
Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 183 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Kernel-Embedded Blockchain Architecture for Transparent

AI Decision Auditing

1Gaurav Sharma, 2Avani Gala, 3Aditi Pandey, 4Shaunak Sinkar, 5Anant Manish Singh
1Department of Electronics and Computer Science(E&CS) Thakur College of Engineering and Technology (TCET), Mumbai, Maharashtra,

India

(gauravv1908@gmail.com)
2Department of Civil Engineering Thakur College of Engineering and Technology (TCET), Mumbai, Maharashtra, India

(avanigala07@gmail.com)
3Department of Computer Engineering Thakur College of Engineering and Technology (TCET), Mumbai, Maharashtra, India

(rtraditipandey@gmail.com)
4Department of Internet of Things (IoT) Thakur College of Engineering and Technology (TCET), Mumbai, Maharashtra, India

(shaunaksinkar@gmail.com)
5Department of Computer Engineering Thakur College of Engineering and Technology (TCET), Mumbai, Maharashtra, India

(anantsingh1302@gmail.com)

ARTICLE INFO ABSTRACT

Received: 31 Dec 2024

Revised: 20 Feb 2025

Accepted: 28 Feb 2025

Modern operating systems increasingly rely on AI for critical functions like resource allocation

and user interaction optimization yet lack mechanisms to ensure transparent, auditable

decision-making. Current logging systems, vulnerable to tampering and manual audits fail to

meet regulatory demands in sectors like healthcare for example Aidoc’s aiOS faces scrutiny over

untraceable diagnostic suggestions. Existing blockchain-AI integrations operate at application

layers introducing latency (2–5 minutes/transaction) and storage inefficiencies (60–70%

capacity use). This work proposes a kernel-embedded blockchain architecture that immutably

logs AI decisions at the OS level combining Merkle tree hashing with hybrid Proof-of-Stake

consensus. Empirical tests across 1,000 tamper scenarios demonstrated 100% detection

accuracy with a median transaction latency of 57 seconds and 95% storage efficiency-

outperforming traditional systems by 35% in audit readiness. The framework processes 10,000+

daily AI decisions in enterprise simulations, reducing audit preparation time from 120+ hours to

real-time verification. While addressing critical gaps in GDPR/HIPAA compliance and bias

mitigation (98% accuracy in identifying skewed training data) challenges remain in scaling

consensus mechanisms for sub-10-second latency. This architecture establishes a foundational

model for trustworthy AI-integrated operating systems enabling regulatory compliance without

sacrificing performance and paves the way for future work in energy-efficient decentralized

validation.

Keywords: ai, operating, systems, blockchain, logging, transparency, performance,

compliance, kernel

I. INTRODUCTION

The proliferation of artificial intelligence in operating systems has fundamentally transformed computational

resource management, system optimization and user experience personalization [1]. Modern operating systems

increasingly leverage AI algorithms to make critical decisions about process scheduling, memory allocation, power

management and security threat detection. However as AI assumes greater control over system operations, the need

for transparent, verifiable decision logs becomes imperative-particularly in regulated sectors like healthcare, finance

and public services where algorithmic accountability is mandated by law [2-3].

Current logging mechanisms employed by operating systems suffer from significant limitations that undermine their

reliability for auditing AI decisions. Traditional kernel logging frameworks like KLogger provide fine-grained event

capture capabilities but remain vulnerable to post-hoc tampering, deletion, or manipulation [4]. This vulnerability

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 184 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

creates a critical accountability gap as evidenced by recent challenges faced by healthcare AI platforms such as Aidoc's

aiOS which has encountered regulatory scrutiny over untraceable diagnostic suggestions.

While blockchain technology offers promising solutions for immutable record-keeping, existing blockchain-AI

integrations predominantly operate at the application layer introducing substantial performance penalties [5].

Current implementations suffer from extended transaction latencies (2-5 minutes per transaction) and significant

storage inefficiencies (60-70% of available capacity) [6-8]. These performance constraints render application-layer

solutions impractical for system-level AI decision logging where both speed and efficiency are paramount.

This paper introduces a novel kernel-embedded blockchain architecture specifically designed to provide transparent,

tamper-resistant logging of AI decisions at the operating system level [9]. By integrating blockchain functionality

directly into the kernel's crypto subsystem, our approach eliminates the overhead of application-layer solutions while

maintaining cryptographic integrity. The key contributions of this work include:

• A kernel-level blockchain implementation that leverages the Linux Crypto API for high-performance

transaction validation.

• A specialized Merkle tree structure optimized for AI decision metadata storage.

• A hybrid Proof-of-Stake consensus mechanism designed for distributed validation of AI decision logs.

• Empirical evaluation demonstrating superior performance compared to existing solutions

• A comprehensive framework for real-time AI bias detection and regulatory compliance verification

The remainder of this paper is organized as follows: Section II reviews related work and identifies research gaps;

Section III details our methodology and system architecture; Section IV describes the experimental setup; Section V

presents results and discussion; Section VI provides comparative analysis; Section VII addresses limitations and

future work directions and Section VIII concludes.

II. LITERATURE REVIEW

The development of transparent, auditable AI decision-making systems spans multiple research domains including

kernel logging mechanisms, blockchain architectures and AI accountability frameworks. Table 1 presents a

comprehensive analysis of existing literature highlighting key contributions and persistent gaps.

Table 1: Literature Review - Key Works, Findings and Research Gaps

Paper Focus Area
Key

Contribution
Methodology Limitations Research Gap

Yoav Etsion, Dan

Tsafrir, Scott

Kirkpatrick and

Dror G. Feitelson.

2007. Fine

grained kernel

logging with

KLogger:

experience and

insights. SIGOPS

Oper. Syst. Rev.

41, 3 (June 2007),

259–272.

https://doi.org/1

0.1145/1272998.1

273023

Kernel

Logging

Fine-grained,

scalable kernel

logger with

low overhead

(200 cycles

per event)

Per-CPU

buffers with

specialized

optimization

Vulnerable to

post-collection

tampering; No

cryptographic

validation

Lack of

immutability

guarantees for

logged events

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 185 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paper Focus Area
Key

Contribution
Methodology Limitations Research Gap

Ranasinghe

Yasaweerasinghel

age, R. M.,

Staples, M., &

Weber, I. (2017).

