  (0.1 + 0.1) + 0.1 = 0.3puMW. 

Similarly , total load in area II = load of DISCO3 + load of DISCO4 = 0.2pu MW 

∆Ptie12schedule = ∑ ∑ cpfij∆pLj − 

4

j=3

2

j=1

∑ ∑ cpfijΔpLj

2

j=1

4

j=3

 

∆Ptie12,schedule =  −0.08pu MW 

∆PG1 = cpf11 ∗ ∆PL1 + cpf12 ∗ ∆PL2 + cpf13 ∗ ∆PL3 + cpf14 ∗ ∆PL4 

       = 0.5(0.1+0.1)+(0.25*0.1)+(0*0.1)+(0.3*0.1) = 0.155puMW 

∆PG2 = 0.065puMW, ∆PG3 = 0.195puMW, ∆PG4 = 0.085puMW 

 

Responses for Contract Violation transactions shown from (a) to (c) with Pl, FOPI and Actor critic controller  

 

 

 

(a) Change in frequency in Area 1                                      (b)  Change in frequency in Area 2 
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(c )Tie line power 

Table 4 The dynamic response for LFC under on contract violation. 

 PI Controller FOPI 

Controller 

Actor Critic 

Controller 

∆f1 0.00313 0.00005 0.00000 

∆f2 -0.00578 -0.00042 0.00000 

∆P_tie12 0.00823 0.00129 0.00000 

Settling time 

(sec) 

30 28 16 

% overshoot 82% 80% 68% 

 

The frequency response and tie line power and output power of various power plant are compared with PI, FOPI and 

Actor Critic controller for poolco, bilateral and contract violation Scenario of deregulated power system are shown in 

waveforms. The Actor Critic controller based on DDPG algorithm shows considerable good performance compared 

to PI and FOPI controllers. 

CONCLUSION 

In paper presents two area deregulated power system is taken which comprises of thermal and PV plants in CA-1 and 

CA-2 consist of wind, hydal and EV aggregators are integrated in both control areas to supply power to the DISCOs 

in the contract violation scenario. The Actor Critic-based agent is trained as an LFC controller for frequency 

regulation of SDPS using the DDPG optimization technique. The superiority of the R-L control methodology over 

other controlled strategies is its uniqueness to train the neural network for the system and control environment of 

SDPS. The performance of Actor Critic controllers is compared to that of PI and FOPI controllers. The results 

demonstrate that, in contrast to PI and FOPI, the Deep Deterministic Policy Gradient (DDPG) reinforcement learning 

controller based on actor-critic agent controls frequency effectively under various transactions of the deregulated 

electricity system. 

Appendix A 

Rated power= 2000 MW, f=50Hz, H = 5, D = .00833, Bi =. 425p.u.MW /Hz, 2∏T12 = 0.545, Kp= 120, Tp = 20sec, 

Ri=2.4 Hz/ p.u.MW, a12 = -1 

 

Power Plant Parameters Value 

 

 

 

Thermal 

Kr 0.33Hz / pu MW 

Kg 1 

Kt 1sec 

Tg .08sec 

Tr 10sec 
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Tt 0.18sec 

 

Photovoltaic 

KPV1 -18 

KPV2 900 

TPV1 100sec 

TPV2 50sec 

 

 

Hydro 

Tgh 10sec 

Kgh 1 

TRs 2sec 

TRh 1sec 

Tw 1sec 

 

Wind 

Kpw1 1.25 

Kpw2 1.4 

Tpw1 1sec 

Tpw2 .041sec 

Electric Vehicle KEV 1 

TEV 1sec 

 

Appendix B 

Parameters PI Controller FOPI Controller 

 

Area 1 Area 2 Area 1 Area 2 

Kp 0.390 0.250 0.35 0.19 

Ki 0.490 0.260 0.520 0.29 

λ --- --- 0.8 0.8 
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