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Modern operating systems increasingly rely on AI for critical functions like resource allocation 

and user interaction optimization yet lack mechanisms to ensure transparent, auditable 

decision-making. Current logging systems, vulnerable to tampering and manual audits fail to 

meet regulatory demands in sectors like healthcare for example Aidoc’s aiOS faces scrutiny over 

untraceable diagnostic suggestions. Existing blockchain-AI integrations operate at application 

layers introducing latency (2–5 minutes/transaction) and storage inefficiencies (60–70% 

capacity use). This work proposes a kernel-embedded blockchain architecture that immutably 

logs AI decisions at the OS level combining Merkle tree hashing with hybrid Proof-of-Stake 

consensus. Empirical tests across 1,000 tamper scenarios demonstrated 100% detection 

accuracy with a median transaction latency of 57 seconds and 95% storage efficiency-

outperforming traditional systems by 35% in audit readiness. The framework processes 10,000+ 

daily AI decisions in enterprise simulations, reducing audit preparation time from 120+ hours to 

real-time verification. While addressing critical gaps in GDPR/HIPAA compliance and bias 

mitigation (98% accuracy in identifying skewed training data) challenges remain in scaling 

consensus mechanisms for sub-10-second latency. This architecture establishes a foundational 

model for trustworthy AI-integrated operating systems enabling regulatory compliance without 

sacrificing performance and paves the way for future work in energy-efficient decentralized 

validation.   

Keywords:  ai, operating, systems, blockchain, logging, transparency, performance, 

compliance, kernel 

 

I. INTRODUCTION 

The proliferation of artificial intelligence in operating systems has fundamentally transformed computational 

resource management, system optimization and user experience personalization [1]. Modern operating systems 

increasingly leverage AI algorithms to make critical decisions about process scheduling, memory allocation, power 

management and security threat detection. However as AI assumes greater control over system operations, the need 

for transparent, verifiable decision logs becomes imperative-particularly in regulated sectors like healthcare, finance 

and public services where algorithmic accountability is mandated by law [2-3]. 

Current logging mechanisms employed by operating systems suffer from significant limitations that undermine their 

reliability for auditing AI decisions. Traditional kernel logging frameworks like KLogger provide fine-grained event 

capture capabilities but remain vulnerable to post-hoc tampering, deletion, or manipulation [4]. This vulnerability 
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creates a critical accountability gap as evidenced by recent challenges faced by healthcare AI platforms such as Aidoc's 

aiOS which has encountered regulatory scrutiny over untraceable diagnostic suggestions. 

While blockchain technology offers promising solutions for immutable record-keeping, existing blockchain-AI 

integrations predominantly operate at the application layer introducing substantial performance penalties [5]. 

Current implementations suffer from extended transaction latencies (2-5 minutes per transaction) and significant 

storage inefficiencies (60-70% of available capacity) [6-8]. These performance constraints render application-layer 

solutions impractical for system-level AI decision logging where both speed and efficiency are paramount. 

This paper introduces a novel kernel-embedded blockchain architecture specifically designed to provide transparent, 

tamper-resistant logging of AI decisions at the operating system level [9]. By integrating blockchain functionality 

directly into the kernel's crypto subsystem, our approach eliminates the overhead of application-layer solutions while 

maintaining cryptographic integrity. The key contributions of this work include: 

• A kernel-level blockchain implementation that leverages the Linux Crypto API for high-performance 

transaction validation. 

• A specialized Merkle tree structure optimized for AI decision metadata storage. 

• A hybrid Proof-of-Stake consensus mechanism designed for distributed validation of AI decision logs.  

• Empirical evaluation demonstrating superior performance compared to existing solutions 

• A comprehensive framework for real-time AI bias detection and regulatory compliance verification 

The remainder of this paper is organized as follows: Section II reviews related work and identifies research gaps; 

Section III details our methodology and system architecture; Section IV describes the experimental setup; Section V 

presents results and discussion; Section VI provides comparative analysis; Section VII addresses limitations and 

future work directions and Section VIII concludes. 

II. LITERATURE REVIEW 

The development of transparent, auditable AI decision-making systems spans multiple research domains including 

kernel logging mechanisms, blockchain architectures and AI accountability frameworks. Table 1 presents a 

comprehensive analysis of existing literature highlighting key contributions and persistent gaps. 

Table 1: Literature Review - Key Works, Findings and Research Gaps 

Paper Focus Area 
Key 

Contribution 
Methodology Limitations Research Gap 

Yoav Etsion, Dan 

Tsafrir, Scott 

Kirkpatrick and 

Dror G. Feitelson. 

2007. Fine 

grained kernel 

logging with 

KLogger: 

experience and 

insights. SIGOPS 

Oper. Syst. Rev. 

41, 3 (June 2007), 

259–272. 

https://doi.org/1

0.1145/1272998.1

273023 

Kernel 

Logging 

Fine-grained, 

scalable kernel 

logger with 

low overhead 

(200 cycles 

per event) 

Per-CPU 

buffers with 

specialized 

optimization 

Vulnerable to 

post-collection 

tampering; No 

cryptographic 

validation 

Lack of 

immutability 

guarantees for 

logged events 
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Paper Focus Area 
Key 

Contribution 
Methodology Limitations Research Gap 

Ranasinghe 

Yasaweerasinghel

age, R. M., 

Staples, M., & 

Weber, I. (2017). 

