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 The incidence of Type 2 Diabetes Mellitus causes metabolic dysfunction and severe health 

complications. In this paper, optimized machine learning approach predicts liver enzyme levels 

and enhance diabetes management. The proposed pre-processing algorithms are (i) semi graph 

theory (SGT) based relation data extraction (ii) Generalized Rough set theory (GRST) for 

redundant data reduction. The proposed liver enzyme prediction algorithm is (i) Bayesian 

optimised Sinusoidal regression (BO-SR) (ii) Genetic Algorithm optimised Polynomial 

Regression (GA-PR). The proposed method applied in the clinical data such as demographics, 

metabolic function, and sleep data. Semi-graph theory is used for relational structuring and 

generalized rough set theory is used for eliminating redundant information. Adam optimised 

Generative Adversarial Networks are used to generate synthetic Thermic Effect of Food data and 

improve data size and diversity. Genetic Algorithm and Bayesian Optimization ensure optimal 

parameter selection and improves prediction accuracy. The proposed method has an accuracy of 

97.3% in predicting Aspartate Aminotransferase (ALT) and Alanine Aminotransferase (AST) 

levels, this ensures early diagnosis and intervention for diabetes-related liver complications. 

Keywords: Type 2 Diabetes Mellitus, Alanine Aminotransferase (ALT), Aspartate 

Aminotransferase (AST), Diabetic Management, Liver Enzyme Prediction. 

 

INTRODUCTION 

A rising global health concern, primary sign of T2DM includes elevated blood sugar, insulin resistance, and lack of 

insulin. The increasing prevalence of T2DM worldwide necessitates urgent public health and clinical preventive 

measures [1].  Urbanisation, ageing populations, and changes in lifestyle choices share a part in the global rise in 

T2DM. In order to avoid serious health and financial repercussions certain organisations have emphasised how 

urgent it is to confront this epidemic. An organisation estimates that there were more than five hundred million 

persons with diabetes in recent past years, and that figure would rise more in next ten years T2DM has more than 

90% [2]. The rapid growth is largely driven by increasing obesity rates, sedentary lifestyles, and dietary changes, 

particularly in developing nations. 

Countries like China and India have witnessed a dramatic rise in T2DM cases due to rapid urbanization and dietary 

shifts towards processed foods. China alone has over 140 million diabetics, the highest in the world. Due to a 

combination of genetic predisposition and high obesity rates, the MENA has high rates of diabetes. T2DM is highly 

prevalent in North America and Europe, and better disease management is made possible by increased awareness 

and access to healthcare. Africa is the fastest-growing region in terms of T2DM cases, where urbanization and 

changes in lifestyle have led to rising numbers, but healthcare infrastructure struggles to maintain [3]. So, it is 

important to understand the relation between T2DM and metabolic function. T2DM is an ongoing metabolic disorder 

characterised by lack of insulin and diminished insulin secretion, resulting in hyperglycemia. The condition is linked 

to various metabolic functions like glucose homeostasis, lipid metabolism, and energy balance. T2DM primarily 
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develops due to insulin resistance, a condition where peripheral tissues, particularly muscle, liver, and adipose tissue, 

fail to respond effectively to insulin. It leads to reduced glucose intake in muscle cells, causing decreased energy 

production, increased hepatic glucose production, aggravating hyperglycemia reducing insulin secretion overtime 

Metabolic dysfunction in T2DMencompasses not only glucose metabolism but also lipid metabolism. Increased lipo

lysis in ae tissue results in increased FFA, exacerbating insulin resistance. Elevated triglycerides and decreased HDL 

cholesterol are hallmarks of dyslipidaemia, which raises the risk of cardiovascular disease [4]. Additionally, T2DM is 

linked to compromised mitochondrial activity, which lowers ATP synthesis and raises oxidative stress. It leads to 

metabolic inflexibility, in which cells find it difficult to effectively transition between the metabolism of fatty acids 

and glucose. T2DM is characterised by chronic low-grade inflammation, where insulin signalling is disrupted by 

cytokines such TNF-α and IL-6. Alterations in hormones like leptin and adiponectin disrupt appetite regulation and 

energy balance [5]. It is necessary to study the relation between T2DM and diabetic function to prevent it. 

Insulin secretion, glucose metabolism, and general endocrine regulation are among the metabolic processes that are 

directly affected by T2DM. The term "diabetic function" describes secretion and usage of insulin by human body. 

Insulin resistance hampers these processes in T2DM, resulting in persistent hyperglycemia and related 

consequences. The secretion and action of insulin, a hormone made by pancreatic β-cells that controls glucose uptake, 

are key functions of diabetes. β-Cell Dysfunction causes pancreatic β-cells failure to compensate for insulin 

resistance, leading to decreased insulin secretion [6]. Important diabetic function is maintaining glucose 

homeostasis, which is disrupted in T2DM. The liver continues to produce glucose even when insulin levels are high, 

worsening hyperglycemia leading to increased hepatic glucose production. Reduced Glucose absorption by muscles 

and fat cells from the bloodstream also leads to high blood sugar levels. 

T2DM affects various hormones that regulate diabetic function which includes glucagon causing increased secretion 

from pancreatic α-cells leads to excessive glucose production.  Amylin is co-secreted with insulin helps regulate 

glucose levels and appetite, but its function is impaired in T2DM. Hormones like GLP-1 and GIP, stimulates insulin 

secretion, are less effective in T2DM because of incretin dysfunction. When untreated, T2DM leads to chronic 

complications that further impair diabetic function. Progressive Loss of β-Cells reduces insulin production.  Diabetic 

Complications increases risk of neuropathy, nephropathy, and retinopathy. Cardiovascular disease is caused due to 

metabolic and vascular dysfunction [7] Sleep and T2DM are connected proof shows that inadequate sleep length, 

quality, and patterns have a major impact on diabetes management and risk. Metrics pertaining to sleep duration, 

efficiency, and disruptions offer important insights into the reciprocal relationship between sleep and type 2 diabetes. 

Sleep is crucial for metabolic balance, and sleep disturbances can exacerbate insulin resistance and impair glucose 

management. Less than six hours of sleep every night is linked to higher blood sugar. Long sleep greater than 9 hours 

per night is linked to metabolic dysregulation, potentially due to underlying health conditions or poor sleep quality. 

Frequent awakenings or low sleep efficiency disrupts circadian rhythms, impairing glucose metabolism. Poor deep 

sleep is associated with reduced insulin sensitivity. A prevalent sleep condition in people with type 2 diabetes is 

obstructive sleep apnoea (OSA), which causes intermittent hypoxia and raises inflammation and oxidative stress. 

Insulin sensitivity has been seen to improve in patients after CPAP therapy [8].  

T2DM itself contributes to poor sleep quality through various physiological and neurological mechanisms. High 

blood sugar levels at night can lead to frequent urination (nocturia), causing sleep interruptions. Poor control is 

linked with rising nighttime awakenings and reduced sleep efficiency. Diabetic neuropathy causes pain and 

discomfort, leading to difficulty falling and staying asleep. Neuropathy and Restless Leg Syndrome (RLS) more 

common in T2DM, disrupts sleep due to uncontrollable leg movements. The body's internal clock and sleep-wake 

cycle are impacted by the decreased melatonin secretion associated with type 2 diabetes. Because of their inconsistent 

sleep habits, shift workers with type 2 diabetes frequently have impaired glycaemic control [9]. Two liver enzymes 

that are frequently examined to evaluate liver function are AST and ALT. It is essential to keep an eye on the ALT and 

AST levels of individuals with type 2 diabetes since they are at a higher risk of developing liver-related issues, such 

as NAFLD and metabolic dysfunction. Since excessive liver fat deposition are common in people with T2DM, elevated 

ALT and AST readings may indicate underlying liver disease, such as NAFLD. Liver dysfunction is intimately linked 

to type 2 diabetes. The reduced melatonin release linked to diabetes affects the body's internal clock and sleep-wake 

cycle. Shift workers with type 2 diabetes often have poor glycaemic control due to irregular sleep patterns [9].  
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AST and ALT are two liver enzymes that are regularly tested to assess liver function. It is essential to keep an eye on 

their ALT and AST levels since those who have these conditions are more likely to experience liver-related issues, 

such as NAFLD and metabolic dysfunction.  

