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1. Introduction 

 

With the rapid proliferation of high-resolution imaging systems and multimedia applications, the demand for 

efficient image compression techniques has grown exponentially. Traditional image compression methods 

such as JPEG and JPEG2000 rely heavily on transform coding and quantization strategies, which, while 

effective, often struggle with preserving image fidelity at high compression ratios. In recent years, 

Compressed Sensing (CS) has emerged as a revolutionary paradigm in signal processing, offering the 

ability to acquire and reconstruct sparse signals directly from a reduced number of measurements. This 

technique holds particular promise for image compression[1], where many natural images exhibit inherent 

sparsity in specific transform domains like the Discrete Cosine Transform (DCT) or wavelet basis. 

The core idea of compressed sensing lies in the projection of a sparse signal onto a lower-dimensional space 

using a sensing matrix, followed by accurate reconstruction through nonlinear algorithms. Among various 

reconstruction techniques, the Orthogonal Matching Pursuit (OMP)[2] algorithm has gained attention 

for its simplicity, speed, and effectiveness in sparse recovery tasks. However, the quality of reconstruction is 

not solely determined by the algorithm; the structure and properties of the sensing matrix play a crucial 

role in ensuring signal recoverability and compression efficiency. 

This study focuses on the comparative evaluation of four prominent types of sensing matrices: Gaussian 

Random, Bernoulli, Partial Fourier, and Hadamard matrices. Each matrix offers unique statistical 
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and structural properties influencing the Restricted Isometry Property (RIP), incoherence, and 

orthogonality—factors that significantly affect the reconstruction performance. Random matrices such as 

Gaussian and Bernoulli are widely favoured in theoretical studies due to their universality and probabilistic 

RIP guarantees. However, their lack of structure makes them computationally intensive and less suitable for 

hardware implementation. On the other hand, structured matrices like Partial Fourier and Hadamard 

matrices offer deterministic construction, faster computations, and memory efficiency, making them practical 

choices for real-world compressive imaging systems. 

In addition to the sensing matrix type, the thresholding strategy in the DCT domain is critical for 

effective compression. By controlling the number of significant DCT coefficients retained, thresholding 

directly influences the sparsity level, entropy, and hence the quality of the reconstructed image. This study 

investigates both fixed and variable thresholds to explore their impact on compression ratio and visual 

fidelity. Performance is rigorously evaluated across multiple parameters, including Mean Squared Error 

(MSE), Peak Signal-to-Noise Ratio (PSNR), entropy variation, and compression ratio to offer a 

holistic understanding of the trade-offs involved. 

The motivation behind this work is twofold: (1) to provide a detailed comparison of sensing matrices under a 

unified framework using OMP for image reconstruction, and (2) to identify optimal matrix–threshold 

combinations that balance compression efficiency with high-quality reconstruction. Extensive simulations are 

conducted on 256×256 grayscale images, covering multiple configurations of sparsity (via varying number of 

measurements) and DCT coefficient thresholds [5]. The insights derived aim to guide the design of efficient 

compressive image acquisition systems suitable for applications ranging from remote sensing and medical 

imaging to low-power embedded vision systems. 

 

1.1 Compression Sensing: 

In recent years, the field of image compression and reconstruction has experienced a paradigm shift due to 

the emergence of Compressed Sensing (CS), a signal acquisition theory that challenges the traditional 

Nyquist sampling limit. The classical theory mandates that a signal must be sampled at least twice its 

bandwidth to ensure accurate reconstruction. However, many real-world signals, especially natural images, 

are inherently sparse or compressible in some transform domain, such as the Discrete Cosine Transform 

(DCT) or wavelet domain[7]. Compressed sensing capitalizes on this sparsity to capture essential information 

using far fewer measurements than traditionally required, offering a significant advantage in terms of data 

storage, acquisition speed, and energy efficiency. 

Assume a signal‘s’, let’s consider that this signal is not sparse. Therefore it has to be made sparse by 

multiplying it by a basis vector ‘ψ’.  Let signal ‘x’, which is represented as, 

x=Ψs.                  (1) 

Where, ‘s’ is a N x 1 column vector   

‘ψ’ is a N x N basis vector   

 ‘x’ is a N x 1 sparse signal. 