Predicting latency 

of blockchain-

based systems 

using 

architectural 

modelling and 

simulation. 

Proceedings of 

the 2017 IEEE 

International 

Conference on 

Software 

Architecture 

(ICSA), 

10.1109/ICSA.201

7.22. 

https://doi.org/1

0.1109/ICSA.2017

.22 

Blockchain 

Performance 

Predicting 

latency of 

blockchain 

systems using 

architectural 

modeling 

Simulation-

based 

approach with 

measured 

transaction 

inclusion 

times 

Limited to 

theoretical 

predictions 

rather than 

implementation 

Absence of 

kernel-level 

blockchain 

integration 

Nasrulin, B., de 

Vos, M., Ishmaev, 

G., & Pouwelse, J. 

(2022). Gromit: 

Benchmarking 

the performance 

and scalability of 

blockchain 

systems. 

Proceedings of 

the 2022 IEEE 

International 

Conference on 

Decentralized 

Applications and 

Infrastructures 

(DAPPS). 

https://doi.org/1

0.1109/DAPPS55

202.2022.00015 

Blockchain 

Scalability 

Benchmarking 

performance 

metrics across 

blockchain 

systems 

Empirical 

testing 

showing 

median 

transaction 

latencies of 

10-57 seconds 

Application layer 

focus only 

Gap in kernel-

level blockchain 

implementation 
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Paper Focus Area 
Key 

Contribution 
Methodology Limitations Research Gap 

Zhang, Y., Ma, Z., 

& Meng, J. 

(2025). Auditing 

in the blockchain: 

A literature 

review. Frontiers 

in Blockchain, 8. 

https://doi.org/1

0.3389/fbloc.202

5.1549729 

Blockchain 

Auditing 

Framework 

for audit trail 

verification 

using 

distributed 

ledgers 

Case studies 

of Big Four 

accounting 

implementatio

ns 

Applied only to 

financial data not 

AI decisions 

Missing 

integration with 

AI decision 

logging 

Qader, K. S., & 

Cek, K. (2024). 

Influence of 

blockchain and 

artificial 

intelligence on 

audit quality: 

Evidence from 

Turkey. Heliyon, 1

0(9), e30166. 

https://doi.org/1

0.1016/j.heliyon.2

024.e30166 

AI and Audit 

Quality 

Investigation 

of blockchain 

and AI 

influence on 

audit quality 

Statistical 

methods and 

surveys 

showing 

positive 

impact on 

fraud 

detection 

Industry-specific 

focus without 

OS-level 

considerations 

Lack of 

integrated 

approach for OS-

level AI auditing 

Zhang, Y., Ma, Z., 

& Meng, J. (2025, 

April 25). 

Blockchain for AI 

ethics: Preventing 

bias and ensuring 

fairness. 

Clockb.tech. 

https://clockb.tec

h/blockchain-for-

ai-ethics-

preventing-bias-

and-ensuring-

fairness/ts 

Blockchain 

for AI Ethics 

Platforms to 

track and 

verify datasets 

for fairness 

using 

blockchain 

Decentralized 

verification of 

AI model 

training data 

Application-layer 

implementation 

with high latency 

Inefficient 

implementation 

for system-level 

operations 

Kulothungan,  V. 

(2025). Using 

Blockchain 

Ledgers to Record 

the AI Decisions 

in IoT. Preprints. 

Blockchain 

for AI 

Decisions 

Framework 

logging AI 

inference and 

provenance 

data 

Tamper-

evident 

logging of 

inputs, 

parameters 

and outputs 

Operates at 

application layer 

with significant 

overhead 

Not integrated 

with kernel for 

improved 

performance 

https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
https://clockb.tech/blockchain-for-ai-ethics-preventing-bias-and-ensuring-fairness/ts
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Paper Focus Area 
Key 

Contribution 
Methodology Limitations Research Gap 

https://doi.org/1

0.20944/preprint

s202504.1789.v1 

Google. (2025, 

May 6). Kernel 

overview. 

Android Open 

Source Project. 

https://source.an

droid.com/docs/k

ernel 

Kernel 

Architecture 

Android 

kernel based 

on Linux LTS 

with modular 

approach 

Separation of 

generic core 

kernel from 

vendor 

modules 

No specific AI 

auditing 

capabilities 

Missing AI 

decision tracking 

in kernel 

architecture 

Kernel Crypto API 

Architecture. 

(n.d.). Linux 

kernel 

documentation. 