The liver plays a crucial role in maintaining glucose homeostasis. Hyperglycemia is made worse by the liver's 

overproduction of glucose as a result of insulin resistance. Higher ALT levels are linked to control, which is 

characterised by elevated fasting glucose and HbA1c values. Liver fibrosis, which is characterised by consistently 

elevated ALT and AST levels, can lead to cirrhosis. The AST/ALT ratio indicates severe fibrosis or cirrhosis when it 

is greater than 1, and common NAFLD when it is less than 1. Cardiovascular diseases (CVD) occur in T2DM patients 

with raised ALT and AST levels. Chronic inflammation, hypertension, and dyslipidaemia are all exacerbated by liver 

impairment and raise the risk of CVD [11]. 

 Research Gap 

Existing research have focused on the Indian population, analysing liver function tests (LFTs) in relation to diabetes 

[11]. However, these findings are not generalizable to other populations due to genetic, dietary, and environmental 

differences. Comparative studies across diverse ethnic groups are needed to better understand the influence of 

demographic factors on liver function parameters in T2DM. Research has highlighted nonlinear relationship between 

AST, ALT levels and the incidence of T2DM, with focus on single parameter [12]. There is a lack of research on how 

liver enzyme abnormalities can be used for early diagnosis, risk stratification, and therapeutic interventions in T2DM 

management and progression. 

 Problem Statement 

T2DM is a progressive illness represented by hyperglycemia and insulin resistance. T2DM impacts an individual's 

health leading to complications like liver dysfunction. The amount of AST, ALT in diabetic patients should be 

accurately predicted to avoid severe complications. However, the complexity of T2DM progression, influenced by 

metabolic functions, demographic factors, clinical indicators, and lifestyle data, poses challenges for accurate 

prediction and tailored interventions. Traditional methods fail to efficiently process and analyse large datasets with 

both periodic and non-linear trends. Effective management of T2DM requires personalized approaches to prevent 

complications and optimize health outcomes.  

 Contributions 

1. To improve data for diabetes management, Adam optimised GAN is used to generate synthetic Thermic 

Effect of Food (TEF) data. Optimised GAN-generated synthetic data compensates for the limited availability 

of real medical data, particularly for Thermic Effect of Food (TEF) in diabetic individuals. 

2. To improve structural connectivity for relational data representation Semi graph theory is used. Semi-Graph 

Theory preserves the interconnected data, making it useful for correlation-based analyses in diabetes 

management.  

3.  To eliminate redundant data and improve the performance generalized rough set theory is used. Removing 

irrelevant data reduces complexity, improving prediction accuracy for ALT and AST enzyme levels. 

4. To capture periodic variations in metabolic and sleep data that influence liver enzyme fluctuations Sinusoidal 

regression is used and to identify non-linear relationships in metabolic function and TEF, liver enzymes, 

Polynomial regression is used, improving prediction accuracy and generalization across diverse patient 

profiles. 

5. To improve the prediction accuracy of liver enzymes Genetic Algorithm and Bayesian optimization 

algorithms are used. Fine-tuning the parameters of machine learning algorithms for more reliable liver 

enzyme predictions. 

LITERATURE SURVEY 

An important biomarker for comprehending a number of metabolic diseases, especially T2DM its consequences, is 

the AST/ALT ratio. The results of contemporary research examining the connection between the AST/ALT ratio and 
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T2DM, gestational diabetes mellitus, diabetic retinopathy, cardiovascular mortality, and other associated disorders 

are presented in this review of the literature. Numerous metabolic and cardiovascular disorders, such as T2DM, 

GDM, hypertension, sepsis, coronary artery disease, have been extensively researched using the AST-to-ALT ratio as 

a biomarker. The review that follows summarises the body of research on the connection between these health 

outcomes and the AST/ALT ratio. An investigation on the nonlinear link between the occurrence of T2DM and the 

AST/ALT ratio was carried out by the author in [12]. found that variations in AST, ALT detects disease. The findings 

highlight the significance of liver enzyme ratios in metabolic disorders, suggesting that abnormal AST/ALT levels 

might reflect underlying insulin resistance and hepatic dysfunction TG/HDL-C and the AST/ALT ratio have been 

compared by the author as risk factors for GDM in [13].  

It was concluded that AST/ALT serves as a more reliable independent risk factor emphasizing the role of hepatic 

function in gestational metabolic disturbances and suggests that liver enzyme monitoring during pregnancy could 

aid in early GDM risk assessment. The correlation of AST/ALT, cardiovascular and results in death in hypertensive 

individuals has been investigated by the author in [14]. The results support the idea that liver function abnormalities 

contribute to cardiovascular problems in hypertensive individuals by showing a correlation between raised AST/ALT 

ratio and increased mortality risks. In [15] the potential value of AST/ALT as a predictive biomarker in critically ill 

patients is demonstrated by the finding that a higher ratio was linked to worse clinical outcomes. It was recognised 

that liver failure had a significant role in the development of sepsis and the outcome for patients. The effect of 

AST/ALT levels on all-cause mortality in patients with stable heart disease was discussed by the author in [16]. Higher 

death rates were associated with an elevated ratio, according to the secondary analysis, further reinforcing the 

potential of this biomarker in cardiovascular risk stratification. 

 Author has evaluated prognostic significance of ratio in comparison to bilirubin [17]. The data revealed ratio was a 

superior detector of outcomes compared to bilirubin levels, underlining its therapeutic value in managing critically 

unwell cardiac patients. Potential of the elevated AST/ALT ratio as a marker for diabetes complications was 

highlighted by the author's discovery in [18] that it was linked to type 2 diabetic peripheral neuropathy in a Chinese 

population. The relationship between AST/ALT and death in critically unwell congestive cardiac patients has been 

investigated by the author, showing that elevated levels correlated with worse clinical outcomes [19]. In [20] Author 

has noted that the AST/ALT ratio was a useful indicator of functional severity in chronic heart failure with reduced 

left ventricular ejection fraction. Author has examined the non-linear association between AST/ALT and mortality in 

critically ill older patients, suggesting that deviations from an optimal range could indicate higher mortality risks 

[21]. The findings contribute to the growing body of evidence supporting AST/ALT as a useful marker in elderly 

patient populations. However, the study had certain limitations, including its retrospective design, which may 

introduce bias, and the lack of consideration for confounding factors such as comorbidities and medication use. 

