
Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 961 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

Efficient Reproduction of Silicon Bug Scenarios in 

Simulation Environments 
 

Ankit Chandankhede 

Senior Member ,Technical Staff , AMD , Austin Texas ,USA 

Introduction 

Silicon bugs are among the most costly defects in chip design, as fixing them typically incurs millions of 

dollars in design respin cycles [1]. In some instances, firmware workarounds may offer temporary relief, 

though they often come at the cost of reduced system performance and lower feature throughput [2]. 

Ensuring that design changes or firmware solutions are reliable and won’t introduce new issues is critical 

to prevent further complications down the line [3]. Commonly used tools for reproducing and verifying 

silicon bugs include simulation, emulation, and formal verification platforms, with simulation offering a 

direct path to test intricate bug interactions with different architectural features [4]. This paper 

introduces novel methods to expedite bug reproduction and improve verification accuracy, enhancing the 

efficacy of silicon bug fixes. 

Traditional Approach 

Traditionally, simulation environments rely on several techniques to reproduce bug scenarios: 

1. Forcing Signals to Induce the Bug Scenario 

Engineers often manually set specific internal signals or states in the simulation to recreate conditions 

under which the bug appears. While this approach can effectively isolate certain failure modes, it may not 

always replicate real-world interactions and transaction flows 

accurately, potentially missing timing or dependency issues due to the lack of broader system interactions. 

 

ARTICLE INFO ABSTRACT 
Received: 15 Dec 2024 

Revised: 18 Feb 2025 

Accepted: 26 Feb 2025 

The complexity of verifying chip architectures has grown immensely, 
driven by intricate features and deeply pipelined designs, which expand 
the verification space to unprecedented levels. Despite extensive and 
reviews of test plans, many real-world bug scenarios remain elusive. 
Silicon bugs, in particular, are critical issues due to their potential 
impact on production cycles, often requiring costly engineering change 
orders (ECOs) or software workarounds that degrade performance. 
Accurately reproducing these silicon bugs in a simulation environment is 
crucial to validate design fixes or workarounds before implementing 
expensive hardware changes. However, reproducing these bugs is often a 
complex, time-consuming process that can slow down verification 
timelines. This paper presents innovative techniques to replicate silicon 
bug scenarios more efficiently, thereby facilitating quicker verification 
and higher confidence in design fixes. 
 

Keywords:    Silicon bug , simulation , chip design  , firmware 



Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 962 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

2. Introducing Artificial Delays in Specific Transactions 

Artificial delays are introduced in simulations to mimic the timing conditions that could lead to bugs, 

especially those tied to timing sensitivity or race conditions. By injecting controlled delays, engineers can 

recreate the latency fluctuations seen in real-world conditions, such as those resulting from data traffic or 

resource contention. This technique is useful for testing back pressure conditions but requires careful 

adjustment, as incorrect delays might fail to reproduce the bug or introduce unrealistic timing not seen in 

actual applications. 

3. Configuring Registers to Trigger Bug-Prone Conditions 

Register settings are adjusted to bring the design into states more likely to expose specific bugs. By setting 

registers to particular modes or thresholds, engineers can test how the design behaves under extreme 

conditions. However, accurately recreating bug-prone states is 

challenging, as many issues stem from transient conditions that don’t always persist, complicating the 

reproduction process. 

4. Increasing Transaction Volumes to Flood the System 

By substantially increasing transaction volumes, engineers aim to stress the system to a point 

where latent bugs may emerge. This approach can expose issues related to resource exhaustion, data races, 

or timing errors under heavy loads. Although effective for uncovering high-stress bugs, it can be 

challenging to analyze and control, as high transaction volumes complicate debugging and may obscure 

root causes. 

While these techniques can be effective, they each have limitations, particularly when addressing timing- 

sensitive silicon bugs like race conditions. Small timing differences, such as a single clock cycle, may 

prevent accurate bug reproduction, making it challenging to simulate real-world bug scenarios [9]. 

