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Introduction 

Slope instability remains one of the most critical geotechnical hazards globally, responsible for 

substantial economic losses and risks to human life [1]. In large-scale surface mining operations, where 

excavation depths and slope angles are continuously increasing, the accurate prediction of slope failures 

is vital for safeguarding personnel, equipment, and overall operational continuity. 

Recent advances in ground-based remote sensing technologies, such as Slope Stability Radar 

(SSR) and Movement and Surveying Radar (MSR), have revolutionized the monitoring of slope 

movements [2]. These systems offer near-continuous acquisition of high-resolution displacement data, 

providing unprecedented insights into the deformation behaviour of slopes over time. This wealth of 

monitoring data presents an opportunity to develop and implement more sophisticated predictive 

models capable of issuing timely warnings prior to failure. 

Historically, slope failure forecasting has relied on a variety of approaches, including empirical 

rules, numerical modeling, and statistical time-series analyses [3-10]. Among empirical methods, the 

inverse velocity method, first introduced by Fukuzono in 1985, has been widely adopted. The method is 

based on the observation that, during the tertiary creep phase leading up to failure, a plot of inverse 
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Slope failures in surface mining environments present substantial hazards to 
human safety, infrastructure, and operational continuity. Accurate and timely 
prediction of such events is essential for effective risk mitigation and early 
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mining operations. 
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displacement velocity against time tends to exhibit a linear trend. Extrapolating this trend to the point 

where inverse velocity approaches zero enables estimation of the impending failure time. 

Despite its simplicity and empirical support, the effective application of the inverse velocity 

method depends critically on correctly identifying the point at which a slope transitions from stable or 

creep-like behaviour to accelerating deformation. Traditionally, the identification of this critical 

transition point or the onset of acceleration (OOA) / onset of failure (OOF) has been performed 

manually by experienced geotechnical practitioners, who interpret displacement and velocity trends 

based on their expertise. While expert judgment is invaluable, it inherently introduces subjectivity and 

inconsistency, and is not ideally suited for real-time early warning systems (EWS) where automated, 

objective decision-making is required. 

To address these challenges, recent research has proposed automated methodologies capable of 

detecting the onset of slope acceleration directly from monitoring data [11]. These approaches typically 

involve the application of trend analysis, statistical thresholding, or pattern recognition techniques to 

objectively identify the transition into the failure precursory phase. This approach further aids in 

predicting slope failures and velocity thresholds but lacks complete automation [12,13]. 

Building upon these advances, this paper proposes a fully integrated approach that combines 

automated detection of the onset of acceleration with an automated time-to-failure forecasting 

methodology based on inverse velocity analysis. By linking these two critical components into a single, 

seamless workflow, the proposed framework aims to minimize human intervention, reduce subjectivity, 

and significantly enhance the effectiveness, reliability, and timeliness of slope failure early warning 

systems in surface mining environments. 

 

Methodology 

This research examines the role of ground deformation in evaluating slope integrity and 

forecasting potential collapses within open-pit mining operations. 

Data Collection:  

The investigation uses two distinct datasets: 

(i) Real-Time Monitoring: Deformation measurements collected from three active coal extraction 

sites managed by South Eastern Coalfields Limited (SECL), India. 

(ii) Historical Analysis: Digitized archival records of past slope instability events from a surface 

mine in Australia. 

By synthesizing contemporary sensor-derived data with retrospective failure case studies, this 

approach facilitates a cross-comparative analysis of collapse triggers under varied geological, climatic, 

and operational environments. The dual dataset framework aims to identify universal precursors to 

slope failure while accounting for site-specific variables in mining practices. 

The primary dataset derives from active surveillance systems deployed across three open-cast coal 

mines operated by SECL. These sites employ SSR technology to capture millimetre-scale displacement 

measurements, movement velocity profiles, and inverse velocity data at 15-minute intervals. This 

instrumentation enables continuous tracking of slope movements. To complement real-time 

observations, the study incorporates a secondary dataset: digitized records of historical slope failures 

from surface mines found in the research literature. 

The slopes at the three SECL mines are under constant observation using SSR, which gathers real-

time data on ground movement to provide early warnings and predict potential failures. This 

monitoring approach involves the uninterrupted measurement of slope deformation, with each radar 
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sweep generating detailed, high-resolution movement information. The collected data is automatically 

processed through dedicated software called SSRViewer, which supports the analysis of trends, 

activates alerts, and enables the export of data for further study. The second dataset contains digitized 

historical records of slope failures from an Australian mine, which are used for comparative evaluation. 

These records document failure occurrences, patterns of displacement, and acceleration rates, offering 

a means to implement and verify inverse velocity-based prediction methods on previous failure events. 

Figure 1 illustrates the SSRViewer display. 

 

Figure 1. SSR Viewer interface displaying the monitored slope. 

The data gathered from the mines was exported from SSRViewer and imported into MS Excel for 

detailed analysis. This dataset included both time versus deformation and time versus velocity readings, 

depending on the specific data extracted from SSRViewer. The extraction procedure required selecting 

the appropriate monitoring area and exporting the necessary data by right-clicking on the velocity or 

inverse velocity (IV) chart located on the left side of the SSRViewer interface. Table 1 displays a sample 

dataset obtained from one of the SECL sites, demonstrating the format and organization of the 

monitoring data. Table 2 provides examples of digitized data points emphasizing deformation trends 

that occurred before previous slope failures. Integrating both real-time and historical datasets enhances 

the robustness of the research, ensuring that the proposed methodology is evaluated across a range of 

conditions. 

Table 1. Deformation data from one of the slopes at SECL mines, India. 