In a cross-sectional investigation, the authors looked at the AST/ALT ratio's function as a stand-alone risk factor for 

diabetes retinopathy in [22]. According to their findings, there may be a connection between liver malfunction and 

microvascular problems because a greater AST/ALT ratio was linked to an increased risk of diabetic retinopathy. The 

cross-sectional form of the study, however, makes it impossible to demonstrate causation, and more longitudinal 

research is needed to validate the results. In [23] study found that an elevated ratio correlated with liver fibrosis and 

disease progression, making it a useful clinical marker. However, this study, being over two decades old, may not 

fully reflect current diagnostic advancements. Furthermore, it focused solely on hepatitis C, limiting its applicability 

to other liver conditions. The author has investigated the connection between the severity of chronic heart failure 

6[24] and the AST/ALT ratio. According to their research, patients with a lower left ventricular ejection fraction were 

expected to have worse functional status if their AST/ALT ratio was higher. Notwithstanding these encouraging 

findings, the study lacked a thorough evaluation of potential confounding factors, including systemic inflammation 

and kidney function, and had a small sample size. The study in [25] reported that an increased transferase ratio was 

linked to higher risk of adverse events making a potential prognostic biomarker. Author in [26] examined pregnancy 

cholestasis, a disorder that usually manifests in the third trimester of pregnancy. The study examined liver enzyme 

levels and their relationship to pregnancy outcomes using retrospective cohort methods. According to their research, 

ratio can be sign of a higher chance of unfavourable consequences for both the mother and the foetus. The study did 
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have some drawbacks, though, such as a small sample size and no control for other liver problems, which would have 

limited how broadly the findings can be applied. Table 1 provides the existing methods in ALT& AST measurement 

 

 

Table 1 Existing methods in ALT& AST measurement. 

Reference Study Key Findings Methods Used Drawbacks 

[12] Nonlinear Association 

Between T2DM and the 

AST/ALT Ratio  

- Nonlinear relationship identified; higher 

ratios associated with lower T2DM 

incidence in prediabetic individuals. 

- Follow-up 

study, cohort 

analysis 

- Limited 

generalizability due 

to specific 

population 

[13]  Alt and AST are linked 

to the risk of gestational 

diabetes  

- An increased AST/ALT ratio is linked to 

a higher risk of gestational diabetes.   

- Case-control 

study 

- Potential 

confounding factors 

not fully controlled 

[14] Mortality in H and the 

Ratio of ALT, AST  

- In hypertensive patients, a increased 

ratio of AST, ALT is linked to higher 

cardiovascular and all-cause mortality.  

- Cohort study, 

retrospective 

analysis 

- Single-center study 

may limit external 

validity 

[15] Ratio of AST/ALT in 

Sepsis  

AST/ALT ratio has been shown to have 

diagnostic and prognostic value in 

patients with sepsis and septic shock.  

- Observational 

study 

- limited sample 

size; findings might 

not be generally 

relevant  

[16] The AST/ALT Ratio and 

Cardiovascular Disease  

- An increased AST/ALT ratio is linked to 

all-cause mortality in patients with stable 

coronary artery disease. 

  

- Retrospective 

cohort study 

- Data derived from 

medical records may 

lack completeness 

[17] Bilirubin vs the AST, 

ALT levels in 

Cardiogenic Shock  

- AST, ALT ratio prognostic value in 

relation to bilirubin in cardiogenic shock 

patients.  

- Comparative 

analysis 

- Variability in 

clinical management 

across case 

[18] DPN -An increased risk of diabetic peripheral 

neuropathy is linked to higher AST/ALT 

ratios (OR: 2.413). 

  

- Cross-sectional 

study 

- Single-center study 

may limit 

generalizability 

[19] Death -. An increased AST, ALT levels is linked 

to a higher risk of death in critically unwell 

congestive heart failure patients.  

- Cohort 

analysis 

- Limited 

demographic 

diversity 

[20] Chronic Heart Failure - In individuals with chronic heart failure, 

higher AST, ALT levels were associated 

with worse functional severity.  

- Prospective 

cross-sectional 

study 

- Small sample size 

may affect statistical 

power 
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Reference Study Key Findings Methods Used Drawbacks 

[21] Death & Severely Ill 

Elderly persons  

The AST, ALT levels, death have 

connection; thresholds where risk 

dramatically increases have been found.  

- Retrospective 

cohort study 

- Single-center 

analysis may limit 

applicability 

[22] Diabetic Retinopathy 

Risk Factor Study 

The AST, ALT levels and the risk of 

diabetic retinopathy are closely linked  

Cross-sectional 

study 

Single-center study 

may limit 

generalizability. 

[23] Hepatitis C Prognosis AST/ALT ratio provides information 

about disease severity and prognosis in 

HCV-related chronic liver disease. 

Observational 

study 

Limited in isolation; 

other factors needed 

for comprehensive 

assessment. 

[24] Chronic Heart Failure 

Severity Prediction & 

Reduced LVEF & 

Functional severity 

prediction possible. 

A high AST/ALT ratio predicts the 

functional severity of chronic heart failure 

with reduced LVEF.  

Observational 

study 

May not establish 

causation. 

[25] Unstable Angina & 

Cardio-Cerebral Events 

Association & Increased 

transferase ratios are 

associated 

In unstable angina, an elevated 

transferase ratio (AST/ALT) causes 

unfavourable cardio-cerebral events.  

Study of 

retrospective 

group  

Potential for 

selection bias and 

residual 

confounding. 

[26] Clinical Significance in 

Third Trimester 

Pregnancy 

Highlights the clinical significance of ICP 

typically occurring in the third trimester, 

emphasizing its impact on pregnancy 

outcomes due to increased risk of preterm 

labor, fetal distress, etc., necessitating 

close monitoring and appropriate 

management strategies. 

retrospective 

cohort study 

methods 

 

limited sample size, 

which restricts how 

far the findings can 

be applied. 

 

 

Table 1 summarizes critical aspects discussed in the literature review, providing an overview of key findings, methods 

used, and   limitations of each study about the influence of the AST, ALT on T2DM and other health complications. 

According to the research, the ratio detects metabolic health, specifically of type 2 Diabetes and its effects. Its 

significance in clinical practice for early diagnosis and intervention techniques is highlighted by its nonlinear 

relationship with the incidence of diabetes and relationship with other health issues. The results of several clinical 

research are combined in this review to provide a understanding of AST/ALT ratio in connection to diabetes and its 

complications indicating its use in clinical assessment and intervention techniques. 

METHODOLOGY 

Figure 1 displays the block diagram for the proposed methodology.  
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Figure 1 Block diagram for predicting liver enzymes AST, ALT 

Diabetic Person 

Individuals affected by Type 2 Diabetes Mellitus are classified into three groups male, female and adults. The 

classification is essential as gender and age differences influence the effect of diabetes on each group. Men have more 

chances of insulin resistance because of high visceral fat accumulation. Women suffer from hormonal fluctuations 

affecting blood sugar control and gestational diabetes increases the chances of developing T2DM later in life. Adult 

persons over the age of 40 are the most affected by T2DM due to age-related insulin resistance, and younger adults 

are at an increasing risk due to sedentary lifestyle and obesity. This classification is required for the personalized 

diabetes management strategies based on age and gender to improve early detection, treatment and long-term 

diabetes care. 

Type 2 Diabetes Mellitus 

Demography  

Demographic factors determine an individual’s risk of developing type2 Diabetes Mellitus. Demographic features like 

genetics, race, geographic location influence the development and progression of diabetes in an individual. 

Geographic location where the people live influence the risk of diabetes due to food habits, lifestyle and access to 

healthcare. Certain ethnic groups have a higher predisposition to developing Type 2 Diabetes. 

 Age 

Age is an important threat element for T2DM. Adults are more likely to be affected, especially those over 45. T2DM 

is common among teenagers, young adults, because of obesity and sedentary lifestyles. Age-related insulin resistance 

and reduced pancreatic function contribute to diabetes development in older adults. 