The signal ‘x’ represents a K-sparse signal, which has ‘x’ has K-nonzero elements in it. 

The observation vector is depicted as follows: 

Y=Фx=Фψs=ϴs   (2) 

Where, ‘y’ is M x 1 observation vector. 

‘Ф’ and ‘ϴ’ are M x N measurement matrices  

‘x’ is an N x 1 sparse signal.  

A prominent relation to be considered here is, 

                              K<<M<N   

In compressive sampling, there are two major concerns. They are 

1. Designing of an effective and robust sensing matrix which protects all information in ‘x’. 

2. Design of speedy and robust recovery algorithm. 

 

The CS framework consists of three core components: a sparsifying transform, a sensing matrix, and a 

reconstruction algorithm. The sparsifying transform converts the signal into a domain where it exhibits 
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few nonzero coefficients. The sensing matrix projects the sparse signal into a lower-dimensional space, and 

this linear measurement process is crucial because it determines the degree to which the original information 

is preserved. Reconstruction is then achieved by solving an inverse problem, often under constraints that 

exploit sparsity. Among the various reconstruction algorithms developed, Orthogonal Matching Pursuit 

(OMP) [12]is widely used due to its greedy, iterative nature and relatively low computational complexity. 

 

One of the most critical design choices in compressed sensing systems is the selection of the sensing 

matrix [11]. An ideal sensing matrix should be incoherent with the sparsifying basis and satisfy the 

Restricted Isometry Property (RIP) to ensure that distances between sparse signals are preserved after 

projection. While random matrices such as Gaussian and Bernoulli are popular due to their strong 

probabilistic guarantees, they are not always suitable for practical implementation due to high memory and 

computational demands. Alternatively, structured matrices, such as Partial Fourier and Hadamard 

matrices, offer significant benefits in terms of speed, storage efficiency, and ease of hardware realization. 

Each matrix type impacts reconstruction performance differently, especially when paired with varying 

sparsity levels and thresholding strategies. 

Thresholding in the transform domain is another aspect that heavily influences compression effectiveness. It 

allows control over the number of retained coefficients, thus shaping the trade-off between compression ratio 

and reconstruction quality. Low thresholds retain more information but at the cost of reduced compression, 

while higher thresholds achieve better compression but may compromise image quality. 

This paper investigates how the performance of compressed image reconstruction using OMP varies with 

different structured and unstructured sensing matrices under fixed DCT thresholding conditions. The 

evaluation is based on standard metrics such as MSE, PSNR, entropy variation, and compression 

ratio[15]. Through systematic experimentation on 256×256 grayscale images, the study reveals how the 

interplay between matrix type and sparsity level affects the accuracy and efficiency of the reconstructed 

image. The findings aim to contribute to the design of optimized compressive imaging systems tailored for 

applications like medical imaging, surveillance, and low-power embedded vision. 

 

2. Methodology 

 

2.1 Compressed Sensing Framework 

Compressed sensing exploits the sparsity of signals in a transform domain to recover images from a small 

number of linear measurements. The process involves: 

1. Sensing: Acquiring compressed measurements using a sensing matrix. 

2. Sparse Representation: Transforming images into a sparse domain (DCT-based representation). 

3. Reconstruction: Recovering the image using the Orthogonal Matching Pursuit (OMP) algorithm. 

Compressed Sensing Measurement Model 

y =  Φ x ------ Eq1 

Sparse Representation via Dictionary/Transform 

x =  Ψ θ ------ Eq2 

Combined System Equation 

y =  Φ Ψ θ =  A θ ------ Eq3 

 

OMP Initialization 

r0 =  y, Λ0 =  ∅, k =  0 ------ Eq4 

Atom Selection Step 

λᵏ =  argmaxⱼ |⟨aⱼ, rᵏ⟩| ------ Eq5 

Update Support Set 

Λᵏ⁺¹ =  Λᵏ ∪  {λᵏ} ------ Eq6 

Solve Least Squares for Coefficients 

θ_{Λᵏ⁺¹}  =  argmin_θ ‖y −  A_{Λᵏ⁺¹} θ‖₂ ------ Eq7 

Update Residual 
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rᵏ⁺¹ =  y −  A_{Λᵏ⁺¹} θ_{Λᵏ⁺¹} ------ Eq8 