Predicting latency

of blockchain-

based systems

using

architectural

modelling and

simulation.

Proceedings of

the 2017 IEEE

International

Conference on

Software

Architecture

(ICSA),

10.1109/ICSA.201

7.22.

https://doi.org/1

0.1109/ICSA.2017

.22

Blockchain

Performance

Predicting

latency of

blockchain

systems using

architectural

modeling

Simulation-

based

approach with

measured

transaction

inclusion

times

Limited to

theoretical

predictions

rather than

implementation

Absence of

kernel-level

blockchain

integration

Nasrulin, B., de

Vos, M., Ishmaev,

G., & Pouwelse, J.

(2022). Gromit:

Benchmarking

the performance

and scalability of

blockchain

systems.

Proceedings of

the 2022 IEEE

International

Conference on

Decentralized

Applications and

Infrastructures

(DAPPS).

https://doi.org/1

0.1109/DAPPS55

202.2022.00015

Blockchain

Scalability

Benchmarking

performance

metrics across

blockchain

systems

Empirical

testing

showing

median

transaction

latencies of

10-57 seconds

Application layer

focus only

Gap in kernel-

level blockchain

implementation

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 186 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paper Focus Area
Key

Contribution
Methodology Limitations Research Gap

Zhang, Y., Ma, Z.,

& Meng, J.

(2025). Auditing

in the blockchain:

A literature

review. Frontiers

in Blockchain, 8.

https://doi.org/1

0.3389/fbloc.202

5.1549729

Blockchain

Auditing

Framework

for audit trail

verification

using

distributed

ledgers

Case studies

of Big Four

accounting

implementatio

ns

Applied only to

financial data not

AI decisions

Missing

integration with

AI decision

logging

Qader, K. S., &

Cek, K. (2024).

Influence of

blockchain and

artificial

intelligence on

audit quality:

Evidence from

Turkey. Heliyon, 1

0(9), e30166.

https://doi.org/1

0.1016/j.heliyon.2

024.e30166

AI and Audit

Quality

Investigation

of blockchain

and AI

influence on

audit quality

Statistical

methods and

surveys

showing

positive

impact on

fraud

detection

Industry-specific

focus without

OS-level

considerations

Lack of

integrated

approach for OS-

level AI auditing

Zhang, Y., Ma, Z.,

& Meng, J. (2025,

April 25).

Blockchain for AI

ethics: Preventing

bias and ensuring

fairness.

Clockb.tech.

https://clockb.tec

h/blockchain-for-

ai-ethics-

preventing-bias-

and-ensuring-

fairness/ts

Blockchain

for AI Ethics

Platforms to

track and

verify datasets

for fairness

using

blockchain

Decentralized

verification of

AI model

training data

Application-layer

implementation

with high latency

Inefficient

implementation

for system-level

operations

Kulothungan, V.

(2025). Using

Blockchain

Ledgers to Record

the AI Decisions

in IoT. Preprints.

Blockchain

for AI

Decisions

Framework

logging AI

inference and

provenance

data

Tamper-

evident

logging of

inputs,

parameters

and outputs

Operates at

application layer

with significant

overhead

Not integrated

with kernel for

improved

performance

https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 187 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Paper Focus Area
Key

Contribution
Methodology Limitations Research Gap

https://doi.org/1

0.20944/preprint

s202504.1789.v1

Google. (2025,

May 6). Kernel

overview.

Android Open

Source Project.

https://source.an

droid.com/docs/k

ernel

Kernel

Architecture

Android

kernel based

on Linux LTS

with modular

approach

Separation of

generic core

kernel from

vendor

modules

No specific AI

auditing

capabilities

Missing AI

decision tracking

in kernel

architecture

Kernel Crypto API

Architecture.

(n.d.). Linux

kernel

documentation.

Retrieved May 8,

2025, from

https://docs.kern

el.org/crypto/arc

hitecture.html

Crypto API

Implementati

ons of block

ciphers and

message

digests

Templates for

various

cryptographic

functions

Not adapted for

blockchain-

specific

operations

Lacks

blockchain-

specific

extensions

Solidity

Developer. The

Ultimate Merkle

Tree Guide in

Solidity:

Everything you

need to know

about Merkle

trees and their

future. Retrieved

May 8, 2025,

from

https://solidityde

veloper.com/mer

kle-tree

Merkle Tree

Implementati

on

Efficient

verification of

data integrity

Tree-based

hash structure

for data

validation

Generic

implementation

not optimized for

AI decision data

Not adapted for

low-latency OS

operations

Analysis of the literature reveals several critical research gaps that our work addresses:

• Integration Gap: While both kernel logging mechanisms and blockchain architectures have been

extensively studied, no existing work integrates blockchain functionality directly into the kernel for AI

decision auditing.

https://source.android.com/docs/kernel
https://source.android.com/docs/kernel
https://source.android.com/docs/kernel
https://docs.kernel.org/crypto/architecture.html
https://docs.kernel.org/crypto/architecture.html
https://docs.kernel.org/crypto/architecture.html
https://soliditydeveloper.com/merkle-tree
https://soliditydeveloper.com/merkle-tree
https://soliditydeveloper.com/merkle-tree

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 188 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• Performance Gap: Current blockchain implementations suffer from high latency (2-5 minutes) making

them unsuitable for real-time OS-level logging of AI decisions.

• AI Transparency Gap: Existing AI auditing frameworks operate predominantly at the application layer,

failing to capture system-level AI decisions made within the operating system.

• Scalability Gap: Most blockchain implementations struggle with throughput limitations that prevent them

from handling the volume of decisions generated by AI-driven operating systems.

• Compliance Gap: While regulatory frameworks increasingly demand AI transparency, existing solutions

fail to provide the immutability and verification mechanisms required for compliance with standards like

GDPR and HIPAA.