Occupation 

A person’s job occupation impacts the risk of diabetes. Sedentary jobs increase the risk due to the lack of physical 

activity and dietary habits. Jobs involving physical labour has lower risk but shift work causes irregular eating and 

sleeping patterns resulting in metabolic disorders. Figure 2 shows the distribution of diabetic persons. 
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                             Figure 2 Distribution of Diabetic persons in various categories 

 

Distribution of Diabetic persons in various categories like Control group (nondiabetics), Diabetic group. Elevated 

levels, Normal in Glucose, gender based and age based is shown in Figure 2. 

Adam optimised GAN -Adaptive Moment Estimation optimised Generative Adversarial Network 

Adam optimised GAN is used to generate synthetic TEF data as Thermic Effect of Food (TEF) data is limited in real 

world. The Adam optimizer enhances the training process of GANs by providing faster convergence. It improves the 

stability of GAN for generating high-quality synthetic TEF data without limited patterns. The dataset referenced in 

[27] includes 502 food items with detailed nutritional attributes like glycemic index, calorie content, macronutrients 

(carbohydrates, protein, fat), diabetes and blood pressure suitability, and mineral contents like sodium, potassium, 

magnesium, calcium, and fiber. TEF is calculated for each food by the given formulas and the new TEF dataset is 

used as input for Adam optimised GAN. Table 2 explains the function of Adam optimised GAN in generating the 

synthetic TEF dataset. 

𝑇𝐸𝐹 = 𝑇𝑜𝑡𝑎𝑙 𝐸𝑛𝑒𝑟𝑔𝑦 𝐼𝑛𝑡𝑎𝑘𝑒 ∗ 𝑇𝐸𝐹 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒                                                (1) 

𝑇𝐸𝐹 = (𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 𝐶𝑎𝑟𝑏𝑜ℎ𝑦𝑑𝑟𝑎𝑡𝑒𝑠 ∗ 0.75) + (𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 ∗ 0.25) + 𝐶𝑎𝑙𝑜𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 𝑓𝑎𝑡

∗ 0.025)                                                                                  (2) 

Table 2   Process Flow for Adam-Optimized GAN in TEF Data Generation 

Process Function of Adam-optimised GAN 

Data collection Gathers real-world food intake data based on TEF for training. 

Generator Creates synthetic TEF values by learning complex data distributions using adaptive 

moment estimation (Adam) for efficient weight updates. 

Discriminator Differentiates real TEF dataset from generated synthetic TEF data, leveraging Adam 

optimizer for better convergence stability. 

Synthetic Data Generation GAN generates artificial TEF data to expand the dataset, reducing data scarcity and 

maintaining realistic patterns. 

Data Augmentation Improves dataset variability and ensures better generalization in machine learning 

models by optimizing GAN’s weight updates through Adam 
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Feature Learning Enhances the prediction of hidden patterns in TEF-based food data, improving the 

quality of synthetic data and reducing bias. 

Improving Model 

Robustness 

Provides additional training samples with an optimized GAN, reducing overfitting 

through better weight updates and convergence control. 

Diabetes Management 

Insights 

Enhances TEF prediction accuracy for better diabetes control strategies by using a 

stable and well-optimized GAN model. 

Benefits of Using GANs 1.Increases data availability by generating new TEF data to improve generalization 

2. Overfitting is reduced by allowing Sinusoidal and polynomial regression to not 

depend on limited real-world dataset. 

3. Optimized GAN based TEF dataset leads to better accuracy in liver enzyme 

predictions, contributing to improved diabetes management.  

 

Table 2 shows that generated dataset is augmented by Adam-Optimised GAN for better training of machine learning 

models. It ensures that Optimised GAN learns dietary patterns to generate realistic TEF data. Table 3 provides the 

pseudocode for Adam-optimised GAN-Based TEF Data Processing and Figure 3 shows the Adam-optimised GAN 

generated TEF data. 

Table 3 Pseudocode for Adam-optimised GAN-Based TEF Data Generation 

1. **Initialize Environment** 

   - Clear workspace, close all figures, and reset command window. 

2. **Load and Preprocess Dataset** 

   - Load the TEF dataset from a CSV file. 

   - Display column names for verification. 

   - Extract numerical features and handle missing values. 

   - Normalize numerical features for GAN training. 

3. **Define GAN Parameters** 

   - Set dimensions for numerical features. 

   - Define latent space size for random noise input. 

   - Set hyperparameters such as learning rate, batch size, and number of epochs. 

4. **Define Generator Network** 

   - Input: Random noise vector. 

   - Layers: 

     - Fully connected layers with ReLU activation. 

     - Output layer with Tanh activation to match normalized feature range. 

   - Output: Synthetic TEF data. 

5. **Define Discriminator Network** 

   - Input: Real/synthetic TEF data. 

   - Layers: 

     - Fully connected layers with Leaky ReLU activation. 

     - Output layer with Sigmoid activation to classify real vs. fake data. 

   - Output: Probability score indicating whether the input is real or fake. 

6. **Define Adam Optimizer** 

   - Set learning rate (e.g., 0.001). 

   - Set beta1 and beta2 for first and second moment estimates (e.g., 0.9 and 0.999). 

   - Set epsilon for numerical stability (e.g., 1e-7). 

7. **Train the GAN with Adam Optimizer** 

   - For each epoch: 

     1. Sample a mini-batch of real TEF data. 

     2. Generate random noise. 

     3. Generate synthetic TEF data using the generator. 
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     4. Compute gradients for discriminator and generator using Adam optimizer. 

     5. Update discriminator weights: 

        - Compute loss on real data (real label = 1). 

        - Compute loss on synthetic data (fake label = 0). 

        - Update weights using Adam update rule. 

     6. Update generator weights: 

        - Compute loss by feeding synthetic data through discriminator (real label = 1). 

        - Update weights using Adam update rule. 

     7. Display training progress every few epochs (e.g., loss values). 

8. **Generate Synthetic TEF Data** 

   - Define the number of synthetic samples to generate. 

   - Generate random noise vectors. 

   - Use the trained generator to produce synthetic TEF data. 

   - Denormalize synthetic data to match original scale. 

9. **Save Synthetic Data** 

   - Convert synthetic data into a table format with appropriate column names. 

   - Save the table as a CSV file. 

10. **Performance Metrics (Optional)** 

    - Evaluate the quality of generated data using metrics such as: 

      - Mean Absolute Error (MAE) between real and synthetic data samples (if applicable). 

      - Mean Squared Error (MSE) between real and synthetic data samples (if applicable). 

      - Root Mean Squared Error (RMSE) between real and synthetic data samples (if applicable). 

      - Coefficient of Determination (R²) to assess model fit. 

    - Display performance metrics. 

11. **Display Results** 

    - Print final performance metrics (e.g., MAE, MSE, RMSE, R²). 

 

Figure 3 Synthetic TEF data generated by Adam-optimised GAN. 

 Dataset 

Dataset includes metabolic function, diabetes, sleep data. The datasets are essential to understand the influence of 

diabetes in ALT, AST levels, the indicators of liver health. Each dataset contributes features that help in accurate 

prediction of ALT, AST.  

Metabolic Function and diabetes dataset 

The body's capacity to process energy, control blood sugar, and ensure functioning of organs is referred to as 

metabolic function. It is related with liver health and overall metabolic health. It is useful to evaluate the effect 

diabetes on liver as Insulin resistance and other metabolic diseases cause NAFLD, prevalent among diabetics. Data 

like glucose levels, insulin resistance, and lipid profiles, provide information about the progression of diabetes and 

its complications. 
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Sleep Data 

Sleep is important in metabolism, insulin sensitivity, and overall diabetes management. Poor sleep quality can worse 

glucose control and increase liver enzyme levels. Insufficient sleep leads to metabolic disturbances, increasing insulin 

resistance and worsening liver enzyme levels. OSA leads to inflammation and liver stress. Circadian rhythm 

misalignment affects glucose metabolism and may alter ALT/AST patterns. Table 4 provides features present in the 

datasets. 