Stopping Condition 

‖𝐫ᵏ⁺¹‖₂ <  𝛆 or k =  K ------ Eq9 

 

2.2 Experimental Setup 

• Image Size: 256 × 256 pixels 

• Sensing Matrices: Gaussian, Bernoulli, Partial Fourier, Hadamard 

• Reconstruction Algorithm: OMP 

• Performance Metrics: Entropy, MSE, PSNR, Compression Ratio 

 

The experimental setup in this study is carefully structured to assess the effectiveness of compressed sensing 

(CS) techniques in image compression and reconstruction. A fixed image size of 256 × 256 pixels was selected 

to ensure uniformity and simplify comparative analysis across different sensing matrix configurations. Four 

distinct types of sensing matrices were investigated—Gaussian, Bernoulli, Partial Fourier, and 

Hadamard[19]—each chosen for their diverse mathematical properties and influence on sparsity and 

reconstruction fidelity. The Gaussian and Bernoulli matrices, being random in nature, are widely used due 

to their incoherence with most sparsifying bases, making them ideal for CS. On the other hand, Partial 

Fourier and Hadamard matrices are structured and orthogonal, offering computational advantages, 

reduced storage, and faster transformations, which are crucial for practical implementations. 

To reconstruct the compressed images, the Orthogonal Matching Pursuit (OMP) algorithm was 

employed. OMP is a greedy algorithm that iteratively selects the best matching atoms from a dictionary to 

approximate the original sparse signal. It is favored for its balance between reconstruction accuracy and 

computational efficiency, particularly in high-dimensional signal scenarios like images. The evaluation of the 

reconstructed images was carried out using several key performance metrics. Entropy was used to quantify 

the information content of the original, compressed, and reconstructed images. Mean Squared Error 

(MSE) and Peak Signal-to-Noise Ratio (PSNR) served as quantitative measures of reconstruction 

fidelity, capturing the deviation and visual quality difference between the original and reconstructed images. 

Additionally, the compression ratio [30] was computed to evaluate the effectiveness of the sensing matrix 

in reducing data size without substantial loss of perceptual quality. 

By systematically varying the sparsity level (K) and DCT thresholding strategies, the setup enables a 

comprehensive performance evaluation of different sensing matrices under consistent algorithmic and 

measurement conditions. This allows for a nuanced understanding of the trade-offs between compression 

efficiency, reconstruction quality, and computational complexity across the selected matrix types when used 

with OMP. 

The proposed image compression and reconstruction framework is implemented using MATLAB and is 

grounded in the principles of Compressed Sensing (CS). The primary objective of the code is to simulate 

and evaluate how different sensing matrices, varying compression levels (K values), and 

thresholding strategies influence the quality and efficiency of image reconstruction. 

1. Preprocessing and Sparsification 

The process begins with importing a grayscale image, typically of size 256×256 pixels, which is then reshaped 

into a one-dimensional vector to facilitate matrix operations. To prepare the image for compression using CS, 

the pixel intensity values are first transformed into a sparse domain using the Discrete Cosine Transform 

(DCT)[25]. This transformation is crucial as it concentrates the image's energy into a small number of 

significant coefficients, enabling effective compression. 

2. Sensing Matrix Design and Compression 

The compressed measurements are obtained by multiplying the DCT-transformed vector with a sensing 

matrix (Φ). The code evaluates four types of sensing matrices, each chosen for its unique mathematical 

properties and relevance to CS theory: 

• Gaussian Random Matrix: Entries are drawn from a standard normal distribution. These matrices are 

known for strong theoretical RIP guarantees. 
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• Bernoulli Matrix: Binary random matrices with entries of ±1, offering computational simplicity and fast 

multiplication. 