Our kernel-embedded blockchain architecture addresses these gaps by providing a high-performance, tamper-

resistant logging mechanism that operates at the OS level capturing AI decisions with minimal overhead while

ensuring cryptographic integrity [10].

III. METHODOLOGY

1) System Architecture

Our kernel-embedded blockchain architecture integrates directly with the operating system's kernel to provide

transparent, immutable logging of AI decisions. Figure 1 illustrates the high-level system architecture.

Fig. 1: Proposed Architecture

The architecture consists of five key components:

• AI Decision Engine: Native and third-party AI modules operating within the kernel space that make

system-level decisions.

• Decision Capture Layer: Hooks into the kernel's decision pathways to intercept and format AI decisions

for blockchain storage.

• Kernel Crypto Subsystem: Extended version of the Linux Crypto API with blockchain-specific

operations, including block generation, Merkle tree construction and consensus mechanisms.

• Distributed Storage: Optimized on-disk format for blockchain data that maximizes space efficiency while

maintaining integrity.

• External Interfaces: APIs for audit verification and connections to validation nodes that participate in the

consensus mechanism.

2) Kernel Integration

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 189 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The integration of blockchain functionality into the kernel leverages and extends the existing Linux Crypto API. We

created specialized crypto templates for blockchain operations following the pattern established in the kernel's

existing framework:

name : bc_merkle(sha256)

driver : bc_merkle(sha256-generic)

module : bc_merkle

priority : 300

refcnt : 1

selftest : passed

internal : no

type : bc_hash

async : yes

blocksize : 32

min keysize : 0

max keysize : 0

Our blockchain implementation registers new algorithmic templates with the kernel's crypto subsystem enabling

efficient in-kernel hashing, signing and verification of AI decision blocks. The decision capture mechanism intercepts

AI operations through strategic placement of klogger calls within the kernel's AI decision pathways:

/* Example integration with kernel AI decision path */

int ai_resource_allocate(struct task_struct *task,

 unsigned long resource_id,

 struct ai_decision *decision) {

 int result;

 /* Perform AI decision logic */

 result = ai_core_decide(task, resource_id, decision);

 /* Log the decision to blockchain */

 klogger(BC_AI_DECISION, task->pid, resource_id,

 decision->confidence, decision->priority,

 decision->model_id, decision->timestamp);

 return result;

}

The klogger call is efficiently inlined, adding only 70 nanoseconds of overhead per logged decision making it suitable

for high-frequency AI operations.

3) Blockchain Implementation

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 190 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Our blockchain design optimizes for the specific requirements of AI decision logging, prioritizing low latency and

storage efficiency over features unnecessary for audit logging.

Block Structure

Each block in our blockchain contains:

a) Block header:

• Previous block hash (32 bytes)

• Merkle root hash (32 bytes)

• Timestamp (8 bytes)

• Block height (8 bytes)

• Consensus metadata (32 bytes)

• Nonce (8 bytes)

b) Transaction payload:

• Array of AI decision records, each containing:

➢ Decision ID (16 bytes)

➢ AI model identifier (8 bytes)

➢ Input parameters hash (32 bytes)

➢ Output decision hash (32 bytes)

➢ Confidence score (4 bytes)

➢ Timestamp (8 bytes)

➢ Process context (16 bytes)

The block structure is optimized for storage efficiency using fixed-width fields to minimize metadata overhead and

enable direct memory mapping of blockchain data.

c) Merkle Tree Implementation

Our Merkle tree implementation is adapted from established cryptographic patterns but optimized for the kernel

environment [11]. The tree construction follows a bottom-up approach where AI decision records serve as leaf nodes

and parent nodes are computed by hashing child pairs:

static void bc_compute_merkle_root(struct bc_block *block) {

 struct bc_merkle_node *nodes;

 int i, layer_size, num_layers;

 /* Allocate memory for the merkle tree */

 num_layers = ceil(log2(block->num_transactions));

 nodes = kmalloc(sizeof(struct bc_merkle_node) *

 (2 * block->num_transactions - 1), GFP_KERNEL);

 /* Initialize leaf nodes with transaction hashes */

 for (i = 0; i < block->num_transactions; i++) {

 bc_hash_transaction(&block->transactions[i],

 nodes[i].hash);

 }

 /* Build the tree bottom-up */

 layer_size = block->num_transactions;

 for (int layer = 0; layer < num_layers; layer++) {

 for (i = 0; i < layer_size / 2; i++) {

 bc_hash_pair(nodes[i*2].hash,

 nodes[i*2+1].hash,

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 191 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 nodes[layer_size + i].hash);

 }

 /* Handle odd number of nodes */

 if (layer_size % 2 == 1) {

 memcpy(nodes[layer_size + layer_size/2].hash,

 nodes[layer_size - 1].hash,

 BC_HASH_SIZE);

 }

 layer_size = (layer_size + 1) / 2;

 }

 /* Copy the root hash to the block header */

 memcpy(block->header.merkle_root,

 nodes[2 * block->num_transactions - 2].hash,

 BC_HASH_SIZE);

 kfree(nodes);

}

The Merkle tree enables efficient verification of individual AI decisions without requiring the entire blockchain

supporting partial audit verification scenarios.

d) AI Decision Logging Mechanism

The AI decision logging process follows a four-stage pipeline:

Fig. 2: 4 Stage Pipeline for Decision Logging using AI

• Capture: AI decisions are intercepted at key decision points in the kernel through strategically placed hooks.

• Formatting: Captured decisions are structured into a standardized format, including context information

and timestamps.

• Hashing: Each decision is cryptographically hashed using the kernel's crypto API.

• Batching: Decisions are batched into blocks based on either time thresholds (every 30 seconds) or volume

thresholds (512 decisions per block).

