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1. INTRODUCTION 

Crop yield prediction is an essential aspect of modern agriculture, playing a pivotal role in ensuring 

food security, optimizing resource management, and improving farm operations. As the global 

population continues to expand, the demand for agricultural products is increasing, driving the need 

for more efficient and accurate methods of predicting crop yields. These predictions enable farmers 
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Accurate crop yield prediction is essential for optimizing resource 

allocation, managing risks, and ensuring sustainable agricultural practices. 

This study introduces a novel hybrid algorithm that integrates multiple 

predictive models, including Linear Regression, Decision Trees, Random 

Forests, and Neural Networks, with a Gradient Boosting Machine (GBM) 

as the meta-model, to improve the accuracy of region-specific crop yield 

predictions. Using required dataset, covering environmental, agricultural, 

and economic factors, the hybrid algorithm demonstrated superior 

performance compared to individual models. It achieved an RMSE of 17.55 

tons/ha, MAE of 13.80 tons/ha, and an R² of 0.87, outperforming state-of-

the-art models. The study’s findings underscore the hybrid algorithm’s 

ability to capture complex, non-linear relationships in agricultural data, 

improving the precision of crop yield forecasts. This enhanced predictive 

capability can support farmers and policymakers in making informed 

decisions, optimizing resource use, and mitigating risks associated with 

climate variability. However, limitations such as dataset specificity and 

increased computational complexity highlight the need for further 

refinement. Future research should focus on expanding the dataset to 

diverse geographical regions and optimizing the algorithm for broader 

applicability. 
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and policymakers to make informed decisions regarding crop selection, planting schedules, resource 

allocation, and market planning, all of which contribute to enhanced economic outcomes and the 

sustainability of agricultural practices [1]. 

However, the accuracy of crop yield prediction models faces several challenges. Agricultural data is 

inherently heterogeneous, involving numerous factors such as soil properties, weather conditions, 

crop types, and management practices, all of which can vary significantly across different regions [2]. 

This variability makes it difficult to generalize predictive models for broad applicability. Furthermore, 

many existing prediction algorithms struggle with regional specificity, failing to account for localized 

factors that heavily influence crop yields. This calls for the development of adaptive models that can 

cater to the unique characteristics of different regions, ultimately improving the reliability and 

accuracy of yield predictions [3]. 

The motivation for this research stems from the critical need to optimize crop yield prediction models 

by addressing the challenge of regional specificity. While significant strides have been made with 

machine learning algorithms for yield prediction, many models adopt a one-size-fits-all approach, 

overlooking the complex relationships between local environmental factors and crop performance. 

This can lead to inaccurate predictions, which in turn, negatively affect decision-making, productivity, 

and profitability, especially in regions with unique climatic conditions or specific crop management 

practices [4]. 

In areas where agriculture forms a major economic foundation, the need for reliable crop yield 

forecasts is paramount. Farmers require accurate predictions to optimize resource use such as 

fertilizers and water, while policymakers need reliable forecasts to manage food supply chains and 

prepare for potential shortages [5]. Inaccuracies in these predictions can lead to overproduction or 

underproduction, both of which carry significant economic and environmental consequences. 

Therefore, there is a clear need to enhance crop yield prediction models by incorporating regional data 

and developing hybrid algorithms that combine the strengths of various predictive approaches to 

improve accuracy and reliability [6]. 

This paper makes key contributions to the field of crop yield prediction. First, it introduces a novel 

hybrid algorithm that integrates multiple predictive approaches, combining the strengths of machine 

learning, deep learning, and statistical models [7][8]. This hybrid algorithm is specifically designed to 

improve the accuracy of crop yield predictions by incorporating region-specific data, addressing 

limitations present in existing models that often fail to account for local factors. The paper provides a 

comprehensive comparative analysis of existing crop yield prediction models, evaluating their 

performance across different regional contexts. This analysis not only highlights the strengths and 

weaknesses of current approaches but also informs the development of the proposed hybrid model 

[9][10]. Furthermore, the hybrid algorithm is rigorously tested and validated using real-world data, 

demonstrating its superior accuracy and adaptability to regional variations when compared to existing 

models [11]. The practical implications of this research are significant, as the improved predictions 

can help farmers and policymakers optimize resource use, enhance farm management practices, and 

contribute to food security in regions heavily reliant on agriculture. 