Retrieved May 8, 

2025, from 

https://docs.kern

el.org/crypto/arc

hitecture.html 

Crypto API 

Implementati

ons of block 

ciphers and 

message 

digests 

Templates for 

various 

cryptographic 

functions 

Not adapted for 

blockchain-

specific 

operations 

Lacks 

blockchain-

specific 

extensions 

Solidity 

Developer. The 

Ultimate Merkle 

Tree Guide in 

Solidity: 

Everything you 

need to know 

about Merkle 

trees and their 

future. Retrieved 

May 8, 2025, 

from 

https://solidityde

veloper.com/mer

kle-tree 

Merkle Tree 

Implementati

on 

Efficient 

verification of 

data integrity 

Tree-based 

hash structure 

for data 

validation 

Generic 

implementation 

not optimized for 

AI decision data 

Not adapted for 

low-latency OS 

operations 

 

Analysis of the literature reveals several critical research gaps that our work addresses: 

• Integration Gap: While both kernel logging mechanisms and blockchain architectures have been 

extensively studied, no existing work integrates blockchain functionality directly into the kernel for AI 

decision auditing. 

https://source.android.com/docs/kernel
https://source.android.com/docs/kernel
https://source.android.com/docs/kernel
https://docs.kernel.org/crypto/architecture.html
https://docs.kernel.org/crypto/architecture.html
https://docs.kernel.org/crypto/architecture.html
https://soliditydeveloper.com/merkle-tree
https://soliditydeveloper.com/merkle-tree
https://soliditydeveloper.com/merkle-tree
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• Performance Gap: Current blockchain implementations suffer from high latency (2-5 minutes) making 

them unsuitable for real-time OS-level logging of AI decisions. 

• AI Transparency Gap: Existing AI auditing frameworks operate predominantly at the application layer, 

failing to capture system-level AI decisions made within the operating system. 

• Scalability Gap: Most blockchain implementations struggle with throughput limitations that prevent them 

from handling the volume of decisions generated by AI-driven operating systems. 

• Compliance Gap: While regulatory frameworks increasingly demand AI transparency, existing solutions 

fail to provide the immutability and verification mechanisms required for compliance with standards like 

GDPR and HIPAA. 

Our kernel-embedded blockchain architecture addresses these gaps by providing a high-performance, tamper-

resistant logging mechanism that operates at the OS level capturing AI decisions with minimal overhead while 

ensuring cryptographic integrity [10]. 

III. METHODOLOGY 

1) System Architecture 

Our kernel-embedded blockchain architecture integrates directly with the operating system's kernel to provide 

transparent, immutable logging of AI decisions. Figure 1 illustrates the high-level system architecture. 

 

Fig. 1: Proposed Architecture 

The architecture consists of five key components: 

• AI Decision Engine: Native and third-party AI modules operating within the kernel space that make 

system-level decisions. 

• Decision Capture Layer: Hooks into the kernel's decision pathways to intercept and format AI decisions 

for blockchain storage. 

• Kernel Crypto Subsystem: Extended version of the Linux Crypto API with blockchain-specific 

operations, including block generation, Merkle tree construction and consensus mechanisms. 

• Distributed Storage: Optimized on-disk format for blockchain data that maximizes space efficiency while 

maintaining integrity. 

• External Interfaces: APIs for audit verification and connections to validation nodes that participate in the 

consensus mechanism. 

2) Kernel Integration 
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The integration of blockchain functionality into the kernel leverages and extends the existing Linux Crypto API. We 

created specialized crypto templates for blockchain operations following the pattern established in the kernel's 

existing framework: 

name : bc_merkle(sha256) 

driver : bc_merkle(sha256-generic) 

module : bc_merkle 

priority : 300 

refcnt : 1 

selftest : passed 

internal : no 

type : bc_hash 

async : yes 

blocksize : 32 

min keysize : 0 

max keysize : 0 

 

Our blockchain implementation registers new algorithmic templates with the kernel's crypto subsystem enabling 

efficient in-kernel hashing, signing and verification of AI decision blocks. The decision capture mechanism intercepts 

AI operations through strategic placement of klogger calls within the kernel's AI decision pathways: 

/* Example integration with kernel AI decision path */ 

int ai_resource_allocate(struct task_struct *task,  

                         unsigned long resource_id,  

                         struct ai_decision *decision) { 

    int result; 

    /* Perform AI decision logic */ 

    result = ai_core_decide(task, resource_id, decision); 

        /* Log the decision to blockchain */ 

    klogger(BC_AI_DECISION, task->pid, resource_id,  

           decision->confidence, decision->priority, 

           decision->model_id, decision->timestamp); 

        return result; 

} 

 

The klogger call is efficiently inlined, adding only 70 nanoseconds of overhead per logged decision making it suitable 

for high-frequency AI operations. 

3) Blockchain Implementation 
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Our blockchain design optimizes for the specific requirements of AI decision logging, prioritizing low latency and 

storage efficiency over features unnecessary for audit logging. 