• Partial Fourier Matrix: A subset of rows from the full Fourier transform matrix, enabling structured 

randomness and fast computation. 

• Hadamard Matrix: An orthogonal binary matrix with fast transformation via the Walsh-Hadamard 

transform, ideal for hardware-efficient applications. 

For each matrix type, the number of measurements K is varied (K = 50, 100, 150, 200, 250), representing 

different levels of compression. The total number of pixels N is fixed (N = 65536 for a 256×256 image), and 

the compression ratio is defined as N/K. 

3. Measurement and Reconstruction 

Once the compressed measurement vector (y = Φx) is obtained, the signal reconstruction is performed. The 

code employs the Moore-Penrose pseudo-inverse of the sensing matrix to approximate the solution to 

the underdetermined linear system. While more sophisticated sparse recovery algorithms (like Basis Pursuit 

or Orthogonal Matching Pursuit) can be used, the pseudo-inverse method offers simplicity and analytical 

tractability for comparative studies. 

The reconstructed sparse vector is then subjected to inverse DCT, converting it back into the spatial 

domain. The output is reshaped into a 2D matrix to recover the final image. 

4. Thresholding Strategy (Fixed K = 250) 

To further explore reconstruction quality, a thresholding mechanism is applied to the DCT coefficients. 

For a fixed K (typically 250), the code performs additional experiments by retaining only those coefficients 

whose absolute values exceed predefined thresholds (1, 5, 10, 20, 50). This simulates scenarios where low-

energy components are discarded to improve compression or robustness against noise. 

5. Performance Evaluation Metrics 

The code systematically computes and records the following quantitative metrics for each experiment: 

• Mean Squared Error (MSE): Measures pixel-wise error between the original and reconstructed images. 

• Peak Signal-to-Noise Ratio (PSNR): Evaluates the quality of the reconstructed image in decibels, 

inversely related to MSE. 

• Entropy of the Reconstructed Image: Assesses the information content, useful for understanding the 

compressibility of the output. 

• Entropy Difference (ΔH): Quantifies the change in entropy between the original and reconstructed 

image. 

• Compression Ratio: Indicates the extent of data reduction achieved for each K value (N/K). 

These results are tabulated and plotted to observe trends and draw insights regarding the suitability of each 

sensing matrix and thresholding technique. The experiments are designed to answer critical research 

questions: How does matrix structure influence reconstruction quality? What is the trade-off between 

compression ratio and fidelity? Does thresholding improve visual quality or reduce entropy? 

6. Reproducibility and Flexibility 

The code is modular and allows researchers to modify parameters such as image size, type of transform (DCT, 

Wavelet), reconstruction algorithm, or noise levels. It provides a flexible simulation platform for further 

experimentation in CS-based image processing. 

 

 

 

 

 

 

 

 

 

 

 



Journal of Information Systems Engineering and Management 
2025, 10(45s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/  Research Article 

 

 1339 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly 

cited. 

 

3. Results and Analysis 

 

3.1 Performance of Different Sensing Matrices 

3.1.1 Gaussian Random Matrix 

Variation with K 

 

Table 3.1.1 presents a comparison of Gaussian Random Sensing matrices at a fixed threshold (10) and various 

K values for a 256*256 image. 

K 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

50 6.9326 -0.22333 453.4054 21.5659 5.12 

100 6.5728 0.13656 162.4221 26.0244 2.56 

150 6.6411 0.068259 61.2449 30.2601 1.7067 

200 6.6857 0.023597 18.4848 35.4627 1.28 

250 6.6848 0.024552 18.3374 35.4974 1.024 

Table 3.1.1. Gaussian Random Sensing matrices at a fixed threshold (10) and various K values for a 256*256 

image 

 

Gaussian Random Matrix – Varying K 

As the value of K increases, the entropy of the reconstructed image improves and approaches the 

original, while MSE decreases and PSNR increases, indicating enhanced reconstruction quality. The 

entropy difference (ΔH) reduces significantly beyond K = 150, suggesting more stable and accurate 

compression. A compression ratio of 1.024 at K = 250 achieves a good trade-off between quality and 

compression. 