Traditional statistical methods, such as linear regression, have served as a foundation in crop yield 

prediction. However, they are increasingly viewed as insufficient for capturing the complex, non-

linear relationships between variables, such as temperature, precipitation, and soil properties [12]. 

These models often oversimplify the intricate interactions among environmental factors, making them 

less reliable in diverse agricultural contexts. Despite their limitations, traditional methods still hold 

value as baseline models for comparing more advanced techniques. 

Machine learning (ML) models have emerged as powerful tools for improving crop yield predictions. 

Techniques like Random Forests (RF) and Support Vector Machines (SVM) are particularly notable 
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for their ability to manage non-linearities and complex interactions in agricultural datasets. RF create 

an ensemble of decision trees that reduce variance and mitigate overfitting, making them well-suited 

for the noisy nature of agricultural data [13]. Meanwhile, SVMs perform robustly in high-dimensional 

spaces and are adept at preventing overfitting, which is particularly useful when handling datasets 

with numerous features [14]. 

Deep learning has gained prominence in crop yield prediction due to its capacity to model complex 

patterns in large datasets. Convolutional Neural Networks (CNNs) and Long Short-Term Memory 

(LSTM) networks are two widely used architectures in this domain. CNNs excel in analyzing spatial 

data, such as satellite images, to monitor crop health and predict yields [15][35]. LSTM networks, a 

type of Recurrent Neural Network (RNN), are ideal for modeling time-series data, allowing for the 

effective prediction of crop yields based on temporal dynamics [16][36].  

Hybrid models that combine multiple machine learning techniques have shown considerable promise 

in crop yield prediction. Authors in [17][37][38] developed a hybrid model combining Random Forest 

and Deep Neural Networks, which outperformed individual models in predicting rice yields in India. 

The role of agricultural practices, such as fertilizer use, irrigation, and crop rotation, is critical for 

predicting crop yields. Authors in [18][39] demonstrated that precision irrigation could substantially 

improve rice yields in water-scarce regions of India. Soil characteristics, such as pH, texture, and 

organic matter content, are crucial for predicting crop yields. Researchers [19][40] stressed the 

importance of soil organic carbon in sustaining high corn yields in Canada, showing that soils with 

higher organic content generally yield better results.  

Economic factors, such as market prices and input costs, also influence crop yields. Authors in 

[20][41] explored the relationship between global maize market prices and yield trends, finding that 

higher prices lead to increased investment in inputs, subsequently improving yields. This highlights 

the importance of incorporating economic variables into predictive models, particularly in regions 

where market conditions significantly impact farming practices. 

Feature selection remains a challenge in crop yield prediction due to the complexity of agricultural 

systems. Researcher in [21][42] noted that including too many features can lead to overfitting, while 

excluding key features can reduce model accuracy. The dynamic nature of agricultural systems, where 

the importance of variables can change over time or across regions, further complicates the feature 

selection process. Data availability and quality continue to be significant obstacles in developing 

accurate crop yield models. Authors in [22][43][44] pointed out that many developing regions lack 

access to high-quality data on weather, soil, and management practices, limiting the effectiveness of 

predictive models. Scaling predictive models, especially deep learning models, remains a challenge 

due to the large datasets and computational resources required. Author in [23][45] emphasized that 

while deep learning models can achieve high accuracy, their scalability is often limited, making them 

impractical for large-scale or real-time applications.  

Interpretability remains a key concern, particularly with complex models like deep learning. 

Researcher in [24][46] developed methods such as Local Interpretable Model-agnostic Explanations 

(LIME) to enhance understanding of model predictions. However, despite these advancements, many 

stakeholders in the agricultural sector are reluctant to trust models they cannot fully understand 

[25][47]. Integrating data from multiple sources, such as satellite imagery, weather stations, and soil 

sensors, presents technical challenges. Authors in [26] [48][49]demonstrated that while multisource 

data can improve prediction accuracy, it requires sophisticated processing techniques and 

considerable computational resources. Moreover, ensuring data consistency and compatibility across 

sources is a complex task. 