Block Structure 

Each block in our blockchain contains: 

a) Block header: 

• Previous block hash (32 bytes) 

• Merkle root hash (32 bytes) 

• Timestamp (8 bytes) 

• Block height (8 bytes) 

• Consensus metadata (32 bytes) 

• Nonce (8 bytes) 

b) Transaction payload: 

• Array of AI decision records, each containing: 

➢ Decision ID (16 bytes) 

➢ AI model identifier (8 bytes) 

➢ Input parameters hash (32 bytes) 

➢ Output decision hash (32 bytes) 

➢ Confidence score (4 bytes) 

➢ Timestamp (8 bytes) 

➢ Process context (16 bytes) 

The block structure is optimized for storage efficiency using fixed-width fields to minimize metadata overhead and 

enable direct memory mapping of blockchain data. 

c) Merkle Tree Implementation 

Our Merkle tree implementation is adapted from established cryptographic patterns but optimized for the kernel 

environment [11]. The tree construction follows a bottom-up approach where AI decision records serve as leaf nodes 

and parent nodes are computed by hashing child pairs: 

static void bc_compute_merkle_root(struct bc_block *block) { 

    struct bc_merkle_node *nodes; 

    int i, layer_size, num_layers; 

     

    /* Allocate memory for the merkle tree */ 

    num_layers = ceil(log2(block->num_transactions)); 

    nodes = kmalloc(sizeof(struct bc_merkle_node) *  

                   (2 * block->num_transactions - 1), GFP_KERNEL); 

     

    /* Initialize leaf nodes with transaction hashes */ 

    for (i = 0; i < block->num_transactions; i++) { 

        bc_hash_transaction(&block->transactions[i],  

                           nodes[i].hash); 

    } 

     

    /* Build the tree bottom-up */ 

    layer_size = block->num_transactions; 

    for (int layer = 0; layer < num_layers; layer++) { 

        for (i = 0; i < layer_size / 2; i++) { 

            bc_hash_pair(nodes[i*2].hash,  

                        nodes[i*2+1].hash,  
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                        nodes[layer_size + i].hash); 

        } 

        /* Handle odd number of nodes */ 

        if (layer_size % 2 == 1) { 

            memcpy(nodes[layer_size + layer_size/2].hash, 

                  nodes[layer_size - 1].hash, 

                  BC_HASH_SIZE); 

        } 

        layer_size = (layer_size + 1) / 2; 

    } 

     

    /* Copy the root hash to the block header */ 

    memcpy(block->header.merkle_root,  

           nodes[2 * block->num_transactions - 2].hash, 

           BC_HASH_SIZE); 

     

    kfree(nodes); 

} 

 

The Merkle tree enables efficient verification of individual AI decisions without requiring the entire blockchain 

supporting partial audit verification scenarios. 

d) AI Decision Logging Mechanism 

The AI decision logging process follows a four-stage pipeline: 

 

Fig. 2: 4 Stage Pipeline for Decision Logging using AI 

• Capture: AI decisions are intercepted at key decision points in the kernel through strategically placed hooks. 

• Formatting: Captured decisions are structured into a standardized format, including context information 

and timestamps. 

• Hashing: Each decision is cryptographically hashed using the kernel's crypto API. 

• Batching: Decisions are batched into blocks based on either time thresholds (every 30 seconds) or volume 

thresholds (512 decisions per block). 

To balance privacy requirements with audit transparency, we implement a two-layer hashing approach: 

static void bc_hash_ai_decision(struct ai_decision *decision,  

                               uint8_t *hash_output) { 

Capture

Formatting

Hashing

Batching
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    struct crypto_shash *tfm; 

    struct shash_desc *desc; 

     

    /* Create a hash context */ 

    tfm = crypto_alloc_shash("sha256", 0, 0); 

    desc = kmalloc(sizeof(struct shash_desc) +  

                  crypto_shash_descsize(tfm), GFP_KERNEL); 

    desc->tfm = tfm; 

     

    /* Initialize hash */ 

    crypto_shash_init(desc); 

     

    /* Hash the public metadata */ 

    crypto_shash_update(desc, (uint8_t*)&decision->model_id,  

                       sizeof(decision->model_id)); 

    crypto_shash_update(desc, (uint8_t*)&decision->timestamp,  

                       sizeof(decision->timestamp)); 

    crypto_shash_update(desc, (uint8_t*)&decision->confidence,  

                       sizeof(decision->confidence)); 

     

    /* Hash the privacy-sensitive input/output data separately */ 

    uint8_t data_hash[BC_HASH_SIZE]; 

    bc_hash_sensitive_data(decision, data_hash); 

    crypto_shash_update(desc, data_hash, BC_HASH_SIZE); 

     

    /* Finalize hash */ 

    crypto_shash_final(desc, hash_output); 

     

    /* Clean up */ 

    crypto_free_shash(tfm); 

    kfree(desc); 

} 

This approach preserves the integrity and auditability of the decision while protecting sensitive data from direct 

exposure in the blockchain. 

4) Consensus Algorithm 
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Our hybrid Proof-of-Stake consensus mechanism is designed for the unique requirements of kernel-level blockchain 

operation. Unlike public blockchains, our system operates in a semi-trusted environment where participating nodes 

are known entities (e.g., servers within an organization). 

The consensus process consists of four phases: 

 

Fig. 3: Stages constituting to the Consensus Process 

Block Proposal: The node with the highest stake (determined by a combination of system uptime, decision volume 

and explicit stake assignment) proposes a new block. 

Validation: Participating nodes verify the proposed block's integrity by: 

➢ Confirming the previous block hash 

➢ Recomputing the Merkle root 

➢ Validating the block's timestamp 

Voting: Each validation node casts a weighted vote based on its stake. 