Table 4 Metabolic and Sleep Features Influencing AST & ALT Levels in Diabetes patients 

Feature Description Importance 

Blood Glucose Levels Fasting, and HbA1c values High glucose levels indicate poor metabolic control, 

impacting liver enzymes. 

Lipid Profile Cholesterol, HDL, LDL, 

Triglycerides 

Dyslipidemia is common in diabetes and affects liver 

function. 

Height, Weight Height and weight ratio High BMI correlates with fatty liver disease and 

abnormal ALT/AST. 

Blood Pressure Systolic and Diastolic Hypertension is associated with metabolic syndrome 

and liver dysfunction. 

Liver Function Tests ALT, AST Used as target variables in prediction. 

Diabetes Type Type 2 Type 2 diabetes has a stronger correlation with 

metabolic dysfunction and liver issues. 

HbA1c Levels Average blood glucose over 3 

months 

A higher value indicates poor glucose control, 

affecting liver function. 

Diabetes-Related 

Complications 

Neuropathy, Retinopathy, 

Nephropathy, etc. 

Patients with complications may have higher 

ALT/AST due to organ stress. 

Sleep Duration Number of hours slept each 

night in total 

 

Increased ALT/AST is linked to shorter sleep 

duration. 

 

Sleep Quality Self-reported sleep efficiency Poor sleep quality affects glucose metabolism and 

liver function. 

 

Table 3 shows Metabolic, Diabetes, and Sleep Data together providing an extensive dataset for predicting ALT and 

AST levels in diabetes patients. It improves accuracy, provides better clinical information, and helps in the early 

detection of liver dysfunction. 

 Pre-processing and reduction 

Pre-processing and data prepare the data for optimised machine learning algorithms. Semigraph Theory and 

Generalised Rough Set Theory handles missing values, normalizes data, selects related features, and reduces 

dimensionality in preprocessing. 

 Semigraph theory 

Semigraph Theory is used to present the relationship and dependencies within the dataset. It identifies the relevant 

features in metabolic, diabetes dataset, sleep data by analysing their relationships by feature selection.  

Interdependent features like blood glucose, BMI, ALT, AST, HbA1c, sleep duration is represented as a node in a semi 

graph and edges between nodes represent their statistical correlation and influence. Features with weak connections 

to ALT, AST are removed to reduce dimensionality. Influence of different factors like sleep duration, metabolic 

markers on each other and on AST, ALT levels are understood by dependency analysis. Traditional feature selection 

methods do not capture interactions between multiple variables. Degree centrality and betweenness centrality 

identify the important features and the features with highest connectivity to ALT, AST are retained. Table 5 presents 

the comparison of pre-processing techniques with semi-graph theory. 
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Table 5 Performance comparison of other pre-processing techniques with Semigraph theory. 

  

Table 5 shows that Semigraph Theory performs better than other techniques as it captures complex dependencies 

and interactions in a graph structure, handles complex relationships, missing data, and non-linear dependencies in 

the medical dataset used for predicting AST and ALT levels in diabetic patients. Figure 4 shows the interconnection 

of features in AST, ALT prediction. 

Criteria Semi-Graph 

Theory 

(Proposed 

method) 

Feature 

Selection 

(PCA, 

LASSO) 

Clustering-Based 

Preprocessing 

Fuzzy Logic-

Based 

Preprocessing 

Statistical Methods 

(Normalization, 

Standardization) 

Handling Complex 

Relationships 

10 6 5 7 3 

Preservation of 

Structural 

Information 

10 4 3 6 2 

Handling Missing 

Data 

9 5 6 7 4 

Adaptability to 

Non-Linear Data 

10 4 7 9 3 

Scalability for 

Large Datasets 

8 7 5 6 10 

Improvement in 

Prediction 

Accuracy 

10 8 6 8 5 

 

  

Applicability to 

Medical Data 

(Diabetes 

Complications) 

10 7 5 8 4 

Robustness 

Against Outliers 

9 5 6 7 3 
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Figure 4 Degree centrality, betweenness centrality and closeness centrality of the features using Semi-graph theory 

for AST, ALT prediction.  

  

Network's structure and nodes within that network is shown in figure 4 by different centrality metrics. The use of 

color-coding allows for a quick assessment of which nodes are most central according to each measure. Node 12 has 

the highest degree centrality; Node 4 has the highest betweenness centrality 

 Generalized Rough set theory (GRST)  

Generalized Rough Set Theory is used to identify and remove irrelevant data without losing essential data to predict 

liver enzymes AST, ALT. GRST is used because of its ability to handle continuous, uncertain, and missing data in 

medical datasets efficiently than traditional rough set theory. GRST functions by organising the data like clinical 

indicators, demographic data, and GAN-generated TEF as attributes. It uses flexible relations to handle mixed data 

like lower approximation has data definitely belonging to a class, upper approximation possibly belonging to a class, 

boundary region contains uncertain cases. It measures the importance of each feature in decision-making by attribute 

significance and removes redundant attributes, keeping only a minimal subset (reduct) for prediction of liver 

enzymes. Figure 5 shows the performance comparison of generalized rough set theory with other data reduction 

techniques. The reduced and optimized dataset is then fed into the regression models (Sinusoidal & Polynomial 

Regression) for AST & ALT prediction. 
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Figure 5 Performance comparison of Generalized Rough set theory and other data reduction techniques. 

Generalized Rough Set Theory performing well in handling missing data, model interpretability, applicability to 

medical data, and handling redundancy making it suitable for medical applications is shown in figure 5. Figure 6 

provides the feature dependency and reduction in predicting liver enzymes to manage diabetes. 

  

(a) Feature Dependency Matrix of features in clinical 

indicators dataset 

 

(b) Feature reduction using Generalized Rough Set 

theory 

 

Figure 6 (a)Feature Dependency Matrix of features in clinical indicators dataset(b) Feature reduction using 

Generalized Rough Set theory 

Figure 6(a) presents the connections between different features in a dataset by correlation matrix. A yellow and green 

cell indicates that the two features tend to increase or decrease together. A blue cell indicates that as one feature 

increases, the other tends to decrease. Feature reduction by Roughset theory is shown in figure 6b. Bar graph 

indicates the number of features before and after a feature reduction process using Generalized Rough Set Theory.  

Optimized machine learning and optimization algorithm 

Pre-processed and reduced dataset with semigraph theory and generalized rough set theory is used for training 

optimized machine learning algorithms-sinusoidal regression and polynomial regression. The machine learning 

models are used to develop an accurate predictive model for ALT and AST levels, the key indicators of liver function, 

affected by Type 2 Diabetes Mellitus. Machine learning is applied to identify the patterns in metabolic function, 

diabetes, and sleep data that influence ALT and AST levels. 

Sinusoidal Regression 

Sinusoidal regression analysis is used to analyse the periodic pattern in the dataset. Metabolic functions, sleep cycles, 

thermic effect of food exhibit periodic variations. Sinusoidal Regression captures periodic variations in ALT/AST 

influenced by metabolic function, sleep patterns. It has better accuracy for biological data compared to linear models 

and it is useful for time-series prediction in diabetes-related data. Sinusoidal regression fits a sine wave to the dataset 

by 

𝑦 = 𝐴 sin(𝐵𝑥 + 𝐶) + 𝐷               (3)        

 

Where, 

         y= Predicted ALT/AST level 

         x= Time-based or another independent variable 

         A= Amplitude (occurring variation) 
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         B= Frequency (repeating pattern) 

         C= Phase shift (adjusts the wave along the x-axis) 

         D= Vertical shift (baseline ALT/AST levels) 

This equation captures oscillatory behaviour in ALT/AST fluctuations. 