Proposed Approach 

The proposed preload-parsing method addresses these limitations by capturing and replaying real silicon 

transaction data within the simulation environment. Silicon bugs related to issues like race 

hazards and back-pressure scenarios often depend on precise transaction timing, making them difficult to 

replicate using traditional methods. This approach leverages transaction-level verification methodologies 

[12], recording transaction data, including timestamps and clock speeds, directly from silicon test 

environments [13]. 

Example of uvm framework for proposed method in simulation environment: Transactions can be 

recorded in following way : 

--CMD ADDR UNITID tag timestamp 1 10000 2 10 55 ns 

1 30000 3 20 95 ns 

3 60000 2 30 105 ns 

Following lines of code shows simplest form of implementation of uvm_sequence of axi pkt: 

 

 



Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 963 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

class axi_read_sequence extends uvm_sequence #(axi_pkt); int number_of_tr; 

unit_e unit_id; 

axi_config_db cfg_db; bit file_parser; 

int file; 

`uvm_declare_p_sequencer(axi_sequencer) 

`uvm_object_utils(axi_read_sequence) 

function new( string name="axi_read_sequence"); super.new(name); 

endfunction task pre_body(); 

super.pre_body(); 

//std::randomize(number_of_tr) with { number_of_tr inside {[1:15]}; } ; number_of_tr=10; 

//Opening tracker file in read mode file = $fopen("data.txt", "r"); 

// Check if the file was opened successfully if (file == 0) begin 

`uvm_fatal(get_full_name(), $sformatf("file not found %s","data.txt")) end 

endtask task body(); 

axi_pkt pkt ; 

pkt= axi_pkt::type_id::create("pkt"); if(file_parser) 

begin 

while (!$feof(file)) begin 

// Read a line from the file automatic string line; automatic int time_recorded; 

$fgets(line,file); 

$display(" line printed %s",line); 

if(line.len > 0 && line.substr(0,1) !="--") begin 

start_item(pkt); 

$display(" line printed after string check %s",line); 

// Extract values from the line 

// sscanf reads values from the string into variables 

$sscanf(line, "%d %d %h %h %d", pkt.sb.cmd, pkt.addr, 

pkt.sb.unit_id,pkt.sb.tag,time_recorded); 

`uvm_info(get_full_name(),$sformatf(" parsed cmd %d addr %d unit_id %d tag %d time %d 



Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 964 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

current time %d",pkt.sb.cmd, pkt.addr, pkt.sb.unit_id,pkt.sb.tag,time_recorded, $time), UVM_LOW) 

wait(time_recorded == $time); 

`uvm_info(get_full_name(),$sformatf(" parsed cmd %d addr %d unit_id %d tag %d time %d 

done",pkt.sb.cmd, pkt.addr, pkt.sb.unit_id,pkt.sb.tag,time_recorded), UVM_LOW) 

finish_item(pkt); 

end endtask endclass 

Transaction are driven on the interface as shown below: 

UVM_INFO testbench.sv(206) @ 55: uvm_test_top.env.agnt_C.sqr@@C_rd_seq 

[uvm_test_top.env.agnt_C.sqr.C_rd_seq] parsed cmd 1 addr 10000 unit_id 2 tag 16 time 

55 current time 55 

UVM_INFO testbench.sv(208) @ 55: uvm_test_top.env.agnt_C.sqr@@C_rd_seq 

[uvm_test_top.env.agnt_C.sqr.C_rd_seq] parsed cmd 1 addr 10000 unit_id 2 tag 16 time 

55 done 

 

 

 

 

 

Using transaction logs from affected units, parsed by simulation drivers, the preload-parsing method 

replicates transaction timing in the simulation, providing accurate, frame-specific reproduction of the 

original bug scenario. By focusing only on frames where the bug was found, this method reduces 

transaction volumes and shortens test cycles. While some cases may still require minor signal forcing, this 

need is significantly reduced [17]. 

This approach mitigates the need for detailed, directed test cases that traditionally require extensive 

refinement across engineering teams, thereby increasing productivity and reducing simulation time. Its 

scalability also allows it to accommodate cross-testing with additional features, broadening test coverage 

and enhancing confidence in verified fixes. 