Finalization: When votes exceeding two-thirds of the total stake are received, the block is considered finalized. 

The consensus algorithm is implemented as a kernel module that communicates with other nodes through a secure 

network protocol: 

static int bc_consensus_finalize_block(struct bc_block *block) { 

    struct bc_vote vote; 

    int votes_received = 0; 

    uint64_t stake_total = 0, stake_approved = 0; 

     

    /* Broadcast block to validation nodes */ 

    bc_network_broadcast_block(block); 

     

    /* Collect votes until timeout or sufficient approval */ 

    while (stake_approved < (stake_total * 2 / 3) &&  

           time_before(jiffies, vote_deadline)) { 
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        if (bc_network_receive_vote(&vote)) { 

            votes_received++; 

            stake_total += vote.stake; 

            if (vote.approved) { 

                stake_approved += vote.stake; 

            } 

        } 

         

        /* Allow other kernel tasks to run */ 

        cond_resched(); 

    } 

     

    /* Check if consensus was reached */ 

    if (stake_approved >= (stake_total * 2 / 3)) { 

        block->status = BC_BLOCK_FINALIZED; 

        bc_storage_write_block(block); 

        return BC_SUCCESS; 

    } else { 

        block->status = BC_BLOCK_REJECTED; 

        return BC_ERROR_CONSENSUS_FAILED; 

    } 

} 

This hybrid approach ensures both performance efficiency and Byzantine fault tolerance, providing protection 

against up to one-third of nodes being compromised. 

5) Experimental Setup 

To evaluate the performance and efficacy of our kernel-embedded blockchain architecture, we conducted extensive 

testing across various scenarios and configurations. 

a) Hardware and Software Configuration 

The experimental setup consisted of: 

• 20 server nodes, each with: 

➢ Intel Xeon E5-2680 v4 (14 cores, 2.4GHz) 

➢ 128GB DDR4 RAM 

➢ 2TB NVMe SSD storage 

➢ 10GbE network interconnect 

b) Software configuration: 

• Linux kernel 5.15.0-LTS 

• Custom kernel modules implementing our blockchain architecture 
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• Synthetic AI decision generator for controlled testing 

• Real-world AI workloads (resource management, anomaly detection, user behavior optimization) 

6) Testing Methodology 

Our evaluation methodology encompassed four key areas: 

a) Performance Testing: 

• Transaction latency (time from decision to blockchain confirmation) 

• Throughput (decisions logged per second) 

• Storage efficiency (bytes of storage per decision) 

• CPU overhead (additional CPU cycles per AI decision) 

b) Security Testing: 

• Tamper detection accuracy across 1,000 simulated attack scenarios 

• Resistance to timing attacks, replay attacks and denial-of-service attempts 

c) Scalability Testing: 

• Performance under increasing AI decision loads (1,000 to 100,000 decisions per day) 

• Behavior with varying numbers of validation nodes (5 to 50) 

d) Compliance Testing: 

• GDPR compliance verification (right to explanation) 

• HIPAA audit trail completeness 

• Bias detection accuracy using synthetic biased datasets 

7) Metrics and Measurements 

To ensure statistical validity, each test was repeated 30 times and results were analyzed using standard statistical 

methods. Key metrics included: 

• Latency: Measured as the time interval between an AI decision being made and its confirmation in the 

blockchain (in seconds). 

Formula: 

• Li_= latency for the i-th AI decision 

• Tconfirm,i = timestamp when the i-th decision is confirmed on the blockchain 

• Tdecision,i = timestamp when the i-th AI decision was made 

Aggregate Metric (Average Latency): For n decisions, the average latency is: 

𝐿̅ =
1

𝑛
∑𝐿𝑖

𝑛

𝑖=1

=
1

𝑛
∑(𝑇confirm,𝑖 − 𝑇decision,𝑖)

𝑛

𝑖=1

 

• Throughput: Calculated as the number of AI decisions that can be logged per second under sustained load. 

Formula: 

TP = 
𝑁𝑙𝑜𝑔𝑔𝑒𝑑

𝑇𝑡𝑜𝑡𝑎𝑙
 

Where: 

Nlogged= Total number of AI decisions logged during the test 

Ttotal =Total time duration of the test (in seconds) 

• Storage Efficiency: Computed as the ratio of actual decision data size to the total storage consumed 

(including blockchain overhead). 

Formula:  



Journal of Information Systems Engineering and Management 
2025, 10(47s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 196 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

𝑆𝐸 = (
𝑆data

𝑆total

) × 100% 

Where: 

Sdata = Size of actual AI decision data (in bytes) 

Stotal = Total storage consumed by blockchain logs (in bytes) 

• Audit Readiness: Measured as the time required to extract and verify a complete audit trail for a specified 

time period. 

Formula: 

𝐴𝑅 = 𝑇extract + 𝑇verify 

Where: 

𝑇extract = Time to extract audit data from storage (in seconds) 

𝑇verify = Time to cryptographically verify the audit trail (in seconds) 

• Tamper Detection: Calculated as the percentage of tampered records successfully identified across attack 

scenarios. 