2. COMPARATIVE ANALYSIS OF EXISTING ALGORITHMS 
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2.1 Dataset Description 

For the comparative analysis of existing crop yield prediction algorithms, we utilized a comprehensive 

dataset drawn from multiple sources. The dataset is specific to the areas known for its diverse 

cropping patterns, particularly maize and soybeans, and significant variability in environmental 

conditions. The dataset is designed to capture a wide range of factors influencing crop yields and is 

categorized into four key areas: environmental factors, agricultural practices, soil properties, and 

economic factors. 

Table 1. Dataset Categories and Sample Features 

The dataset is characterized by extensive maize and soybean production. Some regions exhibit 

significant variability in weather patterns, particularly in terms of temperature and precipitation, 

posing challenges for accurate crop yield prediction. The dataset includes data from multiple counties 

within the region, allowing for a granular analysis of spatial variability and its impact on crop yield 

outcomes. The Table 2 is a sample of the dataset used for the comparative analysis, which shows a 

small subset of the overall dataset, which contains huge set of samples covering various 

environmental, agricultural, and economic factors. 

 

 

Table 2 Sample dataset used for the comparative analysis 
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Yield 

(tons/
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Category Feature Description 

Environmental 

Factors 

Temperature Average monthly temperature (°C) 

 
Precipitation Monthly rainfall (mm)  
Solar Radiation Average daily solar radiation (MJ/m²)  
Humidity Average monthly relative humidity (%)  
Wind Speed Average monthly wind speed (m/s) 

Agricultural Practices Fertilizer 

Usage 

Amount of nitrogen, phosphorus, and potassium 

(kg/ha)  
Irrigation Total irrigation water used (mm)  
Crop Type Type of crop planted (e.g., maize, wheat, rice)  
Planting Date Specific planting dates (DD/MM/YYYY)  
Harvest Date Specific harvest dates (DD/MM/YYYY) 

Soil Properties Soil pH Measure of soil acidity/alkalinity  
Organic Matter Percentage of organic matter in soil  
Soil Texture Classification (e.g., sandy, loamy, clay)  
Soil Moisture Percentage of soil moisture at different depths 

Economic Factors Market Prices Average market price for each crop ($/ton)  
Input Costs Costs of seeds, fertilizers, and pesticides ($/ha)  
Subsidies Government subsidies received ($/ha) 
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) 

22.62 283.61 12.02 58.76 5.46 107.74 184.72 Rice 5.6

9 

1.02 391.04 2.25 

31.33 98.66 18.17 70.05 4.09 76.61 101.53 Rice 6.9

1 

1.03 398.20 4.03 

24.25 256.88 15.49 76.17 6.31 139.10 168.43 Whea

t 

7.2

2 

2.95 301.06 4.58 

22.12 200.15 17.08 60.39 5.07 68.41 328.91 Rice 7.2

2 

3.59 382.24 4.85 

34.00 77.98 12.11 45.20 2.03 77.35 240.89 Whea

t 

6.6

4 

1.53 457.62 6.26 

 

 

2.2 Methodology 

The methodology for comparing the crop yield prediction algorithms involved several steps, from data 

preprocessing to model evaluation. The process is illustrated in the block diagram below in Figure 1. 

 

Figure 1. Comparative analysis flowchart for existing crop yield prediction algorithms 

 

Figure 1 presents a flowchart that outlines the steps involved in conducting a comparative analysis of 

existing crop yield prediction algorithms. The objective is to benchmark current models and highlight 

areas for improvement by the proposed hybrid algorithm. The process begins with data preprocessing, 

where the dataset is cleaned, missing values are addressed, and relevant features are selected to 

ensure high-quality input for the models. Next, algorithm selection takes place, involving the choice of 

various machine learning, deep learning, and statistical models for analysis. These algorithms are then 

trained using the preprocessed data, optimizing their parameters to reduce prediction errors. After 

training, performance evaluation is conducted using metrics like accuracy, RMSE, and MAE to assess 

how well each model predicts crop yield. Finally, the results are compared, revealing the strengths and 

weaknesses of each model and informing the design of the hybrid algorithm to address the identified 

gaps. 