To balance privacy requirements with audit transparency, we implement a two-layer hashing approach:

static void bc_hash_ai_decision(struct ai_decision *decision,

 uint8_t *hash_output) {

Capture

Formatting

Hashing

Batching

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 192 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 struct crypto_shash *tfm;

 struct shash_desc *desc;

 /* Create a hash context */

 tfm = crypto_alloc_shash("sha256", 0, 0);

 desc = kmalloc(sizeof(struct shash_desc) +

 crypto_shash_descsize(tfm), GFP_KERNEL);

 desc->tfm = tfm;

 /* Initialize hash */

 crypto_shash_init(desc);

 /* Hash the public metadata */

 crypto_shash_update(desc, (uint8_t*)&decision->model_id,

 sizeof(decision->model_id));

 crypto_shash_update(desc, (uint8_t*)&decision->timestamp,

 sizeof(decision->timestamp));

 crypto_shash_update(desc, (uint8_t*)&decision->confidence,

 sizeof(decision->confidence));

 /* Hash the privacy-sensitive input/output data separately */

 uint8_t data_hash[BC_HASH_SIZE];

 bc_hash_sensitive_data(decision, data_hash);

 crypto_shash_update(desc, data_hash, BC_HASH_SIZE);

 /* Finalize hash */

 crypto_shash_final(desc, hash_output);

 /* Clean up */

 crypto_free_shash(tfm);

 kfree(desc);

}

This approach preserves the integrity and auditability of the decision while protecting sensitive data from direct

exposure in the blockchain.

4) Consensus Algorithm

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 193 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Our hybrid Proof-of-Stake consensus mechanism is designed for the unique requirements of kernel-level blockchain

operation. Unlike public blockchains, our system operates in a semi-trusted environment where participating nodes

are known entities (e.g., servers within an organization).

The consensus process consists of four phases:

Fig. 3: Stages constituting to the Consensus Process

Block Proposal: The node with the highest stake (determined by a combination of system uptime, decision volume

and explicit stake assignment) proposes a new block.

Validation: Participating nodes verify the proposed block's integrity by:

➢ Confirming the previous block hash

➢ Recomputing the Merkle root

➢ Validating the block's timestamp

Voting: Each validation node casts a weighted vote based on its stake.

Finalization: When votes exceeding two-thirds of the total stake are received, the block is considered finalized.

The consensus algorithm is implemented as a kernel module that communicates with other nodes through a secure

network protocol:

static int bc_consensus_finalize_block(struct bc_block *block) {

 struct bc_vote vote;

 int votes_received = 0;

 uint64_t stake_total = 0, stake_approved = 0;

 /* Broadcast block to validation nodes */

 bc_network_broadcast_block(block);

 /* Collect votes until timeout or sufficient approval */

 while (stake_approved < (stake_total * 2 / 3) &&

 time_before(jiffies, vote_deadline)) {

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 194 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

 if (bc_network_receive_vote(&vote)) {

 votes_received++;

 stake_total += vote.stake;

 if (vote.approved) {

 stake_approved += vote.stake;

 }

 }

 /* Allow other kernel tasks to run */

 cond_resched();

 }

 /* Check if consensus was reached */

 if (stake_approved >= (stake_total * 2 / 3)) {

 block->status = BC_BLOCK_FINALIZED;

 bc_storage_write_block(block);

 return BC_SUCCESS;

 } else {

 block->status = BC_BLOCK_REJECTED;

 return BC_ERROR_CONSENSUS_FAILED;

 }

}

This hybrid approach ensures both performance efficiency and Byzantine fault tolerance, providing protection

against up to one-third of nodes being compromised.

5) Experimental Setup

To evaluate the performance and efficacy of our kernel-embedded blockchain architecture, we conducted extensive

testing across various scenarios and configurations.

a) Hardware and Software Configuration

The experimental setup consisted of:

• 20 server nodes, each with:

➢ Intel Xeon E5-2680 v4 (14 cores, 2.4GHz)

➢ 128GB DDR4 RAM

➢ 2TB NVMe SSD storage

➢ 10GbE network interconnect

b) Software configuration:

• Linux kernel 5.15.0-LTS

• Custom kernel modules implementing our blockchain architecture

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 195 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• Synthetic AI decision generator for controlled testing

• Real-world AI workloads (resource management, anomaly detection, user behavior optimization)

6) Testing Methodology

Our evaluation methodology encompassed four key areas:

a) Performance Testing:

• Transaction latency (time from decision to blockchain confirmation)

• Throughput (decisions logged per second)

• Storage efficiency (bytes of storage per decision)

• CPU overhead (additional CPU cycles per AI decision)

b) Security Testing:

• Tamper detection accuracy across 1,000 simulated attack scenarios

• Resistance to timing attacks, replay attacks and denial-of-service attempts

c) Scalability Testing:

• Performance under increasing AI decision loads (1,000 to 100,000 decisions per day)

• Behavior with varying numbers of validation nodes (5 to 50)

d) Compliance Testing:

• GDPR compliance verification (right to explanation)

• HIPAA audit trail completeness

• Bias detection accuracy using synthetic biased datasets

7) Metrics and Measurements

To ensure statistical validity, each test was repeated 30 times and results were analyzed using standard statistical

methods. Key metrics included:

• Latency: Measured as the time interval between an AI decision being made and its confirmation in the

blockchain (in seconds).

Formula:

• Li_= latency for the i-th AI decision

• Tconfirm,i = timestamp when the i-th decision is confirmed on the blockchain

• Tdecision,i = timestamp when the i-th AI decision was made

Aggregate Metric (Average Latency): For n decisions, the average latency is:

𝐿̅ =
1

𝑛
∑𝐿𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝑇confirm,𝑖 − 𝑇decision,𝑖)

𝑛

𝑖=1

• Throughput: Calculated as the number of AI decisions that can be logged per second under sustained load.

Formula:

TP =
𝑁𝑙𝑜𝑔𝑔𝑒𝑑

𝑇𝑡𝑜𝑡𝑎𝑙

Where:

Nlogged= Total number of AI decisions logged during the test

Ttotal =Total time duration of the test (in seconds)

• Storage Efficiency: Computed as the ratio of actual decision data size to the total storage consumed

(including blockchain overhead).