Polynomial Regression 

Polynomial regression is used to handle nonlinear trends in the dataset. Liver enzymes ALT and AST exhibit complex, 

non-linear relationship with metabolic function values and sleep data. Polynomial regression can capture these 

complex relationships and produce more accurate results than linear regression when relationships are nonlinear. 

The model fits a polynomial equation of degree n: 

𝑦 = 𝑎0 +  𝑎1𝑥 + 𝑎2𝑥2 + 𝑎3𝑥3 + ⋯ + 𝑎𝑛𝑥𝑛    (4) 

Where,  

       y = Predicted ALT/AST level 

       x = Input feature like blood glucose, sleep duration 

      𝑎0, 𝑎1, … . , 𝑎𝑛 =Coefficients learned from data 

Optimization Algorithm 

The selected machine learning models to minimize error and improve model’s performance. The optimization 

algorithms used here are, 

1.Genetic Algorithm (GA) 

2.Bayesian Optimization 

Genetic Algorithm (GA) 

Genetic Algorithm is a heuristic optimization-based natural selection. GA is suitable for optimizing nonlinear and 

non-convex problems, which are common in medical data due to the intricate relationships between clinical 

indicators. It tunes the parameters of regression models amplitude, frequency, phase shift to improve prediction 

accuracy for liver enzymes. 

Bayesian Optimization Algorithm 

Bayesian optimization uses probabilistic model probabilistic models to explore the parameters of regression models, 

reducing computational cost compared to other methods. Bayesian Optimization refines model parameters by 

balancing exploration and exploitation, making better predictions of ALT and AST levels. Table 6 provides the 

function of regression model optimization techniques and table 7 provides the pseudocode for optimised Polynomial 

regression and Sinusoidal Regression. 

Table 6 Regression model optimization techniques and process involved 

Regression Type Polynomial Sinusoidal 

Optimization Technique Genetic Algorithm Bayesian Optimization 

Reason for Optimization To automatically find the optimal 

polynomial degree and coefficients 

for best fit, avoiding overfitting or 

underfitting. 

To efficiently determine the best 

sinusoidal parameters (amplitude, 

frequency, phase shift) for 

modelling periodic variations in 

liver enzyme levels. 

Process involved in optimization 1.Initialize Population: Randomly 

generate polynomial equations with 

different degrees and coefficients.  

1. Define the Objective Function: 

Minimize the prediction error 

(MSE) by tuning sinusoidal 
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2.Fitness Evaluation: Compute the 

prediction error (MSE/RMSE) for 

each equation.  

3.Selection: Retain the best-

performing polynomial models.  

4.Crossover & Mutation: Combine 

the best models and introduce slight 

variations.  

5.Convergence: Repeat until an 

optimal polynomial equation is 

found. 

parameters.  

2. Select a Model for Surrogacy: It 

tries to estimate the unknown 

desired function using a 

probabilistic model like the 

Gaussian Process (GP).  

3. Select an Acquisition Function: 

Use Expected Improvement (EI), 

Upper Confidence Bound (UCB), or 

Probability of Improvement (PI) to 

decide where to sample next.  

4. Evaluate the Objective Function: 

Test the selected sinusoidal 

parameters and compute the 

prediction error.  

5. Update the Surrogate Model: 

Improve the GP model with new 

data.  

6. Iterate Until Convergence: Repeat 

the steps until an optimal sinusoidal 

function is found. 

Advantages 1.Automatically selects best 

polynomial degree 2. Prevents 

overfitting  

3. Handles non-linearity in medical 

data  

4. Suitable for short-term metabolic 

trends 

1.Captures periodic/cyclic trends in 

metabolic function  

2. Automatically tunes sinusoidal 

parameters  

3. More efficient than grid search  

4. Useful for long-term biological 

cycles 

 

 Table 7 Pseudocode for optimised Polynomial regression and Sinusoidal Regression for AST, ALT prediction. 

Genetic Algorithm optimised Polynomial Regression Bayesian optimised Sinusoidal Regression 

1. **Initialize Environment** 

   - Clear workspace, close all figures, and reset 

command window. 

2. **Load and Preprocess Data** 

   - Read Excel file into a table, preserving column 

names. 

   - Display column names for verification. 

   - Make column names valid for MATLAB. 

   - Dynamically assign feature and target variables: 

     - Feature1: First column. 

     - ALT: Third last column. 

     - AST: Second last column. 

     - ALT/AST Ratio: Last column. 

   - Remove rows with NaN values from all variables. 

   - Normalize Feature1 for numerical stability. 

3. **Polynomial Regression with Genetic Algorithm** 

   - Set polynomial degree (e.g., 3) to avoid overfitting. 

   - Define GA options: 

     - Population size (e.g., 100). 

   

1. **Initialize Environment** 

   - Clear workspace, close all figures, and reset 

command window. 

2. **Load Dataset** 

   - Define file path for the dataset. 

   - Detect import options to preserve column names. 

   - Read the dataset into a table. 

   - Display column names for verification. 

3. **Extract Input and Output Variables** 

   - Extract input features (X) from the first 7 columns. 

   - Identify and extract the output variable (Y), 

specifically 'Predicted AST/ALT'. 

   - Handle missing column by throwing an error if not 

found. 

4. **Define Objective Function for Bayesian 

Optimization** 
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     - Maximum generations (e.g., 200). 

   - Set bounds for coefficients to prevent large 

oscillations: 

     - Lower bound (e.g., -1000). 

     - Upper bound (e.g., 1000). 

   - Record start time for computational time 

measurement. 

   - Perform GA optimization for each target variable: 

     - ALT: 

       - Define objective function: Sum of squared 

differences between predicted and actual ALT. 

       - Run GA to find best coefficients. 

       - Predict ALT using best coefficients. 

     - AST: 

       - Define objective function: Sum of squared 

differences between predicted and actual AST. 

       - Run GA to find best coefficients. 

       - Predict AST using best coefficients. 

     - ALT/AST Ratio: 

       - Define objective function: Sum of squared 

differences between predicted and actual ALT/AST 

Ratio. 

       - Run GA to find best coefficients. 

       - Predict ALT/AST Ratio using best coefficients. 

   - Record end time and calculate computational time. 

4. **Performance Metrics** 

   - Calculate metrics for each prediction: 

     - **RMSE (Root Mean Squared Error)**: 

sqrt(mean((Actual - Predicted)^2)). 

     - **MAE (Mean Absolute Error)**: mean(abs(Actual 

- Predicted)). 

     - **MSE (Mean Squared Error)**: mean((Actual - 

Predicted)^2). 

     - **R² (Coefficient of Determination)**: 1 - 

sum((Actual - Predicted)^2) / sum((Actual - 

mean(Actual))^2). 

   - Calculate computational time in seconds. 

5. **Visualization** 

   - Create a figure with three subplots: 

     - Plot actual vs predicted values for ALT, AST, and 

ALT/AST Ratio. 

     - Use a smooth curve for predicted values. 

     - Include titles, legends, labels, and grid for clarity. 

6. **Display Results** 

   - Print performance metrics for each prediction: 

     - RMSE. 

     - MAE. 

     - MSE. 

     - R². 

   - Print computational time in seconds. 