The data preprocessing phase involved several key steps, starting with data cleaning, where outliers 

were removed and missing values handled, followed by normalization to scale the features and 
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prevent variables with differing units and ranges from disproportionately influencing the model. 

Feature selection was conducted using techniques like Recursive Feature Elimination (RFE) and 

Principal Component Analysis (PCA) to retain the most relevant variables. For model selection, linear 

regression was used as a baseline due to its simplicity and interpretability, while RF were chosen for 

their robustness and ability to handle large datasets with many features. SVM were included for their 

effectiveness in high-dimensional spaces, while CNN were employed to leverage spatial data such as 

satellite imagery. LSTM networks were applied to capture temporal dependencies in the dataset. The 

model training process involved splitting the dataset into training (70%) and validation (30%) sets, 

and hyperparameter tuning was performed using techniques like grid search and cross-validation to 

optimize the models. Performance was evaluated using several metrics, including accuracy, root mean 

square error (RMSE) to measure the precision of predictions, mean absolute error (MAE) to assess 

prediction accuracy, and R-squared (R²) to indicate the proportion of variance in crop yield explained 

by the models. 

2.3 Comparative Analysis Results 

The comparative analysis of the models revealed varying degrees of performance across the different 

algorithms. The following table 3 and graphical representation in Figure 2 illustrate the results 

obtained from the analysis. 

Table 3. Performance Metrics for Different Algorithms 

Algorithm Accuracy (%) RMSE (tons/ha) MAE (tons/ha) R² 

Linear Regression 68.3 2.75 2.10 0.65 

RF 82.5 1.85 1.45 0.82 

SVM 79.4 2.00 1.60 0.79 

CNN 85.7 1.65 1.30 0.85 

LSTM 88.1 1.50 1.25 0.87 

Accuracy is the percentage of correct predictions out of the total predictions made. RMSE (Root Mean 

Square Error) is calculated as the square root of the average squared differences between predicted 

and actual yields, providing a measure of prediction error. MAE (Mean Absolute Error) represents the 

average of the absolute differences between predicted and actual yields, offering another metric for 

evaluating model performance. R² indicates the proportion of variance in the dependent variable that 

the model explains and is calculated using the formula: 

𝑅2 = 1 −
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡

 

where SSres is the sum of squares of residuals and SStot is the total sum of squares. 

In the Figure 2, The LSTM network outperformed all other models, achieving the highest accuracy 

(88.1%) and the lowest RMSE (1.50 tons/ha), demonstrating its effectiveness in capturing temporal 

dependencies crucial for predicting crop yields based on sequential data like weather patterns. The 

CNN also performed well, with an accuracy of 85.7% and an RMSE of 1.65 tons/ha, leveraging its 

strength in processing spatial data, particularly from satellite imagery. Random Forests achieved an 

accuracy of 82.5% and an RMSE of 1.85 tons/ha, showcasing robustness in handling complex 

datasets. SVM yielded an accuracy of 79.4% and an RMSE of 2.00 tons/ha, though they struggled with 

large datasets due to sensitivity to kernel choice. Linear regression, as expected, was the least 
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accurate, with an accuracy of 68.3% and the highest RMSE of 2.75 tons/ha, reflecting its limitations in 

modeling complex agricultural data. 

 

 

Figure 2. Graphical illustration of Algorithm Performance Metric Comparison 

The LSTM model's high accuracy and low RMSE underscore its capability to effectively model time-

series data, essential for predicting crop yields in variable climate regions. CNN's performance 

highlights the significance of spatial data in yield prediction, while Random Forests demonstrate 

versatility across mixed data types. Conversely, SVMs face challenges with large agricultural datasets, 

and linear regression struggles to capture non-linear relationships, limiting its effectiveness. Future 

studies should explore hybrid models combining LSTM and CNN strengths to leverage both temporal 

and spatial data for crop yield prediction. Integrating feature selection techniques to enhance model 

interpretability and developing region-specific models tailored to local conditions could significantly 

improve prediction accuracy. 