Formula:

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 196 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

𝑆𝐸 = (
𝑆data

𝑆total

) × 100%

Where:

Sdata = Size of actual AI decision data (in bytes)

Stotal = Total storage consumed by blockchain logs (in bytes)

• Audit Readiness: Measured as the time required to extract and verify a complete audit trail for a specified

time period.

Formula:

𝐴𝑅 = 𝑇extract + 𝑇verify

Where:

𝑇extract = Time to extract audit data from storage (in seconds)

𝑇verify = Time to cryptographically verify the audit trail (in seconds)

• Tamper Detection: Calculated as the percentage of tampered records successfully identified across attack

scenarios.

Formula:

𝑇𝐷𝐴 = (
𝑁tampered

𝑁detected

) × 100%

Where:

Ntampered = Number of tampered AI decisions detected

Ndetected = Total number of AI decisions analyzed for tampering

• Bias Detection: Measured as the accuracy in identifying biased decision patterns in AI operation.

Formula:

𝐵𝐷𝐴 = (
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁
) × 100%

Where:

TP = True Positives (correctly identified biased decisions)

TN = True Negatives (correctly identified unbiased decisions)

FP = False Positives (unbiased decisions incorrectly flagged as biased)

FN = False Negatives (biased decisions missed by detection)

Statistical Validity:

Each test was repeated r=30 times to ensure statistical significance. For each metric M the mean M’ and standard

deviation σM were computed as:

Mean Formula (𝑀̅): 𝑀̅ =
1

𝑟
∑ 𝑀𝑗
𝑟
𝑗=1

Standard Deviation Formula (σM): 𝛔𝑴 = √
𝟏

𝒓−𝟏
∑ (𝑴𝒋 − 𝑴̅)

𝟐𝒓
𝒋=𝟏

Where Mj is the metric value in the jth run.

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 197 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Confidence intervals (CI) at 95% confidence level were calculated using the t-distribution:

𝐶𝐼 = 𝑀̅ ± 𝑡0.025, 𝑟−1 ×
σ𝑀

√𝑟

Where t0.025,r−1 is the t-value for 95% confidence and r−1 degrees of freedom.

IV. RESULTS AND DISCUSSION

Performance Metrics

Our kernel-embedded blockchain architecture demonstrated significant performance advantages over traditional

logging systems and application-layer blockchain solutions. Table 2 summarizes the key performance metrics.

Table 2: Performance Metrics Comparison

Metric
Kernel-Embedded

Blockchain (Proposed

Traditional

Logging

App-Layer

Blockchain
Improvement

Median

Transaction

Latency

57 seconds
N/A (no

confirmation)
288 seconds 80.2%

95th Percentile

Latency
83 seconds

N/A (no

confirmation)
347 seconds 76.1%

Maximum

Throughput
217 decisions/sec

3,450

decisions/sec
42 decisions/sec

416.7% over app-

layer

Storage Efficiency 95.3% 72.8% 31.5%
30.9% over

traditional

CPU Overhead 187 cycles/decision
115

cycles/decision

943

cycles/decision

80.2% over app-

layer

Memory

Footprint
2.8MB 1.2MB 14.7MB

81.0% over app-

layer

The median transaction latency of 57 seconds represents a significant improvement over application-layer blockchain

solutions which typically require 2-5 minutes per transaction. This improvement is primarily attributed to the direct

integration with the kernel's crypto subsystem eliminating multiple layers of abstraction present in application-layer

implementations.

Storage efficiency of 95.3% exceeds both traditional logging (72.8%) and application-layer blockchain solutions

(31.5%). This efficiency stems from our optimized block structure and specialized Merkle tree implementation which

minimizes metadata overhead while maintaining cryptographic integrity.

Tamper Detection Accuracy

A critical requirement for audit logging is the ability to detect unauthorized modifications to the log data. We

evaluated our system's tamper detection capabilities across 1,000 simulated attack scenarios, including:

• Direct modification of stored blocks

• Replay attacks with valid but outdated blocks

• Selective omission of AI decisions

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 198 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• Timestamp manipulation

• Consensus manipulation attempts

Figure 4 illustrates the tamper detection accuracy across different attack vectors.

Fig. 4: Tamper Detection Accuracy by Attack Vector

Our system achieved 100% detection accuracy across all attack vectors significantly outperforming traditional logging

systems which typically cannot detect tampering once logs are written. The cryptographic linking of blocks through

hash pointers, combined with the Merkle tree structure ensures that any modification to historical data is

immediately detectable.

Transaction Latency Analysis

To better understand the factors influencing transaction latency, we conducted a detailed analysis of the time spent

in each phase of the blockchain operation. Figure 5 shows the breakdown of median transaction latency across system

components.

Fig. 5: Transaction Latency Breakdown

The analysis reveals that consensus operations account for the largest portion of transaction latency (38 seconds,

66.7% of total), followed by block finalization (13 seconds, 22.8%), block formation (5.8 seconds, 10.2%) and decision

capture (0.2 seconds, 0.4%). This distribution suggests that optimization efforts should focus primarily on the

consensus mechanism to achieve further latency reductions.

The consensus latency is described by the equation:

𝐿consensus = 𝑇broadcast +max(𝑇validation,𝑖) + 𝑇collection

Where:

Consensus: 38s

Block Finalization: 13s

Block Formation: 5.8 s

Decision Capture: 0.2s

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 199 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

• 𝐿consensus is the total consensus latency

• Tbroadcast is the time to broadcast the proposed block to all validation nodes

• Tvalidation,i is the validation time for node iii

• Tcollection is the time required to collect sufficient votes

In our implementation:

• Tbroadcast averaged 3.2 seconds

• max(Tvalidation,i) was 18.7 seconds

• Tcollection averaged 16.1 seconds

Storage Efficiency

The storage efficiency of our system was evaluated by comparing the ratio of useful data (AI decision content) to total

storage consumption (including blockchain overhead). Figure 6 illustrates the storage efficiency comparison across

different logging methods.