   - Create a function that computes the mean squared 

error (MSE) between predicted and actual values using 

a sinusoidal regression model. 

   - The model includes parameters for sinusoidal 

components and linear terms. 

5. **Define Optimization Variables** 

   - Define bounds for each parameter in the sinusoidal 

regression model: 

     - A1, A2: Amplitudes. 

     - B1, B2: Frequencies. 

     - C1, C2: Phases. 

     - P1, P2: Linear coefficients. 

     - D: Constant offset. 

 

6. **Run Bayesian Optimization** 

   - Set up Bayesian optimization with the defined 

objective function and variables. 

   - Specify optimization settings: 

     - Maximum number of objective evaluations. 

     - Acquisition function for optimization. 

   - Record start time for computational time 

measurement. 

   - Execute Bayesian optimization to find optimal 

parameters. 

   - Record end time and calculate computational time. 

7. **Extract Best Parameters and Compute 

Performance Metrics** 

   - Extract the best parameters from the optimization 

results. 

   - Use these parameters to predict output values. 

   - Compute performance metrics: 

     - **RMSE (Root Mean Squared Error)**: 

sqrt(mean((Actual - Predicted)^2)). 

     - **MAE (Mean Absolute Error)**: mean(abs(Actual 

- Predicted)). 

     - **MSE (Mean Squared Error)**: mean((Actual - 

Predicted)^2). 

     - **R² (Coefficient of Determination)**: 1 - 

sum((Actual - Predicted)^2) / sum((Actual - 

mean(Actual))^2). 

8. **Display Results** 

   - Print the best parameters found by Bayesian 

optimization. 

   - Display performance metrics (RMSE, MAE, MSE, 

R²). 

   - Print computational time in seconds. 

9. **Visualization (Optional)** 

   - Plot actual vs predicted values for visual comparison. 

   - Include titles, legends, labels, and grid for clarity. 

 



Journal of Information Systems Engineering and Management 
2025, 10(45s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1038 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 Diabetic management and control  

The diabetic management and control provide strategies to manage and regulate diabetes effectively. It highlights 

three key components Thermic Effect of Food, Metabolic Function Values, Sleep Data. Thermic Effect of Food helps 

in creating personalized dietary recommendations for diabetic individuals to optimize blood sugar control. These 

values are essential for assessing the overall metabolic health of diabetic patients and guiding treatment plans. Poor 

sleep is a known risk factor for worsening diabetes. Monitoring and improving sleep patterns can s enhance glucose 

regulation and overall health. The comprehensive approach integrates dietary, metabolic, and lifestyle factors to 

provide a framework for diabetes management. 

RESULTS AND DISCUSSION 

Dataset 

AST and ALT prediction is done based on the data from [28]. The datasets contain Metabolic Function Data, Diabetes 

Data, Sleep Data. The datasets are essential to understand how diabetes affects   Alanine Aminotransferase-ALT and 

Aspartate Aminotransferase- AST levels, the biomarkers for liver function. Each dataset contributes features for the 

accurate prediction of liver enzymes AST, ALT. Metabolic Function Data includes features like glucose and insulin 

resistance correlate with liver damage.  Metabolic changes indicate major liver issues and are important predictors 

for ALT and AST levels. Specific diabetes data helps in better ALT/AST modelling. It helps distinguish whether 

ALT/AST changes are due to diabetes or drug effects. Sleep data identifies non-obvious risk factors for liver enzyme 

elevation and adjusts predictions based on lifestyle and sleep habits. 

Performance Metrics  

Sinusoidal regression and polynomial regression performance is measured using the formulas given. 

 Mean Absolute Error 

 Mean Absolute Error calculates the average magnitude of the errors in predicting AST, ALT in a collection of 

predictions, without taking into account the direction of the errors. It is computed by 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̌|                                                     (5)

𝑛

𝑖=1
 

 Mean Squared Error (MSE) 

The Mean Squared Error measures the average of the squares of the errors in predicting AST, ALT levels. It gives 

more weight to larger errors. 

𝑀𝑆𝐸 =
1

𝑛
∑ ( 𝑦𝑖 − 𝑦̌𝑖

𝑛

𝑖=1
)2                                                (6) 

Root Mean Squared Error (RMSE) 

The Root Mean Squared Error is the square root of the Mean Squared Error in predicting AST, ALT. It provides a 

measure of the spread of the errors in the same units as the data. 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖

𝑛

1=1
− 𝑦̌𝑖)

2                                          (7) 

 R-Squared (R²) 

Measures the proportion of variance in the dependent variable that is predictable from the independent variable(s). 

It indicates how well the model fits the data 

• 𝑅2 = 1 −
∑ (𝑦𝑖−𝑦̌𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖
𝑛
𝑖=1 −𝑦̅ )2                                                                                    (8) 

 

where, 
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             𝑦𝑖   - actual value of liver enzymes, 

       𝑦̌𝑖    -predicted value liver enzymes, 

       𝑦̅    AST, ALT actual values mean, 

        𝑛   - observations made. 

Computational Time (seconds) 

Computational time is measured by a timer function in the polynomial and sinusoidal regression models. 

Optimised Sinusoidal and Polynomial Regression 

Figure 7 presents AST, ALT prediction with optimised Sinusoidal and Polynomial Regression. 

 

Figure 7   AST, ALT prediction with optimised Sinusoidal and Polynomial Regression 

Figure 7 shows AST, ALT prediction with optimised Sinusoidal and Polynomial Regression The blue dots represent 

actual values of ALT, AST, and ALT/AST ratio from the dataset.  The red curve is the predicted trend using the 

optimized regression models. The sinusoidal pattern is clearly observed in the ALT/AST ratio plot, indicating 

periodicity in liver enzyme variation The polynomial regression model exhibits an exponential growth trend in ALT, 

AST, and ALT/AST ratio as the feature value increases. 

ALT, AST prediction with optimized Sinusoidal Regression 

 

ALT, AST prediction with optimized Polynomial Regression 
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Table 8 shows the performance metrics of Optimised Sinusoidal and Polynomial Regression used to predict of AST, 

ALT and the performance of sinusoidal and polynomial regression optimised with Bayesian and Genetic algorithm. 

Table 8 Comparison of performance metrics for proposed Polynomial Regression optimized with Genetic 

Algorithm (GA)and Bayesian Optimized Sinusoidal Regression and Polynomial Regression (PR), Sinusoidal 

Regression (SR) to predict AST and ALT from clinical data. 

Metrics 

Polynomial 

Regression 

(PR) 

Proposed Genetic 

Algorithm (GA)Optimized 

Polynomial Regression   

Sinusoidal 

Regression 

(SR) 

Proposed Bayesian 

Optimized 

Sinusoidal 

Regression 

Mean Absolute 

Error (MAE) 
5.2 3.8 6.1 4.2 

Mean Squared 

Error (MSE) 
32.1 20.5 40.8 23.1 

Root Mean Squared 

Error (RMSE) 
5.67 4.53 6.39 4.81 

Coefficient of 

Determination (R²) 
0.85 0.92 0.78 0.90 

Computational 

Time (seconds) 
120 180 90 240 

  

Table 8 shows that the Genetic Algorithm-optimized PR shows better predictive accuracy and fit to the data, by lower 

MAE, MSE, and RMSE, and a higher R². GA optimized method requires more computational time and it is justified 

by the improvement in accuracy The comparison of performance metrics for Sinusoidal Regression with Bayesian 

Optimized Sinusoidal Regression to predict AST and ALT has lower MAE indicating better predictive accuracy. The 

Bayesian optimized model reduces the average error by about 31.1% (from 6.1 to 4.2), improving the prediction 

quality. It also reduces MSE by about 43.3% (from 40.8 to 23.1), indicating it is suitable to the data. Performance 

indicates that proposed method is suitable for predicting AST and ALT from clinical data. Performance metrics of the 

proposed method to predict AST, ALT with other methods is given in Table 9. 