 

Different DCT Thresholds (K = 250) 

Threshold 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

1 6.6964 0.012915 9.5244 38.3424 1.024 

5 6.7313 -0.021942 3.7431 42.3985 1.024 

10 6.6848 0.024552 18.3374 35.4974 1.024 

20 6.6481 0.061222 49.6060 31.1755 1.024 

50 6.5530 0.156280 101.6027 28.0618 1.024 

Table 3.1.2. Gaussian Random Sensing matrices at a variable threshold and fixed K (K=250) value for a 

256*256 image 

 

Gaussian Random Matrix – Different DCT Thresholds (K = 250) 

With a fixed sensing level (K = 250), changing the DCT threshold shows that lower thresholds preserve 

more high-frequency components, resulting in lower MSE and higher PSNR (e.g., threshold = 5 gives PSNR 

of 42.39 dB). However, entropy increases with smaller thresholds, indicating less sparsity. An optimal 

balance appears at threshold = 5, providing both high visual quality and efficient compression. 
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3.1.2. Bernoulli Matrix 

Variation with K 

K 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

50 6.8607 -0.15139 399.0937 22.1201 5.12 

100 6.6249 0.084376 164.8922 25.9588 2.56 

150 6.6169 0.092461 61.8730 30.2158 1.7067 

200 6.6848 0.024552 18.3374 35.4974 1.28 

250 6.6848 0.024552 18.3374 35.4974 1.024 

Table 3.1.3. Bernoulli Sensing matrices at a fixed threshold (10) and various K values for a 256*256 image 

 

Bernoulli Matrix – Varying K 

As K increases, the MSE drops and PSNR rises, showing improvement in reconstruction. The entropy 

difference narrows at higher K values, and K = 250 again yields maximum reconstruction quality. The 

trend parallels Gaussian, though Bernoulli shows slightly higher entropy at low K, indicating less efficient 

compression in sparse settings. 

 

Different DCT Thresholds (K = 250) 

Threshold 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

1 6.6928 0.016492 10.1439 38.0688 1.024 

5 6.7313 -0.021942 3.7431 42.3985 1.024 

10 6.6848 0.024552 18.3374 35.4974 1.024 

20 6.6481 0.061222 49.6060 31.1755 1.024 

50 6.5530 0.156280 101.6027 28.0618 1.024 

Table 3.1.4. Bernoulli Sensing matrices at a variable threshold and fixed K (K=250) value for a 256*256 image 

 

Bernoulli Matrix – Different DCT Thresholds (K = 250) 

Threshold variation affects reconstruction similarly to the Gaussian case. Lower thresholds reduce MSE and 

boost PSNR. Threshold = 5 again yields the best performance (PSNR = 42.39 dB), with moderate entropy. 

This confirms the role of adaptive thresholding in optimizing compression even with Bernoulli matrices. 

 

3.1.3. Partial Fourier Matrix 

Variation with K 

K 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

50 6.8575 -0.14815 378.4819 22.3504 5.12 

100 6.8296 -0.12033 348.1598 22.7130 2.56 

150 6.8452 -0.13591 248.4462 24.1785 1.7067 

200 6.7461 -0.03676 142.3431 26.5974 1.28 

250 6.8290 -0.11966 235.2847 24.4149 1.024 

Table 3.1.5. Partial Fourier Sensing matrices at a fixed threshold (10) and various K values for a 256*256 

image 

 

Partial Fourier Matrix – Varying K 

Unlike Gaussian and Bernoulli, the Partial Fourier Matrix performs inconsistently across K values. The 

entropy shows minor fluctuations, and PSNR is generally lower, with higher MSE throughout. This 
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suggests that Partial Fourier matrices may not offer the same reconstruction efficiency for the given image 

under compressed sensing. 