The findings of this study are consistent with recent literature, which emphasizes the superiority of 

deep learning models, particularly LSTM and CNN, in agricultural application [27][28][29]. However, 

this study adds to the body of knowledge by providing a detailed comparison of these models using 

real-time data from a specific agricultural region, highlighting the importance of regional specificity in 

model development. 

3. DEVELOPMENT OF THE HYBRID ALGORITHM 

3.1 Conceptual Framework 

The conceptual framework for the hybrid algorithm is designed to harness the complementary 

strengths of multiple predictive models to improve the accuracy and reliability of crop yield 

predictions, particularly when applied to region-specific agricultural data. The framework is based on 

a stacked ensemble learning approach, which integrates the outputs of several base models through a 
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meta-model, resulting in a final prediction that is more robust than any individual model could 

achieve alone. 

The framework consists of several key components designed to enhance crop yield predictions. Base 

models include Linear Regression for its simplicity and interpretability, Decision Trees for handling 

non-linear relationships, Random Forests to reduce overfitting, and Neural Networks for modeling 

complex patterns. The meta-model, Gradient Boosting Machine (GBM), effectively corrects errors 

from the base models and optimizes their combined predictions. A tailored feature selection process 

optimizes input variables for each model, focusing on aspects like information gain for Decision Trees 

and normalization for Neural Networks. The stacking ensemble method trains each base model 

independently, using their predictions as input for the meta-model to generate the final prediction. 

Rigorous evaluation through cross-validation and hyperparameter tuning ensures optimal 

performance and generalization to new data, preventing overfitting. The Figure 3 illustrates the 

conceptual framework of the hybrid algorithm. 

 

Figure 3. Conceptual framework of the hybrid algorithm. 

The diagram in Figure 3 illustrates the framework for crop yield prediction, starting with Input Data, 

which includes relevant features such as soil quality and weather conditions. This data is processed by 

multiple Base Models: Linear Regression, which handles linear relationships; Decision Trees, which 

capture non-linear relationships and complex interactions; Random Forests, which combine multiple 

decision trees to enhance generalization; and Neural Networks, which model complex, non-linear 

patterns. The predictions from these base models are then refined in the Meta-Model, specifically a 

GBM, which integrates and optimizes these outputs into a Final Prediction. This final prediction is 

expected to be more accurate and reliable than those generated by any individual model, 

demonstrating how combining various predictive approaches can enhance accuracy and adaptability, 

especially for region-specific agricultural data. 

3.2 Algorithm Design 

The design of the hybrid algorithm is focused on integrating various machine learning models to 

create a robust prediction tool for crop yield, particularly suited for region-specific agricultural data. 

The design process involves selecting appropriate models, performing feature selection, training each 

model, and combining their outputs using a meta-model. The following sections detail each aspect of 

the design and provide a pseudocode representation of the algorithm. The Algorithm-1 is the listing 

that outlines the steps involved in the hybrid algorithm. 
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Algorithm HybridCropYieldPrediction 

Input: Training data D_train, Test data D_test, Feature set F, Hyperparameters for models 

 

Step 1: Model Selection 

    Select Base Models: 

        M1 = Linear Regression 

        M2 = Decision Tree 

        M3 = Random Forest 

        M4 = Neural Network 

 

Step 2: Feature Selection 

    For each model Mi in {M1, M2, M3, M4} do: 

        Preprocess features in F according to the requirements of Mi 

        Select optimal feature subset Fi from F for Mi 

 

Step 3: Model Training 

    For each model Mi in {M1, M2, M3, M4} do: 

        Perform k-fold cross-validation on D_train using features Fi 

        Optimize hyperparameters for Mi using grid search or random search 

        Train Mi on the entire D_train using the optimized hyperparameters 

        Store the trained model Mi 

 

Step 4: Meta-Model Development 

    Generate Predictions: 

        For each model Mi in {M1, M2, M3, M4} do: 

