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Industrial manufacturing uses a variety of Key Performance Indicators (KPIs) to measure and 

manage the quality of their products. These indicators evaluate different aspects and help to 

identify losses related to quality issues, and thus to pinpoint areas for improvement. For 

instance, Overall Equipment Effectiveness (OEE) and first pass yield are widely used metrics in 

industry, they determine the ability of a process to produce good products by measuring the 

proportion of detected defects. With the growing utilization of machine learning in defect 

detection, additional indicators have emerged, this time connected to the behaviour of the used 

algorithms. Among these, Recall plays an operational role, it indicates how effectively defective 

units were identified and removed from the production flow. With a low Recall, there is a risk 

that some defective items go unnoticed, which leads to various losses because those units 

continue to consume time and resources. This case referred to as late defect detection; because, 

instead of being detected early, defective units go down the production system and are discovered 

later at stages where the lost is significantly higher. Hence, in this work, we point out the 

importance to consider the impact of late defect detection on multi-stage production system by 

investigating how variations in Recall shape process performances. We introduce two key 

performance indicators, the first one helps to quantify value-added time wasted due to late defect 

detection, while the second one allows to determine the impact of this loss on each production 

process. We have implemented a simulation using Arena software and we have declared our 

proposed metrics via Record module. The results showed that the impact of late defect detection 

on processes varies depending on whether a process have a reserve capacity or not. 

Keywords: Defect detection, Process Performance Machine learning, OEE, Recall, First pass 

yield, Lean management, Arena simulation. 

 

INTRODUCTION 

Quality control is a paramount concern for industries; it helps to ensure that products meet customer expectations 

and specified standards. Recently, particular focus was directed toward the use of machine learning techniques to 

enhance the efficiency of defect detection (Chaabi & Hamlich, 2022). (Ma et al., 2023) Proposed an end-to-end defect 

detection network to inspect quality of metallic surfaces, while  (Kim et al., 2021) explored the use of deep learning 

model for Printed Circuit Board (PBC) defect detection, they evaluate also the impact of data quality and image 

contamination on results. (Zeng et al., 2022) examined tiny defect of PBC through the application of ATROUS spatial 

pyramid pooling-balanced-feature pyramid network (ABFPN). The challenge of collecting enough data to train 

machine learning models has led some researchers to explore one-class classification (Czimmermann et al., 2020), 

the key tenet of this approach is elaborating models that are trained basically on defect free class (Chaabi et al., 2023). 

To improve industrial decision-making, recent works have proposed automated algorithm selection frameworks 

using meta-modeling and data characterization (Garouani et al., 2023), as well as reinforcement learning-based 

coordination strategies tailored for dynamic and uncertain environments (Hamed & Hamlich, 2021, 2024) . These 

advances support the development of smarter inspection and control systems that adapt to production variability 

and enhance fault detection in real time. Moreover, anomaly detection techniques in multi-robot systems have proven 
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beneficial for industrial monitoring and predictive maintenance, contributing to robust production quality (Khatib 

et al., 2024).  

Regardless of various methodologies or fields of application, all these research works have the same purpose to 

elaborate an efficient quality inspection system that detects all defected units (Ren et al., 2021), which can prevent 

the spread of this items throughout production system. This early defect inspection guarantee that detection is made 

at the nearest point to the source of defect (Hauck et al., 2022). This takes us to JIDOKA (M. Soliman, 2016), this 

Lean pillar aim extends beyond quality inspection, striving to built-in quality and prevent defective items from being 

created, by first, ensuring that the machine can detect irregularities and once an anomaly is identified, the production 

stops immediately (M. H. A. Soliman, 2020). Human also holds an important position among the key elements in 

JIDOKA framework (Escott, 2024). (Sordan & Chiabert, 2025) examined the evolutionary pathway that has led to 

JIDOKA 4.0; advanced technologies of Industry 4.0 such as Internet of things and machine learning, have shaped 

JIDOKA into a more automated and data driven model; JIDOKA 4.0 could anticipate potential issues thereby 

enhancing the principal of built-in quality.  (Crespo Montoya et al., 2023) proposed a JIDOKA implementation, they 

monitor process variations that can lead to defects. While built-in quality or robust quality inspection methods are 

essential for identifying defective units, it is equally important to evaluate the impact of these defects on performance 

of production processes. Over time, multiples Key performance indicators (KPIs) have been introduced in order to 

quantify losses associated to quality issues.  