 

Different DCT Thresholds (K = 250) 

Threshold 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

1 6.8598 -0.15047 214.1529 24.8236 1.024 

5 6.7280 -0.018641 264.8846 23.9002 1.024 

10 6.6989 0.010397 182.7853 25.5114 1.024 

20 6.6614 0.047898 200.1035 25.1183 1.024 

50 6.9516 -0.24228 270.7955 23.8044 1.024 

Table 3.1.6. Partial Fourier Sensing matrices at a variable threshold and fixed K (K=250) value for a 256*256 

image 

 

Partial Fourier Matrix – Different DCT Thresholds (K = 250) 

Threshold effects are less stable for the Partial Fourier matrix. Even though threshold = 10 and 20 give 

improved entropy and PSNR, the overall MSE remains higher compared to Gaussian or Bernoulli cases. This 

reinforces the earlier observation that Partial Fourier performs suboptimally in this setup. 

 

3.1.4. Hadamard Matrix 

Variation with K 

K 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

50 6.8238 -0.11454 403.9336 22.0677 5.12 

100 6.6968 0.012494 167.6088 25.8878 2.56 

150 6.6844 0.024863 59.5768 30.3800 1.7067 

200 6.7322 -0.022889 19.6767 35.1913 1.28 

250 6.7312 -0.021925 18.3374 35.4974 1.024 

Table 3.1.7. Hadamard Sensing matrices at a fixed threshold (10) and various K values for a 256*256 image 

 

Hadamard Matrix – Varying K 

The Hadamard matrix shows steady improvement with increasing K, achieving low MSE and high 

PSNR at K = 250, similar to Gaussian and Bernoulli. However, entropy difference becomes slightly 

negative at high K, indicating minor reconstruction distortion in the frequency domain. Still, results are 

comparable to the best-performing matrices. 

 

Different DCT Thresholds (K = 250) 

Threshold 

Entropy of 

Reconstructed 

Image 

Entropy 

Difference 

(ΔH) 

MSE PSNR 
Compression 

Ratio 

1 6.7618 -0.05245 8.6588 38.7562 1.024 

5 6.7516 -0.042328 3.7431 42.3985 1.024 

10 6.7312 -0.021925 18.3374 35.4974 1.024 

20 6.6904 0.018951 49.6060 31.1755 1.024 

50 6.5530 0.156280 101.6027 28.0618 1.024 

Table 3.1.8. Hadamard Sensing matrices at a variable threshold and fixed K (K=250) value for a 256*256 

image 
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Hadamard Matrix – Different DCT Thresholds (K = 250) 

Threshold tuning again highlights that threshold = 5 yields excellent performance, with very low MSE 

and PSNR of 42.39 dB. Interestingly, entropy drops below the original at low thresholds, indicating a 

denser representation due to retained details. Hadamard thus combines good energy compaction with 

efficient reconstruction. 

 

3.2 Impact of K and Threshold on Image Reconstruction 

The experimental results reveal that both the number of measurements (K) and the DCT threshold 

significantly influence the quality of image reconstruction in compressed sensing. Across all sensing matrices, 

increasing K improves reconstruction quality, as evidenced by reduced MSE and increased PSNR, while the 

entropy of the reconstructed image converges towards that of the original. Specifically, K values of 200–250 

consistently yield high-fidelity reconstructions with minimal entropy difference and favorable compression 

ratios. Simultaneously, DCT thresholding plays a crucial role in balancing sparsity and visual quality. Lower 

thresholds (particularly threshold = 5) retain essential image features, producing PSNR above 42 dB and 

the lowest MSE, especially for Gaussian, Bernoulli, and Hadamard matrices. In contrast, the Partial Fourier 

matrix exhibits weaker performance due to less effective sparsity capture. Overall, the results underscore 

those optimal combinations of higher K values and moderate thresholding are critical for achieving 

visually superior and compression-efficient reconstructions. Figure 1: PSNR vs. K for Different Sensing 

Matrices 

(Graph: PSNR trends for K = {50,100,150,200,250} across different matrices) 

 
Figure 3.2.1: PSNR vs. K for Different Sensing Matrices 

 

3.3 Entropy Analysis 

Entropy measures indicate that different matrices impact information preservation differently. Figure 3.3.1 

visualizes entropy differences across matrices. 
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Figure 3.3.1: Entropy Difference (ΔH) Across Different Sensing Matrices 

 