            Pi_train = Predict(Mi, D_train) 

            Pi_test = Predict(Mi, D_test) 

 

    Combine Predictions: 

        P_train_combined = {P1_train, P2_train, P3_train, P4_train} 

        P_test_combined = {P1_test, P2_test, P3_test, P4_test} 

 

    Train Meta-Model: 

        Meta_Model = Gradient Boosting Machine (GBM) 

        Train Meta_Model on P_train_combined to predict actual crop yield     

    Y_train 

Step 5: Final Prediction 

    Y_test_pred = Predict(Meta_Model, P_test_combined) 

     

Output: Final crop yield predictions Y_test_pred for D_test 

The hybrid algorithm design, as outlined above, provides a comprehensive and systematic approach to 

improving crop yield predictions, particularly for region-specific data. By combining traditional and 

modern machine learning techniques, the algorithm achieves higher accuracy and adaptability, 

making it a powerful tool in agricultural data science. 

The implementation of the hybrid algorithm for crop yield prediction was a detailed process involving 

the setup of a Python-based development environment, selection of appropriate tools, and execution 

of the algorithm's design. The environment was established on Ubuntu 20.04 LTS, utilizing Jupyter 

Notebook for prototyping and PyCharm for coding and debugging. Key hardware included an Intel 

Core i7 processor, 32 GB RAM, and an NVIDIA GeForce RTX 3070 GPU to accelerate neural network 

training. Python was chosen for its readability and extensive libraries. Data processing was facilitated 
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by Pandas for data manipulation and NumPy for numerical operations. Machine learning models were 

developed using Scikit-learn for traditional algorithms, XGBoost for the GBM meta-model, and 

TensorFlow/Keras for the neural network. Visualization tools like Matplotlib and Seaborn helped in 

interpreting results, while Git and GitHub managed version control. Hyperparameter tuning was 

automated using GridSearchCV and RandomizedSearchCV, and model performance was evaluated 

with metrics from Scikit-learn, including RMSE, MAE, and R², ensuring accurate and reliable 

predictions. 

The implementation process for the hybrid algorithm consisted of several key stages. First, Data 

Preparation involved loading the dataset with Pandas and conducting exploratory data analysis (EDA) 

to understand its structure and distribution. Missing values were addressed through imputation, and 

categorical variables were encoded using one-hot encoding. The dataset was then split into training 

and testing sets, ensuring regional distribution was preserved through stratified sampling. 

Next, Model Training was performed for each base model using Scikit-learn: Linear Regression was 

implemented with feature standardization; Decision Trees were trained with hyperparameter tuning 

to prevent overfitting; Random Forests were optimized using GridSearchCV to refine parameters like 

the number of estimators; and a Neural Network was built in TensorFlow/Keras, with architecture 

tuning done through RandomizedSearchCV. 

In the Meta-Model Development stage, predictions from the base models were combined to serve as 

input for the GBM, implemented using XGBoost’s XGBRegressor. This meta-model was trained to 

minimize prediction error, with hyperparameters optimized for performance. 

The Integration and Final Prediction phase involved passing the test data through the base models to 

generate predictions, which were then combined and input into the meta-model. Finally, in the 

Evaluation and Analysis stage, the hybrid algorithm's performance was compared against individual 

models, using visualizations to highlight differences in RMSE, MAE, and R² scores. Feature 

importance was also analyzed to identify the most impactful predictors, offering insights into the 

model's decision-making process. 

 

3.3 Evaluation and Results Analysis 

The evaluation and results analysis of the hybrid algorithm were conducted to assess its performance 

in predicting crop yields, especially in comparison to individual base models. This section outlines the 

evaluation process, the metrics used, and the detailed analysis of the results, including both tabular 

and graphical representations. 

The evaluation of the hybrid algorithm involved several key steps. First, the Dataset Preparation phase 

included dividing the dataset into training (80%) and testing (20%) sets using stratified sampling to 

preserve regional distribution. This ensured that both datasets were used consistently across all 

models, allowing for a fair comparison. Next, in the Model Evaluation phase, each base model—Linear 

Regression, Decision Tree, Random Forest, and Neural Network—was evaluated individually using the 

test dataset. Following this, the hybrid algorithm, which integrates the outputs of these base models, 

was assessed on the same test dataset. The performance of each model, including the hybrid 

algorithm, was measured using standard regression metrics to facilitate a comprehensive evaluation. 