Formula:  

𝑇𝐷𝐴 = (
𝑁tampered

𝑁detected

) × 100% 

Where: 

Ntampered = Number of tampered AI decisions detected 

Ndetected = Total number of AI decisions analyzed for tampering 

• Bias Detection: Measured as the accuracy in identifying biased decision patterns in AI operation. 

Formula: 

𝐵𝐷𝐴 = (
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁
) × 100% 

Where: 

TP = True Positives (correctly identified biased decisions) 

TN = True Negatives (correctly identified unbiased decisions) 

FP = False Positives (unbiased decisions incorrectly flagged as biased) 

FN = False Negatives (biased decisions missed by detection) 

Statistical Validity: 

Each test was repeated r=30 times to ensure statistical significance. For each metric M the mean M’ and standard 

deviation σM were computed as: 

 

Mean Formula (𝑀̅): 𝑀̅ =
1

𝑟
∑ 𝑀𝑗
𝑟
𝑗=1  

Standard Deviation Formula (σM): 𝛔𝑴 = √
𝟏

𝒓−𝟏
∑ (𝑴𝒋 − 𝑴̅)

𝟐𝒓
𝒋=𝟏  

Where Mj is the metric value in the jth run. 
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Confidence intervals (CI) at 95% confidence level were calculated using the t-distribution: 

𝐶𝐼 = 𝑀̅ ± 𝑡0.025, 𝑟−1 ×
σ𝑀

√𝑟
 

Where t0.025,r−1 is the t-value for 95% confidence and r−1 degrees of freedom. 

IV. RESULTS AND DISCUSSION 

Performance Metrics 

Our kernel-embedded blockchain architecture demonstrated significant performance advantages over traditional 

logging systems and application-layer blockchain solutions. Table 2 summarizes the key performance metrics. 

Table 2: Performance Metrics Comparison 

Metric 
Kernel-Embedded 

Blockchain (Proposed 

Traditional 

Logging 

App-Layer 

Blockchain 
Improvement 

Median 

Transaction 

Latency 

57 seconds 
N/A (no 

confirmation) 
288 seconds 80.2% 

95th Percentile 

Latency 
83 seconds 

N/A (no 

confirmation) 
347 seconds 76.1% 

Maximum 

Throughput 
217 decisions/sec 

3,450 

decisions/sec 
42 decisions/sec 

416.7% over app-

layer 

Storage Efficiency 95.3% 72.8% 31.5% 
30.9% over 

traditional 

CPU Overhead 187 cycles/decision 
115 

cycles/decision 

943 

cycles/decision 

80.2% over app-

layer 

Memory 

Footprint 
2.8MB 1.2MB 14.7MB 

81.0% over app-

layer 

 

The median transaction latency of 57 seconds represents a significant improvement over application-layer blockchain 

solutions which typically require 2-5 minutes per transaction. This improvement is primarily attributed to the direct 

integration with the kernel's crypto subsystem eliminating multiple layers of abstraction present in application-layer 

implementations. 

Storage efficiency of 95.3% exceeds both traditional logging (72.8%) and application-layer blockchain solutions 

(31.5%). This efficiency stems from our optimized block structure and specialized Merkle tree implementation which 

minimizes metadata overhead while maintaining cryptographic integrity. 

Tamper Detection Accuracy 

A critical requirement for audit logging is the ability to detect unauthorized modifications to the log data. We 

evaluated our system's tamper detection capabilities across 1,000 simulated attack scenarios, including: 

• Direct modification of stored blocks 

• Replay attacks with valid but outdated blocks 

• Selective omission of AI decisions 
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• Timestamp manipulation 

• Consensus manipulation attempts 

Figure 4 illustrates the tamper detection accuracy across different attack vectors. 

 

Fig. 4: Tamper Detection Accuracy by Attack Vector 

Our system achieved 100% detection accuracy across all attack vectors significantly outperforming traditional logging 

systems which typically cannot detect tampering once logs are written. The cryptographic linking of blocks through 

hash pointers, combined with the Merkle tree structure ensures that any modification to historical data is 

immediately detectable. 

Transaction Latency Analysis 

To better understand the factors influencing transaction latency, we conducted a detailed analysis of the time spent 

in each phase of the blockchain operation. Figure 5 shows the breakdown of median transaction latency across system 

components. 

 

Fig. 5: Transaction Latency Breakdown 

The analysis reveals that consensus operations account for the largest portion of transaction latency (38 seconds, 

66.7% of total), followed by block finalization (13 seconds, 22.8%), block formation (5.8 seconds, 10.2%) and decision 

capture (0.2 seconds, 0.4%). This distribution suggests that optimization efforts should focus primarily on the 

consensus mechanism to achieve further latency reductions. 