The graph illustrates how the entropy of the reconstructed image varies with the number of measurements 

(K) for four different sensing matrices: Gaussian, Bernoulli, Partial Fourier, and Hadamard. As K increases 

from 50 to 250, entropy generally increases across all matrices, indicating improved information 

preservation. The Gaussian and Bernoulli matrices show a smoother increase and converge to higher entropy 

values at K = 250, suggesting more consistent and efficient reconstruction. Partial Fourier and Hadamard 

matrices exhibit more fluctuation in entropy, especially at lower K, implying less stability in information 

retention at sparse sampling. Overall, higher K leads to better reconstruction quality with reduced entropy 

loss, and Gaussian/Bernoulli matrices demonstrate superior performance in preserving image content 

entropy. 

 

3.4 Mean Square Error (MSE) Analysis 

As the value of K increases, the MSE generally decreases for all matrices, indicating improved reconstruction 

quality. Gaussian, Bernoulli, and Hadamard matrices show significant MSE reduction and stabilization 

beyond K = 200. However, the Partial Fourier matrix exhibits higher MSE variability and less consistent 

improvement, especially at higher K values, suggesting it may be less robust in reconstruction performance 

compared to the others. 

 

 
Figure 3.4.1: Mean Square Error VS K (Threshold) Across Different Sensing Matrices 
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All sensing matrices show a decreasing MSE as K increases, confirming that higher measurements lead 

to better reconstruction accuracy. 

The MSE reduction is particularly significant from K = 50 to K = 150, after which the improvement becomes 

more gradual. 

 

Matrix-wise Comparison: 

1. Gaussian and Bernoulli matrices perform similarly and yield the lowest MSE values overall, 

especially for K ≥ 150. 

2. Hadamard matrix also shows strong performance, nearly matching Gaussian and Bernoulli at all K 

values, with slightly better MSE at K = 150. 

3. Partial Fourier matrix has the highest MSE across all K values, suggesting it is less effective for 

this image reconstruction task. 

 

Stability at K = 250: 

1. At K = 250, Gaussian, Bernoulli, and Hadamard converge to the same MSE (~18.3), indicating a 

saturation point in measurement effectiveness. 

2. However, Partial Fourier still lags with significantly higher MSE (~235), highlighting its weaker 

reconstruction ability even at high sampling. 

 

Implication: 

1. For practical applications where MSE is critical, Hadamard or Gaussian sensing offers a good trade-

off between complexity and reconstruction fidelity. 

2. If measurement budget is tight (low K), Gaussian performs better, but for moderate K, Hadamard 

provides slightly better or comparable MSE with faster computations due to its structured nature. 

 

4. Discussion 

 

The results highlight that Partial Fourier and Hadamard matrices achieve better trade-offs in preserving 

entropy and maintaining a lower MSE. Hadamard performs well in adaptive thresholding, while Partial 

Fourier exhibits stability across different K values. Gaussian and Bernoulli matrices show higher MSE but are 

computationally efficient. 

This study comprehensively evaluates the performance of four distinct sensing matrices—Gaussian 

Random, Bernoulli, Partial Fourier, and Hadamard—on the quality of compressed image 

reconstruction under varying conditions. The results clearly demonstrate that both the choice of sensing 

matrix and the number of measurements KKK significantly influence key performance metrics, 

including PSNR, MSE, entropy, and compression ratio. 

The Gaussian and Bernoulli matrices consistently delivered superior performance across all KKK 

values, yielding higher PSNRs (above 35 dB at K=250K=250K=250) and lower MSE values (~18), reflecting 

excellent reconstruction accuracy. Their inherent randomness and strong incoherence with sparsifying bases 

(e.g., DCT) make them ideal for compressive sensing tasks. Hadamard matrices, while slightly less 

consistent at lower KKK, reached comparable performance to Gaussian/Bernoulli at higher KKK, particularly 

K=150K = 150K=150 and above. Due to their structured binary nature, Hadamard matrices are 

computationally efficient and thus highly practical for real-time systems [17]. 