The performance of the models was evaluated using several key metrics. RMSE quantifies the square 

root of the average squared differences between predicted and actual values, providing insight into 

how well the model's predictions align with the actual data. RMSE is sensitive to outliers, and lower 

RMSE values signify better model performance. The formula for RMSE is given by: 

                                                         𝑅𝑀𝑆𝐸 = √
1

𝑛
 ∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  
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The MAE measures the average absolute differences between predicted and actual values without 

squaring the errors, making it less sensitive to outliers compared to RMSE. Lower MAE values 

indicate improved model accuracy, with its formula represented as: 

𝑀𝐴𝐸 =  
1

𝑛
∑ | 𝑦𝑖 − 𝑦̂𝑖 

𝑛

𝑖=1

| 

The evaluation of model performance also included R-squared (R²), known as the coefficient of 

determination, which measures the proportion of variance in the dependent variable that can be 

explained by the independent variables. It is calculated using the formula: 

𝑅2 = 1 − 
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦̅)2𝑛
𝑖=1

 

The MSE assesses the average of the squared differences between predicted and actual values. While 

similar to RMSE, MSE does not take the square root, providing insight into the magnitude of 

prediction errors. The formula for MSE is: 

                                                         𝑀𝑆𝐸 =
1

𝑛
 ∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1  

The results of the evaluation for each model, including the hybrid algorithm, are presented in the table 

4 below: 

Table 4. Model Evaluation Results 

Model RMSE MAE R² MSE 

Linear Regression 23.45 18.90 0.75 550.70 

Decision Tree 21.78 17.34 0.78 474.58 

Random Forest 19.65 15.27 0.82 386.17 

Neural Network 20.85 16.02 0.80 434.32 

Hybrid Algorithm 17.55 13.80 0.87 308.05 

 

The evaluation results indicate that the hybrid algorithm significantly outperformed all individual 

base models across all metrics. With an RMSE of 17.55, it demonstrated notably higher accuracy than 

the other models. The hybrid algorithm also recorded the lowest MAE at 13.80, reinforcing its 

predictive accuracy. Its R² value of 0.87 indicates that it explains 87% of the variance in crop yield, 

surpassing the individual models. Furthermore, the MSE of 308.05 confirms the robustness and 

precision of the hybrid model in making predictions. The strengths of the hybrid algorithm arise from 

its integration of various models, allowing it to capture both linear and non-linear relationships as 

well as complex interactions in the data, resulting in more reliable predictions. This superior 

performance underscores the effectiveness of the stacked ensemble method in crop yield prediction, 

making the algorithm adaptable to diverse data patterns, particularly beneficial for region-specific 

agricultural applications. The graph in Figure 4, illustrate the performance of the hybrid algorithm 

compared to the individual base models. 

The hybrid algorithm demonstrates the lowest RMSE, indicating the smallest average squared 

prediction error, which underscores its accuracy. It also features the lowest MAE, reflecting that its 
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predictions are, on average, closer to the actual values. Additionally, the significantly lower MSE 

further reinforces the hybrid algorithm's precision in making predictions. This graphical analysis, 

complemented by the tabular data, clearly illustrates the effectiveness of the hybrid approach in 

enhancing crop yield prediction accuracy. 

The comparison with existing popular models highlights the superiority of the hybrid algorithm in 

crop yield prediction. The hybrid approach's ability to integrate the strengths of various models allows 

it to achieve better accuracy and generalization, making it more effective than individual models or 

approaches focused on specific aspects of the data. The significant reductions in RMSE and MAE, 

coupled with a higher R², demonstrate the hybrid algorithm’s robustness and reliability in predicting 

crop yields across diverse regions and conditions. Below is a table 5 comparing the performance 

metrics (RMSE, MAE, and R²) of the hybrid algorithm with those of the five recent works. 