 Total Productive Maintenance (TPM) approach has introduced a powerful key performance: overall equipment 

effectiveness (OEE); this metric measures the performance of production equipment based on three components: 

Availability(A), Performance(P) and Quality (Q)(Dobra & Jósvai, 2023). OEE metric is computed as:   

 𝑂𝐸𝐸 = 𝐴 × 𝑃 × 𝑄 (1) 

   

each component highlights a different type of productivity loss as it explained in Figure 1. 

 

Figure 1: Explanation of OEE components 

First pass yield is also a widely metric used to evaluate quality loss (Broz & Humphrey, 2021). It is similar to OEE 

quality component, it indicates quality parts that successfully pass through the manufacturing process without 

requiring any rework as a percentage of the total units that entered the process. 

The use of machine learning algorithms for automated defect detection have brought to the surface an important 

metric: the recall (Naidu et al., 2023). It is computed as: 

                                                 Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (2) 
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Where TP:  is the number of units correctly detected by the ML algorithm as defective. 

FN: is the number of units incorrectly detected by the ML algorithm as non-defective. 

 The Recall determines how many defects the inspection system can catch, therefore when defective items go 

unnoticed, they affect the performances of downstream processes. 

Although these indicators help to capture inefficiencies within the process and highlight waste related to quality 

problems, however they fall short of providing a clear picture of loss related to late defect detection. Thus, the intent 

of this work is to go beyond the value of recall itself and aim a better understanding of its impact on multi-stage 

production system. To do that, we propose two metrics that evaluate the impact of letting defective units pass through 

further steps of production process.  

This article consists of 4 sections. Section 1 provides an introduction and examines related works. Section 2 presents 

in details the proposed metrics. In Section 3, an implementation on Arena software is detailed. Section 3 covers also 

the results and discussion. Finally, conclusion regarding the results obtained and perspective of this work are 

presented in Section 4. 

METHODOLOGY 

The problem of late defect detection in multi-stage production system revolves around letting defective units move 

through the production process, which means that we continue to add value to a defective product.  

Figure 2 illustrates a multi-stage production system with several inspections points that based on machine learning 

algorithms. If one of the inspection points operates with low recall, which means that it fails to accurately detect all 

defective units, those units will proceed further along the production line, resulting in a various loss. Hence, this work 

stems from the need of a clear indicator that measure the impact of the late defect detection on production process. 

 

Figure 2: multi-stage production system with several inspection points 

We seek answers to the following questions: if a defective unit is not detected early, near the process where the defect 

occurred, how much value-added time was wasted? and to what extent does this affect the production system? 

In order to address this issue, we need to take a step further than OEE and first pass yield. Since it is not enough just 

to determine the defective unit, we must analyze its root cause. To this aim, a root cause analysis process should be 

established using tools such as current reality tree (da Costa et al., 2019) and fishbone diagram (Durroh et al., 2023). 

VALUE ADDED TIME LOSS 

The value-added time is the time devoted to production steps that add value to the final product based on customer’s 

perspective; therefore, it is a crucial factor in Lean approach (Palange & Dhatrak, 2021). 