Fig. 6: Storage Efficiency Comparison

Our kernel-embedded blockchain achieves 95.3% storage efficiency, compared to 72.8% for traditional logging and

31.5% for application-layer blockchain solutions. This efficiency is achieved through:

1. Optimized block structure with minimal metadata

2. Efficient Merkle tree implementation

3. Specialized consensus metadata format

4. Batch processing of AI decisions

The storage efficiency is mathematically expressed as:

𝐸storage = (
𝑆total

𝑆data

) × 100%

Where:

• Estorage is the storage efficiency percentage

• Sdata is the size of the actual AI decision data

• Stotal is the total storage consumed

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 200 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In our implementation, for every 100MB of AI decision data, the kernel-embedded blockchain requires only 104.9MB

of total storage compared to 137.4MB for traditional logging and 317.5MB for application-layer blockchain solutions.

Audit Readiness and Compliance

One of the primary objectives of our kernel-embedded blockchain is to improve audit readiness and regulatory

compliance. We evaluated these aspects through simulated audit scenarios based on GDPR and HIPAA requirements.

Table 3 presents the results of our compliance testing.

Table 3: Audit Readiness and Compliance Metrics

Metric
Kernel-Embedded

Blockchain (Proposed)

Traditional

Logging

App-Layer

Blockchain

Audit Preparation

Time
Real-time 120+ hours 24-48 hours

Completeness

Verification
Cryptographic proof

Manual

verification

Cryptographic

proof

GDPR Right to

Explanation

98.7% of decisions

traceable

67.3% of decisions

traceable

97.2% of decisions

traceable

HIPAA Compliance

Score
97/100 68/100 93/100

Audit Trail

Tampering Detection
100% 0% 100%

Continuous

Compliance

Monitoring

Yes No Partial

The kernel-embedded blockchain architecture demonstrates superior audit readiness reducing audit preparation

time from 120+ hours with traditional logging to real-time verification. This improvement is achieved through:

• Cryptographic proof of log completeness via the blockchain structure

• Continuous verification of AI decision integrity

• Automated compliance checks integrated into the consensus proces

• Standardized audit extraction API

Bias Detection Capabilities

A significant advantage of our architecture is its ability to detect bias in AI decision patterns. By continuously

monitoring the distribution of AI decisions, the system can identify potential bias indicators and flag them for review.

Table 4 presents the bias detection accuracy across different scenarios.

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 201 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Table 4: Bias Detection Accuracy of the Proposed System

Bias Type
Detection

Accuracy

False Positive

Rate

False Negative

Rate

Demographic Bias 98.3% 1.2% 0.5%

Feature Selection

Bias
97.1% 2.3% 0.6%

Temporal Bias 96.8% 3.1% 0.1%

Sampling Bias 99.2% 0.7% 0.1%

Algorithmic Bias 95.5% 3.8% 0.7%

Overall 97.4% 2.2% 0.4%

The bias detection mechanism uses a statistical approach to identify unexpected patterns in AI decisions. The

detection algorithm is expressed as:

𝑆bias =∑𝐸𝑖

𝑛

𝑖=1

  |𝑂𝑖 − 𝐸𝑖|

Where:

• S bias is the bias score

• Oi is the observed frequency of decisions for category i

• Ei is the expected frequency of decisions for category i

• n is the number of categories

A bias score exceeding a predefined threshold triggers an alert for human review providing early detection of

potential bias issues before they impact large numbers of users.

Comparative Analysis

To contextualize our results, we conducted a comparative analysis against existing systems described in the

literature. Table 5 presents this comparison across key performance metrics.

Table 5: Comparative Analysis with Existing Systems

System

Transac

tion

Latency

Throug

hput

Storag

e

Efficie

ncy

Integra

tion

Level

Tampe

r

Detect

ion

Our Kernel-Embedded Blockchain 57s 217 tx/s 95.3% Kernel 100%

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 202 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Our

kernel-embedded blockchain architecture demonstrates a balanced performance profile, offering transaction latency

comparable to the best blockchain implementations while maintaining significantly higher storage efficiency. The

System

Transac

tion

Latency

Throug

hput

Storag

e

Efficie

ncy

Integra

tion

Level

Tampe

r

Detect

ion

Kulothungan, V. (2025). Using

Blockchain Ledgers to Record the

AI Decisions in IoT. Preprints.

https://doi.org/10.20944/preprints

202504.1789.v1

180s 42 tx/s 35.7%
Applicati

on
100%

Zhang, Y., Ma, Z., & Meng, J.

(2025). Auditing in the blockchain:

A literature review. Frontiers in

Blockchain, 8.

https://doi.org/10.3389/fbloc.2025.

1549729

90s 103 tx/s 48.2%
Applicati

on
100%

Ranasinghe Yasaweerasinghelage, R. M.,

Staples, M., & Weber, I. (2017).

Predicting latency of blockchain-based

systems using architectural modelling

and simulation. Proceedings of the 2017

IEEE International Conference on

Software Architecture (ICSA),

10.1109/ICSA.2017.22.

85s 187 tx/s 56.8%
Simulati

on
N/A

Nasrulin, B., de Vos, M., Ishmaev, G., &

Pouwelse, J. (2022). Gromit:

Benchmarking the performance and

scalability of blockchain systems.

Proceedings of the 2022 IEEE

International Conference on

Decentralized Applications and

Infrastructures (DAPPS).

https://doi.org/10.1109/DAPPS55202.20

22.00015

57-347s
2-1500

tx/s

30-

60%

Applicati

on

97-

100%

Yoav Etsion, Dan Tsafrir, Scott

Kirkpatrick and Dror G. Feitelson. 2007.

Fine grained kernel logging with

KLogger: experience and insights.

SIGOPS Oper. Syst. Rev. 41, 3 (June

2007), 259–272.

https://doi.org/10.1145/1272998.127302

3

0.07s
5000+

tx/s
72.8% Kernel 0%

https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 203 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

direct kernel integration provides throughput advantages over application-layer solutions though it cannot match the

raw speed of non-cryptographic logging systems like KLogger.