 

Figure 4. Performance of the hybrid algorithm compared to the individual base models 

Table 5. Comparison of hybrid algorithm with those of the five recent works. 

Model/Study RMSE MAE R² 

Transformer Networks for Crop Yield Prediction [30] 20.10 15.60 0.82 

Deep Learning-Based Precision Agriculture [31] 19.85 14.90 0.83 

XGBoost Ensemble Model for Crop Yield Prediction [32] 18.70 13.85 0.85 

Hybrid CNN-RNN Model for Crop Yield Prediction [33]  19.20 14.30 0.84 

Attention-Based Neural Networks for Crop Yield Forecasting [34] 18.90 14.10 0.86 

Hybrid Algorithm (Proposed Work) 17.55 13.80 0.87 

This table 5 provides a clear and concise comparison that demonstrates the superior performance of 

our hybrid algorithm in the context of recent advancements in crop yield prediction. Figure 5 

illustrates the graphical comparisons. The Hybrid Algorithm developed in this study outperforms all 

compared models, achieving the lowest RMSE (17.55) and MAE (13.80), along with the highest R² 
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(0.87). While the XGBoost Ensemble Model and Attention-Based Neural Networks approaches show 

comparable performance, they still lag behind the hybrid algorithm across all metrics. These findings 

underscore the effectiveness of combining multiple models to leverage their strengths and enhance 

prediction accuracy. 

 

 

Figure 5. Comparison of hybrid algorithm with existing approaches 

3.4 Discussion 

The findings from this study have meaningful implications for the field of agricultural forecasting, 

particularly in the context of regional crop yield prediction. By improving the accuracy and reliability 

of yield predictions, the hybrid algorithm can provide more precise estimates, which are crucial for 

farmers, policymakers, and supply chain managers. Enhanced predictive capabilities can lead to better 

resource allocation, more effective risk management strategies, and ultimately, more sustainable 

agricultural practices. For instance, regions prone to climate variability or extreme weather events 

could benefit from early warnings and tailored advice based on the hybrid model's outputs, allowing 

for timely interventions that could mitigate potential yield losses. Moreover, the ability to customize 

the model to specific regional characteristics means that local agricultural practices can be better 

informed, leading to improved productivity and economic outcomes. 

Despite the promising results, several limitations must be acknowledged. First, the size and quality of 

the dataset used in this study may limit the generalizability of the findings. The dataset's regional 

focus means that the model may not perform as well in different geographical contexts, particularly in 

regions with vastly different climatic conditions or agricultural practices. Additionally, while the 

hybrid algorithm shows improved performance, it is not without its constraints. The complexity of 

integrating multiple algorithms can lead to increased computational requirements, which may not be 

feasible for all users, particularly in resource-limited settings. Furthermore, the algorithm's 



Journal of Information Systems Engineering and Management 
2025, 10(4) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/  Research Article 

 

 330 
Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

performance is contingent on the availability of high-quality data, which is not always guaranteed in 

agricultural settings. Future studies should aim to address these limitations by expanding the dataset, 

testing the model in diverse regions, and exploring ways to streamline the algorithm to reduce 

computational demands. 

 

4. CONCLUSION 

This study presents a hybrid algorithm designed to enhance the accuracy and reliability of regional 

crop yield predictions. The comparative analysis against existing models demonstrates that the hybrid 

approach outperforms traditional methods in key metrics, showcasing improved predictive accuracy 

and robustness across various datasets. By effectively managing the complexities of agricultural data—

characterized by non-linear relationships and variability—the hybrid model provides more precise and 

contextually relevant yield predictions, making it a valuable asset for stakeholders in the agricultural 

sector. The paper contributes significantly to the field by introducing a novel algorithm that integrates 

the algorithms, enhancing predictive performance. The detailed comparative analysis illustrates the 

hybrid approach's advantages in handling diverse agricultural datasets. Future research could focus 

on refining the algorithm for different regional contexts, integrating additional data sources, and 

developing user-friendly interfaces to maximize accessibility and impact for farmers and non-experts 

alike. 
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