In contrast, Partial Fourier matrices underperformed significantly, with high MSE values (e.g., ~235 at 

K=250K=250K=250) and poor PSNR across the range. This suggests limitations in their compatibility with 

image content, possibly due to spectral leakage or poor incoherence in block-based sampling scenarios [11]. 

Regarding the impact of K, increasing KKK led to steady improvements in PSNR and reductions in MSE for 

all matrices, confirming the expected trade-off between compression and quality. Notably, performance gains 

saturated beyond K=200K = 200K=200, where all matrices (except Partial Fourier) achieved PSNR > 35 dB 

and stable entropy values. This plateau highlights the optimal operating point for balancing image quality 

and compression efficiency. 
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The analysis of thresholding strategies (applied at K=250K=250K=250) further emphasized the 

importance of sparsity enforcement in reconstruction. A moderate threshold (T = 10) provided the best 

balance across all matrices, while extreme thresholds (T = 1 or 50) led to underfitting or over-smoothing, 

respectively [14]. The entropy difference (ΔH) was minimized near this optimal threshold, suggesting 

effective retention of key image features. 

Overall, the study concludes that Gaussian and Bernoulli matrices are best suited for high-quality 

image reconstruction, while Hadamard matrices offer a strong trade-off between performance 

and computational cost. The Partial Fourier matrix, despite theoretical benefits in some domains, 

shows limited applicability in block-based image compression. Optimal reconstruction performance is 

achieved at K ≈ 200–250 and DCT threshold ≈ 10, ensuring high PSNR, low MSE, and entropy 

preservation with efficient compression [18]. 

 

5. Conclusion 

 

This study demonstrates that sensing matrix selection significantly influences compressed sensing 

performance. The Partial Fourier and Hadamard matrices show superior performance in preserving visual 

quality while maintaining compression efficiency. Future work will explore deep-learning-driven adaptive 

sensing matrices to enhance image compression and reconstruction further. 

This research comprehensively examined the influence of sensing matrix structures, measurement levels 

(KKK), and DCT thresholding strategies on the quality of image compression and reconstruction. The study 

employed four types of sensing matrices—Gaussian random, Bernoulli, Partial Fourier, and 

Hadamard—to explore their performance across a range of measurements and thresholding conditions. Key 

quality metrics, including PSNR, MSE, and entropy, were analyzed to assess the visual fidelity and 

compression efficiency of the reconstructed images. 

The results demonstrated that Gaussian and Bernoulli matrices offer superior reconstruction 

performance, particularly at higher values of KKK, by maintaining lower MSE and higher PSNR. These 

matrices preserve more significant image features due to their randomness and incoherence properties. The 

Hadamard matrix, although slightly inferior in entropy preservation, showed robust performance and 

computational efficiency due to its orthogonality and fast transform properties. On the other hand, the 

Partial Fourier matrix underperformed in preserving image details, especially at lower KKK, suggesting 

that its structured sparsity may not be well-suited for natural image domains in the tested configuration. 

The impact of the measurement count KKK was significant: increasing KKK consistently improved 

reconstruction quality across all matrices, with diminishing returns beyond K=200K = 200K=200. This 

trend highlights a trade-off point where increasing measurements does not yield proportionally better results, 

thereby defining an optimal compression ratio for practical applications. 

Further, the investigation into DCT thresholding at fixed K=250K = 250K=250 revealed that moderate 

threshold values (around 10) provide a favorable balance between retaining entropy and minimizing 

reconstruction error. Extremely low or high thresholds either failed to remove noise or excessively 

suppressed critical frequency components, degrading image quality. 

Overall, the findings affirm that matrix selection, measurement count, and transform 

thresholding are interdependent and must be jointly optimized for effective image reconstruction. The 

Gaussian matrix, paired with a moderate DCT threshold, emerged as the most effective combination in this 

study. The insights gained here are particularly valuable for low-resource applications such as wireless image 

transmission, medical imaging, and edge computing, where both compression and quality are critical. 

For future work, extending this analysis to color images, video sequences, and real-time adaptive sensing 

matrices—possibly leveraging machine learning or deep compressed sensing frameworks—could further 

enhance performance and applicability across domains. 
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