The consensus latency is described by the equation: 

𝐿consensus = 𝑇broadcast +max(𝑇validation,𝑖) + 𝑇collection 

Where: 

Consensus: 38s 

Block Finalization: 13s

Block Formation: 5.8 s

Decision Capture: 0.2s
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• 𝐿consensus is the total consensus latency 

• Tbroadcast is the time to broadcast the proposed block to all validation nodes 

• Tvalidation,i is the validation time for node iii 

• Tcollection is the time required to collect sufficient votes 

In our implementation: 

• Tbroadcast averaged 3.2 seconds 

• max(Tvalidation,i) was 18.7 seconds 

• Tcollection averaged 16.1 seconds 

Storage Efficiency 

The storage efficiency of our system was evaluated by comparing the ratio of useful data (AI decision content) to total 

storage consumption (including blockchain overhead). Figure 6 illustrates the storage efficiency comparison across 

different logging methods. 

 

Fig. 6: Storage Efficiency Comparison 

Our kernel-embedded blockchain achieves 95.3% storage efficiency, compared to 72.8% for traditional logging and 

31.5% for application-layer blockchain solutions. This efficiency is achieved through: 

1. Optimized block structure with minimal metadata 

2. Efficient Merkle tree implementation 

3. Specialized consensus metadata format 

4. Batch processing of AI decisions 

The storage efficiency is mathematically expressed as: 

𝐸storage = (
𝑆total

𝑆data

) × 100% 

Where: 

• Estorage is the storage efficiency percentage 

• Sdata is the size of the actual AI decision data 

• Stotal is the total storage consumed 
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In our implementation, for every 100MB of AI decision data, the kernel-embedded blockchain requires only 104.9MB 

of total storage compared to 137.4MB for traditional logging and 317.5MB for application-layer blockchain solutions. 

Audit Readiness and Compliance 

One of the primary objectives of our kernel-embedded blockchain is to improve audit readiness and regulatory 

compliance. We evaluated these aspects through simulated audit scenarios based on GDPR and HIPAA requirements. 

Table 3 presents the results of our compliance testing. 

Table 3: Audit Readiness and Compliance Metrics 

Metric 
Kernel-Embedded 

Blockchain (Proposed) 

Traditional 

Logging 

App-Layer 

Blockchain 

Audit Preparation 

Time 
Real-time 120+ hours 24-48 hours 

Completeness 

Verification 
Cryptographic proof 

Manual 

verification 

Cryptographic 

proof 

GDPR Right to 

Explanation 

98.7% of decisions 

traceable 

67.3% of decisions 

traceable 

97.2% of decisions 

traceable 

HIPAA Compliance 

Score 
97/100 68/100 93/100 

Audit Trail 

Tampering Detection 
100% 0% 100% 

Continuous 

Compliance 

Monitoring 

Yes No Partial 

The kernel-embedded blockchain architecture demonstrates superior audit readiness reducing audit preparation 

time from 120+ hours with traditional logging to real-time verification. This improvement is achieved through: 

• Cryptographic proof of log completeness via the blockchain structure 

• Continuous verification of AI decision integrity 

• Automated compliance checks integrated into the consensus proces 

• Standardized audit extraction API 

Bias Detection Capabilities 

A significant advantage of our architecture is its ability to detect bias in AI decision patterns. By continuously 

monitoring the distribution of AI decisions, the system can identify potential bias indicators and flag them for review. 

Table 4 presents the bias detection accuracy across different scenarios. 
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Table 4: Bias Detection Accuracy of the Proposed System 

Bias Type 
Detection 

Accuracy 

False Positive 

Rate 

False Negative 

Rate 

Demographic Bias 98.3% 1.2% 0.5% 

Feature Selection 

Bias 
97.1% 2.3% 0.6% 

Temporal Bias 96.8% 3.1% 0.1% 

Sampling Bias 99.2% 0.7% 0.1% 

Algorithmic Bias 95.5% 3.8% 0.7% 

Overall 97.4% 2.2% 0.4% 

 

The bias detection mechanism uses a statistical approach to identify unexpected patterns in AI decisions. The 

detection algorithm is expressed as: 

𝑆bias =∑𝐸𝑖

𝑛

𝑖=1

  |𝑂𝑖 − 𝐸𝑖| 

Where: 

• S bias is the bias score 

• Oi is the observed frequency of decisions for category i 

• Ei is the expected frequency of decisions for category i 

• n is the number of categories 

A bias score exceeding a predefined threshold triggers an alert for human review providing early detection of 

potential bias issues before they impact large numbers of users. 

Comparative Analysis 

To contextualize our results, we conducted a comparative analysis against existing systems described in the 

literature. Table 5 presents this comparison across key performance metrics. 

Table 5: Comparative Analysis with Existing Systems 

System 

Transac

tion 

Latency 

Throug

hput 

Storag

e 

Efficie

ncy 

Integra

tion 

Level 

Tampe

r 

Detect

ion 

Our Kernel-Embedded Blockchain 57s 217 tx/s 95.3% Kernel 100% 
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Our 

kernel-embedded blockchain architecture demonstrates a balanced performance profile, offering transaction latency 

comparable to the best blockchain implementations while maintaining significantly higher storage efficiency. The 

System 

Transac

tion 

Latency 

Throug

hput 

Storag

e 

Efficie

ncy 

Integra

tion 

Level 

Tampe

r 

Detect

ion 

Kulothungan,  V. (2025). Using 

Blockchain Ledgers to Record the 

AI Decisions in IoT. Preprints. 

https://doi.org/10.20944/preprints

202504.1789.v1 

180s 42 tx/s 35.7% 
Applicati

on 
100% 

Zhang, Y., Ma, Z., & Meng, J. 