The key differentiator of our approach is the combination of kernel-level integration with blockchain's cryptographic

integrity guarantees. This unique position in the design space enables our system to achieve performance

characteristics previously considered mutually exclusive:

• The speed and efficiency benefits of kernel-level operation

• The tamper detection and auditability benefits of blockchain technology

• The regulatory compliance capabilities of purpose-built auditing systems

V. LIMITATIONS AND FUTURE WORK

While our kernel-embedded blockchain architecture demonstrates significant advantages over existing solutions,

several limitations and areas for future work remain:

Consensus Latency

The primary performance limitation of our system is consensus latency which accounts for approximately 67% of

total transaction latency. Future work should explore optimized consensus mechanisms specifically designed for the

kernel environment, potentially including:

• Hierarchical consensus with tiered validation

• Parallel validation of independent decision categories

• Predictive validation based on decision patterns

• Specialized hardware acceleration for cryptographic operations

Cross-Kernel Compatibility

The current implementation is specific to the Linux kernel architecture. Adapting the system to work across diverse

kernel implementations (Windows, macOS, embedded OS) presents significant challenges but would greatly expand

the applicability of the approach.

Energy Efficiency

Blockchain consensus mechanisms traditionally consume significant computational resources. While our hybrid

Proof-of-Stake approach is more efficient than Proof-of-Work systems, further research is needed to minimize

energy consumption, particularly for battery-powered and embedded systems.

Regulatory Evolution

As regulatory frameworks for AI accountability continue to evolve, the system will require adaptation to meet new

compliance requirements. Future work should establish formal methods for verifying compliance with emerging

standards and automating regulatory reporting.

Integration with Trusted Execution Environments

Combining our kernel-embedded blockchain with Trusted Execution Environments (TEEs) like Intel SGX or ARM

TrustZone could further enhance security guarantees. Research into this integration would address potential

vulnerabilities in the current approach.

VI. CONCLUSION

This paper introduced a novel kernel-embedded blockchain architecture for transparent AI decision auditing. By

integrating blockchain functionality directly into the operating system kernel, our approach achieves significant

improvements in transaction latency, storage efficiency and audit readiness compared to existing solutions. The

empirical evaluation demonstrated 100% tamper detection accuracy across 1,000 attack scenarios with a median

transaction latency of 57 seconds-80% faster than application-layer alternatives. The system's 95% storage efficiency

and ability to process over 10,000 daily AI decisions make it practical for enterprise deployment, while its

comprehensive audit capabilities reduce verification time from 120+ hours to real-time.

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 204 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By addressing the critical gaps identified in our literature review, this architecture establishes a foundational model

for trustworthy AI-integrated operating systems. It enables regulatory compliance without sacrificing performance

and provides robust mechanisms for bias detection and mitigation. Future research directions include optimizing

consensus latency to achieve sub-10-second finality, expanding cross-kernel compatibility and enhancing energy

efficiency for resource-constrained environments. As AI becomes increasingly embedded in operating systems,

transparent and auditable decision-making will only grow in importance-making architectures like the one presented

here essential for responsible AI deployment.

REFERENCES:

[1]. Kong, X., & Kong, X. (2022, October). Design of Embedded Trust Root Based on Dual-Kernel Architecture.

In Proceedings of the 6th International Conference on Computer Science and Application Engineering (pp.

1-6).

[2]. Shang, W., Li, H., Ni, X., Chen, T., & Liu, T. (2025). BlockGuard: Advancing digital copyright integrity with

blockchain technique. Computers and Electrical Engineering, 122, 109897.

[3]. Kokina, J., Blanchette, S., Davenport, T. H., & Pachamanova, D. (2025). Challenges and opportunities for

artificial intelligence in auditing: Evidence from the field. International Journal of Accounting Information

Systems, 56, 100734.

[4]. Li, Y., & Goel, S. (2025). Artificial intelligence auditability and auditor readiness for auditing artificial

intelligence systems. International Journal of Accounting Information Systems, 56, 100739.

[5]. Zhang, K., Wang, X., Qiu, L., Guo, J., & Yi, B. (2025). JCDC: A blockchain-based framework for secure data

storage and circulation in JointCloud. Future Generation Computer Systems, 162, 107486.

[6]. Waltersdorfer, L., & Sabou, M. (2025). Leveraging Knowledge Graphs for AI System Auditing and

Transparency. Journal of Web Semantics, 84, 100849.

[7]. Barbadekar, A., Bannore, P., Badhe, T., & Bari, N. (2025). Comparative study on wireless sensor network

operating systems. In Hybrid and Advanced Technologies (pp. 485-491). CRC Press.

[8]. Deepa, R., Subasree, S., Sakthivel, N. K., & Tyagi, A. K. (2025). Blockchain-based packet parser architecture

for securing cyber-infrastructure and internet of things networks with auto-metric graph neural

network. International Journal of Mobile Communications, 25(2), 153-175.

[9]. Zhang, L. (2025). Power Transaction Settlement Model Based on Blockchain in the Intelligent Internet of

Things. International Journal of High Speed Electronics and Systems, 2540470.

[10]. Deniz Appelbaum, Robert A. Nehmer; Auditing Cloud-Based Blockchain Accounting Systems. Journal of

Information Systems 1 June 2020; 34 (2): 5–21. https://doi.org/10.2308/isys-52660

[11]. Dautenhahn, N., Kasampalis, T., Dietz, W., Criswell, J., & Adve, V. (2015, March). Nested kernel: An operating

system architecture for intra-kernel privilege separation. In Proceedings of the Twentieth International

Conference on Architectural Support for Programming Languages and Operating Systems (pp. 191-206).

[12]. Gien, M. (1990). Micro-kernel architecture key to modern operating systems design. Unix review, 8(11), 58-

60.

[13]. Baumann, A., Barham, P., Dagand, P. E., Harris, T., Isaacs, R., Peter, S., ... & Singhania, A. (2009, October).

The multikernel: a new OS architecture for scalable multicore systems. In Proceedings of the ACM SIGOPS

22nd symposium on Operating systems principles (pp. 29-44).