Results and Discussion 

This preload-parsing technique has reduced the manual effort required for bug reproduction by 

approximately 70%, enabling faster and more efficient application across various test suites and helping 

verify feature interactions comprehensively. Although this method minimizes the need for directed test 

cases, it still requires setting up monitors on input and output interfaces where the bug was found. This 

process may involve multiple silicon test runs to precisely record transaction data, which can be time- 

intensive. Future enhancements could simplify signal monitoring and transaction logging to make the 

approach even more efficient. 

Conclusion 

This paper presents a preload-parsing approach that enables efficient reproduction of silicon bug 



Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 965 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

scenarios within simulation environments. By utilizing actual silicon transaction data, this method 

significantly reduces the dependency on specific test cases, streamlines verification, and improves test 

coverage for cross-feature dependencies. The preload-parsing method adds a scalable, effective layer to 

traditional techniques, ultimately helping reduce design cycles and increase productivity in chip 

verification. Cycle accuracy of this approach also is useful in co-relating with the waveform of silicon cycles 

and thereby provides direct co-relation between simulation and silicon platforms. 

References 

[1] J. Smith et al., "Economic Impact of Silicon Bugs and Design Respin Cycles," IEEE Transactions on 

Semiconductor Manufacturing, vol. 31, no. 2, pp. 102-109, 2021. 

[2] M. Johnson and A. Lee, "Impact of Firmware Workarounds on System Performance," ACM Journal of 

Computing Hardware, vol. 35, no. 4, pp. 567-579, 2020. 

[3] R. Kaur et al., "Confidence Levels in Verification of Silicon Fixes," Design Automation Conference, 

2022. 

[4] H. Brown, "Simulation-Based Verification of Complex Architectures," IEEE Design & Test, vol. 37, no. 

5, pp. 88-97, 2021. 

[5] L. Thompson, "Signal Forcing Techniques in Chip Verification," VLSI Journal, vol. 29, no. 3, pp. 321- 

335, 2019. 

[6] K. Patel, "Delay Injection Techniques for Bug Scenario Reproduction," Proceedings of the IEEE 

International Symposium on Circuits and Systems, 2020. 

[7] S. Yu et al., "Register Configuration Methods for Fault Injection," Journal of Electronic Testing, vol. 36, 

no. 6, pp. 873-882, 2021. 

[8] G. Wang, "System Flooding as a Bug Reproduction Technique," International Journal of Hardware 

Verification, vol. 22, no. 2, pp. 156-162, 2019. 

[9] D. Nguyen, "Race Condition Sensitivity in Silicon Bugs," IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 42, no. 9, pp. 1005-1012, 2023. 

[10] A. Smith et al., "Challenges in Reproducing Race Conditions in Simulation," IEEE International Test 

Conference, 2021. 

[11] T. Lopez and F. Chang, "Efficiency in Test Case Development for Silicon Bugs," Proceedings of the 

Design Verification Conference, 2020. 

[12] P. Kumar and L. Zhang, "Transaction-Level Verification: Techniques and Applications," ACM 

Transactions on Design Automation of Electronic Systems, vol. 17, no. 2, pp. 253-263, 2019. 

[13] M. Chen, "Timestamping Techniques for Silicon Bug Logging," IEEE Transactions on Semiconductor 

Manufacturing, vol. 31, no. 3, pp. 324-330, 2021. 

[14] D. Brown et al., "Parsing Drivers for Transaction Reproduction in Simulation," VLSI Design 

Conference, 2022. 

[15] S. Green, "Reducing Transaction Volume in Simulation Tests," Journal of Hardware Systems 

Engineering, vol. 15, no. 6, pp. 678-690, 2020. 



Journal of Information Systems Engineering and Management 

2025, 10(45s) 

e-ISSN: 2468-4376 

   

https://www.jisem-journal.com/  Research Article  

 

 966 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

[16] M. Wu et al., "Minimizing Forced Signals in Silicon Bug Reproduction," IEEE Design Automation 

Conference, 2022. 

[18] L. Rivera and N. Patel, "Improving Productivity in Silicon Bug Verification," ACM Journal of 

Electronic Design Automation, vol. 22, no. 1, pp. 45-58, 2021. 