Table 9 Comparing the performance of the proposed optimised machine learning method to predict AST, ALT with 

existing methods 

Performance Metrics Proposed Method [29] [30] [31] [32] 

Accuracy (%) 97.3 82.7 88.4 89.2 85.6 

Recall (%) 97.8 81.5 87.3 88.9 84.2 

F1-Score 0.952 0.812 0.871 0.882 0.836 

Precision (%) 95.6 80.9 86.8 87.5 83.1 

MAE  2.7 7.2 5.1 4.5 5.8 
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RMSE  3.5 8.9 6.4 5.7 7.2 

R2  0.986 0.732 0.864 0.878 0.823 

Processing Time(s) 5.3 1.8 8.4 12.5 4.6 

 

Table 9 shows that the proposed method achieves higher accuracy, lower mean absolute error when compared to 

other methods. It also maintains high precision and recall in predicting liver enzymes. The proposed method exhibits 

superior performance to other compared methods in all performance metrics. Figure 8 shows the performance 

metrics comparison of the clinical indicators’ dataset and other diabetes dataset.  

 

                 Figure 8 Performance comparison of Clinical indicators dataset and other datasets 

 

Figure 8 shows that the Clinical Indicators dataset outperforms the other datasets across all metrics. This implies 

that this dataset more reliable for the prediction of liver enzymes to manage diabetes and figure 9 shows the liver 

enzyme profile on various criteria. 
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(a)  Gender-based liver enzyme profiles AST, ALT in  

healthy persons. 

 

 

(b) Gender-based liver enzyme profiles AST, ALT in a 

Type 2 Diabetes mellitus affected persons 

 

( c) Correlation of liver enzymes and various clinical parameters 

 

Figure 9 Gender-based liver enzyme profiles in (a) healthy persons (b ) T2DM persons ( c ) Correlation of AST and 

ALT levels with clinical parameters. 

Figure 9 shows the gender-based liver enzyme profiles in a healthy, Diabetes mellitus affected persons and AST, ALT 

relationship with various clinical indicators. The bars indicate the percentage contribution of AST and ALT levels in 

relation to each clinical parameter. The distribution of AST and ALT in some cases suggests a strong interrelation 

between liver function and metabolic factors in diabetic individuals. The visualization helps in understanding how 

liver enzyme levels vary with metabolic markers, which can aid in predicting liver health complications in diabetes 

patients. 

ABLATION STUDY 

 Table 11 compares the performance of different model configurations by removing important components from the 

proposed method and analyses their impact on prediction accuracy, interpretability, and efficiency. The proposed 

method outperforms all other variations, achieving the highest accuracy (97.3%) and best generalization by 

combining Semi-Graph Theory, Generalised Rough Set Theory, Adam -optimised GAN, Sinusoidal & Polynomial 

Regression, and Optimization Techniques. 

Table 11 Ablation study for predicting liver enzymes and diabetic management 

Method MSE R2 Accurac

y 

(%) 

Precisio

n 

(%) 

Recal

l 

(%) 

F1Scor

e 

(%) 

Computatio

n time (Sec) 

Remark 

Without 

Semi-Graph 

Theory 

0.105 0.72 74.3 71.8 70.4 71.1 9.6 Loss of 

relational data 

structure, 

reducing 
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interpretability

. 

Without 

Generalized 

Rough Set 

Theory 

0.11

0 

 

0.7

0 

73.1 70.5 69.0 69.7 12.2 Increased 

redundancy, 

leading to 

overfitting. 

Without 

Adam -

optimised 

GAN based 

Augmentatio

n 

0.108 0.73 75.2 72.0 70.8 71.4 9.5 Less diverse 

data, leading to 

lower 

generalization. 

Without 

Sinusoidal 

and 

Polynomial 

Regression 

0.115 0.6

9 

72.5 69.8 68.5 69.1 10.3 Less diverse 

data, leading to 

lower 

generalization. 

Without 

Polynomial 

Regression 

0.112 0.71 73.0 70.6 69.3 69.9 10.1 Poor fit for 

non-periodic 

components. 

Without 

optimization 

techniques 

0.102 0.76 78.5 76.2 74.8 75.5 11.0 Suboptimal 

parameter 

tuning affects 

regression 

performance. 

Slower 

convergence, 

reduced 

efficiency. 

Proposed 

Method -

Adam-

optimised 

GAN based 

augmentatio

n +Semi-

graph theory 

+Generalised 

Rough set 

theory+ 

Optimized 

Polynomial 

and 

Sinusoidal 

Regression 

0.095 0.8

2 

97.3 95.6 97.8 82.8 14.0 Best accuracy 

and 

generalization, 

but higher 

computation 

time. 

Table 11 shows high prediction accuracy and a higher computation cost of the methodology proposed to predict AST, 

ALT. Adam-optimised GAN augmentation, generalized roughset based feature selection, and sinusoidal regression 

improve the prediction of the proposed methodology. 

 DISCUSSION 



Journal of Information Systems Engineering and Management 
2025, 10(45s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 1044 

 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

The proposed Adam-optimized GAN method analyses Type 2 Diabetes Mellitus (T2DM) by predicting liver enzyme 

levels to support diabetic management. It integrates demographic and clinical data, including metabolic function and 

sleep patterns. It ensures relevant features are used for prediction by using semi graph theory for relational data and 

generalized rough set theory for redundant data elimination in preprocessing. Adam-optimised Generative 

Adversarial Networks (GAN) generate synthetic data to analyse the Thermic Effect of Food (TEF) and its correlation 

with liver enzymes. Optimized machine learning uses Sinusoidal Regression capturing periodic and nonlinear trends 

and Polynomial Regression modelling complex relationships, optimised by Genetic Algorithms (GA) and Bayesian 

Optimization for improved predictive accuracy. The framework predicts Alanine Aminotransferase (ALT) and 

Aspartate Aminotransferase (AST) levels, indicators of liver function, aiding in early detection of complications. By 

integrating TEF, metabolic function, and sleep data, the system provides a personalized, predictive, and preventive 

approach to diabetes management, enhancing patient-specific treatment strategies. 

CONCLUSION 

The proposed method integrates machine learning framework for predicting liver enzyme levels in persons affected 

by Type 2 Diabetes Mellitus (T2DM) to optimize diabetes management. Adam-optimised Generative Adversarial 

Networks (GAN) enhance data quality by handling limitations in medical datasets, semi graph theory structures 

relational data and generalised rough set theory eliminates redundancies, ensuring refined data for analysis. 

Optimized sinusoidal and polynomial regression models capture both periodic and nonlinear patterns in metabolic 

and sleep data, improving the accuracy and interpretability of ALT and AST enzyme level predictions, which are 

critical biomarkers of liver function in diabetic patients. Genetic Algorithm (GA) and Bayesian Optimization fine-

tune model parameters, minimizing prediction errors and enhancing efficiency. By including Thermic Effect of Food 

(TEF), metabolic function, and sleep data, the framework provides a comprehensive approach to understand 

diabetes-related complications, enabling personalized management and early intervention. The results with accuracy 

of 97.3% highlight the potential of this model in early diagnosis and tailored diabetes care. Future progressions could 

integrate real-time monitoring systems and deep learning to further enhance predictive accuracy and clinical 

applicability. 
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