We consider a multi-stage production system consisting of n processes, and each process is followed by an inspection 

point before proceeding to the next production step. The key performance indicator proposed in equation helps to 

pinpoint the value-added time loss (V.A.T Loss) due to late defect detection:  

 

V. A. T Loss =  ∑ ∑ 𝐷𝑗𝑖 ( ∑ 𝑡𝑘

𝑖

𝑘=𝑗+1

)

𝑖

𝑗=1

𝑛

𝑖=2

 

 

(3) 



Journal of Information Systems Engineering and Management 
2025, 10(47s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 270 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

 

 Where: Dji: if j ≠ і, Dji is the number of defected units detected at inspection point і limited to those that occurred at 

process ј,  

 Otherwise Dji=0. 

𝑡𝑘   is the value-added time of process k per unit. 

 IMPACT OF LATE DEFECT DETECTION ON EACH PROCESS 

The V.A.T loss indicator can’t capture the full scope of the impact of late defect detection on processes. For instance, 

this wasted time would have a severe impact on a bottleneck process. Owing to the fact that bottleneck operate at full 

capacity (Siregar, 2019). Moreover, each unit of time lost at this process constraint results in an equivalent loss for 

the entire system (Dawande et al., 2021).  

The reserve capacity refers to the unused portion of available capacity of a production process. The fact that 

bottleneck has no reserve capacity, makes the impact of wasted value-added time different for this process compared 

to other production stages. Whereas the same amount of V.A.T loss does not necessarily affect all process in the same 

manner. For a production process that lacks reserve capacity, any waste will directly lead to delays and extended lead 

times. This goes back to the fact that this process has no additional capacity that can be used to catch up on defective 

units, which at least prevents negative impact on logistic service rate. This rate refers to the percentage of customer 

orders delivered on time and in full (Bower, 2021). Thus, we propose to assess the extent of late defect detection on 

each production process by evaluating the impact on reserve capacity:  

 Impact on reserve capacity of process і = 𝑟𝑒𝑠𝑒𝑟𝑣𝑒 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 і −

 
𝐷𝑗𝑖  ×  𝑡𝑖

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 

 

 

(4) 

Where: 𝑡𝑖  is the value-added time of process і per unit. 

And reserve capacity of process is defined as: 

           Reserve capacity= 1 −
𝑏𝑢𝑠𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
         

 

(5) 

If the impact on reserve capacity of process і is >0; 

Then the process can at least catch up on the wasted product under normal operating conditions. 

Otherwise, the value-added time loss for process і can lead to delays and it will impact the flow of the entire system. 

QUALITY OF PROPOSED KEY PERFORMANCE INDICATORS 

To assess the relevance of the proposed metrics, we have considered the SMART criteria (Sagala, 2022). SMART 

refers to an acronym for specific, measurable, achievable, relevant and time-bound. It is a widely used framework to 

ensure that KPIs are well-defined and effective (Efkarpidis et al., 2022). 

Table 1 provides a summary of the conducted analysis based on SMART criteria. 

       Table 1: SMART analysis of proposed indicators. 

SMART                  

KPIs                 

V.A.T loss Impact on reserve capacity  

Specific It is focused on the impact of late 

defect detection on value-added 

time  

It targets a specific loss related 

to the capacity of a process.  

Measurable It can be quantified It can easily be tracked 
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Achievable Targets can be set based on factors 

such as the accuracy of the quality 

inspection system  

We can define targets based on 

historical data.  

Relevant It reflects the impact on an 

important Lean factor: Value-

added time 

It’s crucial since process 

capacity impact the production 

flow 

Time-bound It can be set in a clear time frame It can be tracked in a clear time 

frame  

 

SIMULATION AND RESULTS 

IMPLEMENTATION 

We used Arena, Siman based simulation software, to model a multi-stage production system. Figure 3 shows the 

structure of the system; it consists of 3 production process with an inspection process across the production flow. 

We used the bloc Create to define the inputs of the production system, and to model each production stage. Process 

module allows to declare resources and capacities. Block Decide was used to model the inspection points; we defined 

a variable to declare the quality rate, which is calculated as the ratio of good detected products over the total produced 

units. The use of variables enables us to later compare the initially declared quality rates and those obtained after 

analyzing the impact of late defect detection. 