[14]. Kerrouche, A., Frikha, T., Chaabane, F., Aouint, N., Cheikhrouhou, O., & Ben Amor, N. (2021). Implementation

of blockchain consensus algorithm on embedded architecture. Security and Communication Networks, 2021,

Article 9918697. https://doi.org/10.1155/2021/9918697

[15]. Yang, Z., Shi, Y., Zhou, Y., Wang, Z., & Yang, K. (2022). Trustworthy federated learning via blockchain. arXiv

preprint arXiv:2209.04418. https://arxiv.org/abs/2209.04418

[16]. Salimitari, M., Joneidi, M., & Chatterjee, M. (2019). AI-enabled blockchain: An outlier-aware consensus

protocol for blockchain-based IoT networks. arXiv preprint arXiv:1906.08177.

https://arxiv.org/abs/1906.08177

[17]. Ahmad, A., Saad, M., & Mohaisen, A. (2019). Secure and transparent audit logs with BlockAudit. arXiv

preprint arXiv:1907.10484. https://arxiv.org/abs/1907.10484

https://doi.org/10.2308/isys-52660
https://doi.org/10.1155/2021/9918697
https://arxiv.org/abs/2209.04418
https://arxiv.org/abs/1906.08177
https://arxiv.org/abs/1907.10484

Journal of Information Systems Engineering and Management
2025, 10(47s)

e-ISSN: 2468-4376

https://www.jisem-journal.com/ Research Article

 205 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

[18]. Kerrouche, A., Frikha, T., Chaabane, F., Aouint, N., Cheikhrouhou, O., & Ben Amor, N. (2021). Implementation

of blockchain consensus algorithm on embedded architecture. Security and Communication Networks, 2021,

Article 9918697. https://doi.org/10.1155/2021/9918697

[19]. Asif, R., Hassan, S. R., & Parr, G. (2023). Integrating a blockchain-based governance framework for

responsible AI. Future Internet, 15(3), 97.

[20]. Bertino, E., Kundu, A., & Sura, Z. (2019). Data transparency with blockchain and AI ethics. Journal of Data

and Information Quality (JDIQ), 11(4), 1-8.

[21]. Akther, A., Arobee, A., Adnan, A. A., Auyon, O., Islam, A. S. M., & Akter, F. (2025). Blockchain As a Platform

For Artificial Intelligence (AI) Transparency. arXiv preprint arXiv:2503.08699.

[22]. Jan, S., Musa, S., Ali, T., Nauman, M., Anwar, S., Ali Tanveer, T., & Shah, B. (2021). Integrity verification and

behavioral classification of a large dataset applications pertaining smart OS via blockchain and generative

models. Expert Systems, 38(4), e12611.

[23]. Pasdar, A., Lee, Y. C., & Dong, Z. (2023). Connect API with blockchain: A survey on blockchain oracle

implementation. ACM Computing Surveys, 55(10), 1-39.

[24]. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C., Christidis, K., De Caro, A., ... & Yellick, J. (2018, April).

Hyperledger fabric: a distributed operating system for permissioned blockchains. In Proceedings of the

thirteenth EuroSys conference (pp. 1-15).

[25]. Khan, A. R. A., Khan, M. I., Arif, A., Anjum, N., & Arif, H. (2025). Intelligent Defense: Redefining OS Security

with AI. International Journal of Innovative Research in Computer Science and Technology, 13(1), 85-90.

[26]. Grigorescu, S., & Zaha, M. (2025). CyberCortex. AI: An AI‐based operating system for autonomous robotics

and complex automation. Journal of Field Robotics, 42(2), 474-492.

[27]. Feng, F. Y., Smith, M. R., Saad, F., Mobadersany, P., Tian, S. K., Yip, S. S., ... & Small, E. J. (2025). Digital

Pathology–Based Multimodal Artificial Intelligence Scores and Outcomes in a Randomized Phase III Trial in

Men With Nonmetastatic Castration-Resistant Prostate Cancer. JCO Precision Oncology, 9, e2400653.

[28]. Abdullah, H. A., Hanif, M. U., Hassan, M. U., Shahid, J. M., Khan, S. A., & Ali, A. (2025). Improved damage

assessment of bridges using advanced signal processing techniques of CEEMDAN-EWT and Kernal

PCA. Engineering Structures, 329, 119774.

[29]. Kumar, U. (2025). A Non-invasive Approach for the Classification of the Coronavirus Disease from CT Scan

Images Using Machine Learning in Combination with Hybrid Texture Features. New Generation

Computing, 43(2), 7.

[30]. Kumar, A. (2025). A Decade of Research Establishment on Shallow Foundation and Piles Settlement

Modelling: Artificial Intelligence Models Applications. Knowledge-Based Engineering and Sciences, 6(1), 64-

84.

[31]. Koçak, B., Ponsiglione, A., Stanzione, A., Bluethgen, C., Santinha, J., Ugga, L., ... & Cuocolo, R. (2025). Bias in

artificial intelligence for medical imaging: fundamentals, detection, avoidance, mitigation, challenges, ethics

and prospects. Diagnostic and interventional radiology, 31(2), 75.

[32]. Ramesh, P. N. (2025). Ethical considerations of AI and ml in insurance risk management: addressing bias and

ensuring fairness.

[33]. Tariq, M. U. (2025). Navigating Bias and Fairness in Digital AI Systems. In Ethical Dimensions of AI

Development (pp. 127-156). IGI Global.

[34]. Bálint, K. (2025). Blockchain and Smart Contract Creation for Efficient and Secure Data Storage of Consumer

Habits and Logistics Data. Procedia Computer Science, 253, 49-58.

[35]. Nizam, M. H. Z. H., Nizam, M. A. A., Jummadi, M. H. H., Mohd, N. N. M. S. N., & Zainuddin, A. A. (2025).

Hyperledger Fabric blockchain for securing the edge Internet of Things: A review. Journal of Informatics and

Web Engineering, 4(1), 81-98.

https://doi.org/10.1155/2021/9918697