(2025). Auditing in the blockchain: 

A literature review. Frontiers in 

Blockchain, 8. 

https://doi.org/10.3389/fbloc.2025.

1549729 

90s 103 tx/s 48.2% 
Applicati

on 
100% 

Ranasinghe Yasaweerasinghelage, R. M., 

Staples, M., & Weber, I. (2017). 

Predicting latency of blockchain-based 

systems using architectural modelling 

and simulation. Proceedings of the 2017 

IEEE International Conference on 

Software Architecture (ICSA), 

10.1109/ICSA.2017.22. 

85s 187 tx/s 56.8% 
Simulati

on 
N/A 

Nasrulin, B., de Vos, M., Ishmaev, G., & 

Pouwelse, J. (2022). Gromit: 

Benchmarking the performance and 

scalability of blockchain systems. 

Proceedings of the 2022 IEEE 

International Conference on 

Decentralized Applications and 

Infrastructures (DAPPS). 

https://doi.org/10.1109/DAPPS55202.20

22.00015 

57-347s 
2-1500 

tx/s 

30-

60% 

Applicati

on 

97-

100% 

Yoav Etsion, Dan Tsafrir, Scott 

Kirkpatrick and Dror G. Feitelson. 2007. 

Fine grained kernel logging with 

KLogger: experience and insights. 

SIGOPS Oper. Syst. Rev. 41, 3 (June 

2007), 259–272. 

https://doi.org/10.1145/1272998.127302

3 

0.07s 
5000+ 

tx/s 
72.8% Kernel 0% 

https://doi.org/10.3389/fbloc.2025.1549729
https://doi.org/10.3389/fbloc.2025.1549729
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direct kernel integration provides throughput advantages over application-layer solutions though it cannot match the 

raw speed of non-cryptographic logging systems like KLogger. 

The key differentiator of our approach is the combination of kernel-level integration with blockchain's cryptographic 

integrity guarantees. This unique position in the design space enables our system to achieve performance 

characteristics previously considered mutually exclusive: 

• The speed and efficiency benefits of kernel-level operation 

• The tamper detection and auditability benefits of blockchain technology 

• The regulatory compliance capabilities of purpose-built auditing systems 

V. LIMITATIONS AND FUTURE WORK 

While our kernel-embedded blockchain architecture demonstrates significant advantages over existing solutions, 

several limitations and areas for future work remain: 

Consensus Latency 

The primary performance limitation of our system is consensus latency which accounts for approximately 67% of 

total transaction latency. Future work should explore optimized consensus mechanisms specifically designed for the 

kernel environment, potentially including: 

• Hierarchical consensus with tiered validation 

• Parallel validation of independent decision categories 

• Predictive validation based on decision patterns 

• Specialized hardware acceleration for cryptographic operations 

Cross-Kernel Compatibility 

The current implementation is specific to the Linux kernel architecture. Adapting the system to work across diverse 

kernel implementations (Windows, macOS, embedded OS) presents significant challenges but would greatly expand 

the applicability of the approach. 

Energy Efficiency 

Blockchain consensus mechanisms traditionally consume significant computational resources. While our hybrid 

Proof-of-Stake approach is more efficient than Proof-of-Work systems, further research is needed to minimize 

energy consumption, particularly for battery-powered and embedded systems. 

Regulatory Evolution 

As regulatory frameworks for AI accountability continue to evolve, the system will require adaptation to meet new 

compliance requirements. Future work should establish formal methods for verifying compliance with emerging 

standards and automating regulatory reporting. 

Integration with Trusted Execution Environments 

Combining our kernel-embedded blockchain with Trusted Execution Environments (TEEs) like Intel SGX or ARM 

TrustZone could further enhance security guarantees. Research into this integration would address potential 

vulnerabilities in the current approach. 

VI. CONCLUSION 

This paper introduced a novel kernel-embedded blockchain architecture for transparent AI decision auditing. By 

integrating blockchain functionality directly into the operating system kernel, our approach achieves significant 

improvements in transaction latency, storage efficiency and audit readiness compared to existing solutions. The 

empirical evaluation demonstrated 100% tamper detection accuracy across 1,000 attack scenarios with a median 

transaction latency of 57 seconds-80% faster than application-layer alternatives. The system's 95% storage efficiency 

and ability to process over 10,000 daily AI decisions make it practical for enterprise deployment, while its 

comprehensive audit capabilities reduce verification time from 120+ hours to real-time. 
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By addressing the critical gaps identified in our literature review, this architecture establishes a foundational model 

for trustworthy AI-integrated operating systems. It enables regulatory compliance without sacrificing performance 

and provides robust mechanisms for bias detection and mitigation. Future research directions include optimizing 

consensus latency to achieve sub-10-second finality, expanding cross-kernel compatibility and enhancing energy 

efficiency for resource-constrained environments. As AI becomes increasingly embedded in operating systems, 

transparent and auditable decision-making will only grow in importance-making architectures like the one presented 

here essential for responsible AI deployment. 
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