 

Figure 3: the implemented system 

 Table 2 lists the data input entered in each Arena module.  
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            Table 2 Arena modules parameters 

Arena module Parameters  

Create Time between arrivals: 6.5 minutes 

Process 1 Delay type: Normal (3,1) (min) 

Quality rate 1 98% 

Process 2 Delay type: Normal (4,1) (min) 

Quality rate 2 98% 

Process 3 Delay type: Normal (7,2) (min) 

Quality rate 3 96% 

 

To count the number of good products and rejected ones, we used Record module, and to compute our proposed 

metrics, we defined the Key performance indicators through Record module, more precisely, trough the option 

‘Expression’. 

We consider, after defect root analysis, that 15 defects that were detected at third inspection point, were actually 

occurred in earlier production stages as depicted in Table 3.  

Table 3: defect root analysis 

Number 

of defects 

Detected at 

inspection  

point number 

Occurred in 

process 

number 

5 3 1 

10 3 2 

 

RESULTS AND DISCUSSION 

We ran the simulation for one working week, assuming 16 working hours per day, 5 days per week, and using 10 

replications. As shown in Table 4, the proposed metric V.A.T loss determine that 2.08 h was wasted on adding value 

to a defected product. The KPI of impact on reserve capacity shows that process 2 can make up for the defective units 

without causing any delays. In contrast, process 3 which is the bottleneck has lost due to late defect detection a 

capacity of production that is not recoverable under normal operating conditions. Furthermore, this analyze leads us 

to reconsider the effectiveness of the inspection systems used, and the impact of low recall on downstream processes. 

it can be a starting point to an improvement project of the ML based inspection system by analyzing why defects were 

not identified earlier.    

             Table 4: simulation results 

Name Average Of Replication 

Averages 

good products process1 705,8 

 Rejected products process 1 14,1 

good products process2 691 

 Rejected products process 2 14,9 

good products process3 641,9 

 Rejected products process 3 25,9 
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V.A.T. loss (h) 2,08 

reserve capacity process1(%) 0,5398 

reserve capacity process2(%) 0,3953 

reserve capacity process3(%) 0,00 

Impact of missed defect on 

reserve capacity process 2 (%) 

0.3911 

Impact of missed defect on 

reserve capacity process 3 (%) 

-1,87 

 

 To illustrate the importance of this analysis, we compared the initial quality rates to those that would have been 

obtained if defects were detected earlier to the nearest point where they have been occurred, so we can estimate the 

potential process improvement if the inspection system had operated with higher recall. 

 We used Arena tool Process Analyzer, and we varied the quality rate according to each scenario by the variable we 

had already identified in the block Decide. As shown in Figure 4, if defects were detected earlier, it would have 

prevented the decrease in the system output rate, since the bottleneck is controlling the output flow. 

 

                        Figure 4: Process Analyzer results 

CONCLUSION 

The current paper highlights that the indicator Recall of ML based inspection quality system is a key driver of process 

outcomes. We proposed practical key performance indicators to quantify the impact of late defect detection on multi-

stage production system. The suggested metrics evaluate the value-added time wasted and the impact on reserve 

capacity. The motivation behind this work is that the indicators evaluating quality related loss such as OEE or first 

pass yield can be misleading and do not truly reflect process performances if we only consider the number of defects 

detected, without analyzing the root cause of these defects and whether we have managed to detect them as early as 

possible. 

We simulated a multi-stage production system using Arena. We declared our proposed metrics in Record Block. The 

results showed the value-added time wasted, and that the impact of this loss on each process varies depending on the 

capability of a process to catch up the defects units under normal operating conditions.  

As a future work, we plan to conduct a detailed study on a multi-stage production system, by first evaluating the 

impact of late defect detection on production system using our proposed KPIS, then setting an objective to improve 

these metrics by analyzing the root cause of a low Recall.  
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