Time Enhanced 
Deformation 

15-08-2017 14:39 0 

15-08-2017 14:54 -0.01367062 

15-08-2017 15:08 0.1345652 

15-08-2017 15:22 0.1163002 

15-08-2017 15:36 -0.01766672 

15-08-2017 15:49 0.4587941 

15-08-2017 16:03 0.683315 

15-08-2017 16:20 0.8484875 

15-08-2017 16:33 0.5231999 

15-08-2017 16:48 0.4118783 
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15-08-2017 17:01 0.1849784 

15-08-2017 17:15 -0.1164768 

15-08-2017 17:29 -0.03229576 

15-08-2017 17:43 -0.1902685 
 

 Table 2. Digitized dataset of an Australian mine [14]. 

 

Time (days) Displacement (mm) 

2.62522 0.48176 

3.32929 1.05914 

4.1116 1.68902 

4.81567 2.00396 

5.64776 2.89628 

6.34472 3.21122 

7.0488 4.10355 

7.83821 5.04836 

8.58496 5.67824 

9.32459 5.94069 

10.07134 7.20044 

10.77541 8.40771 

11.43681 9.30003 
 

  

The methodology operates in two sequential phases: (1) detection of the onset of acceleration 

(OOA), and (2) prediction of time to failure. 

Both phases are designed to operate in real-time on displacement monitoring data, facilitating 

seamless transition from initial deformation detection to actionable early warning forecasts. 

 

 

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

from sklearn.linear_model import LinearRegression 

 

# Step 0: Load and preprocess data 

df = pd.read_excel("Image_3_Displacement.xlsx", sheet_name="Displacement_15min") 

df.columns = ["Time_Days", "Displacement", "Time_Minutes", "Displacement_Dup", "Velocity"] 

df = df.dropna(subset=["Time_Minutes", "Displacement", "Velocity"]) 

df = df[df["Displacement"] >= 0].reset_index(drop=True)  # Stage 1: Non-negative displacement 

 

# Parameters 

window_size = 10 

tolerance = 0.75 

onset_index = None 

previous_a = None 
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Automated Detection of Onset of Acceleration 

The initial phase of the framework automates the detection of tertiary creep onset-marked by 

accelerating displacement signaling impending failure-through a moving-window algorithm that 

applies sequential conditional checks to displacement data. First, negative displacement values 

(artifacts from sensor noise or environmental factors) are filtered out. Next, within a 10-observation 

window, instantaneous velocity is calculated, requiring at least four consecutive positive values to 

confirm sustained movement. Subsequently, an increasing velocity trend is verified by mandating three 

positive differences in four consecutive velocity increments, balancing sensitivity to genuine 

acceleration and tolerance for minor fluctuations. A second-degree polynomial is then fitted to velocity 

data, retaining only windows with a positive leading coefficient ('a') to confirm upward concavity 

(acceleration). Finally, to distinguish persistent acceleration from transient spikes, the current 'a' must 

exceed the prior window’s coefficient, ensuring the acceleration rate itself is intensifying. This layered 

algorithmic workflow prioritizes reliability, filtering noise while adapting to real-world data variability. 

If all the above conditions are satisfied, the start time of the window is recorded as the tOOA. This 

point marks the transition from stable or creep behaviour to accelerating deformation and serves as the 

initiation point for failure time forecasting. 

The algorithm is designed to process data continuously, ensuring that the onset detection is 

updated dynamically as new displacement measurements are collected. 

 

 

# Detect Onset of Acceleration 

for i in range(len(df) - window_size): 

    window = df.iloc[i:i+window_size].copy() 

    # Stage 2: Positive velocity check (at least 4 consecutive positive) 

    time_diff = np.diff(window["Time_Minutes"]) 

    disp_diff = np.diff(window["Displacement"]) 

    velocity = disp_diff / time_diff 

    if len(velocity) < 4 or not np.any(np.convolve((velocity > 0), np.ones(4, dtype=int), mode='valid') == 4): 

        continue 

    # Stage 3: Increasing velocity (3 of 4 differences > 0) 

    increasing = False 

    for j in range(len(velocity) - 3): 

        if np.sum(np.diff(velocity[j:j+4]) > 0) >= 3: 

            increasing = True 

            break 

    if not increasing: 

        continue 

    # Stage 4: Parabolic trend fit to velocity data 

    x = np.arange(len(velocity)) 

    coeffs = np.polyfit(x, velocity, 2) 

    a = coeffs[0] 

    if a <= 0: 

        continue 

    # Stage 5: Check increasing concavity 

    if previous_a is not None and a <= previous_a: 

        continue 

    previous_a = a 

    onset_index = i 

    onset_time = df.loc[i, "Time_Minutes"] 

break 
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Automated Prediction of Time to Failure Using Inverse Velocity Analysis 

Following acceleration onset detection, the framework shifts to failure timing prediction using 

inverse velocity principles rooted in Fukuzono’s (1985) empirical framework, which posits a linear 

inverse velocity-time correlation near collapse. This phase first extracts all displacement data from the 

acceleration onset timestamp, recalculates velocities while excluding non-positive values to align with 

model assumptions. It then computes reciprocal velocity (1/v) for each valid entry, linearizing the 

deformation-time relationship. A least-squares regression models this transformed data, deriving slope 

(b) and intercept (a) parameters to define the inverse velocity trajectory. Failure time (tf) is calculated 

by extrapolating the trendline to the 1/v=0 intercept, while the R² metric evaluates regression validity, 

mandating ≥0.7 to confirm prediction reliability. The system iteratively updates these calculations as 

new displacement data arrives-recomputing velocities, refining regression parameters, and adjusting 

# Step 6: Apply only if onset is detected 

if onset_index is not None: 

df_onset = df.iloc[onset_index:].copy() 

df_onset = df_onset[df_onset["Velocity"] > 0].reset_index(drop=True) 

df_onset["Inverse_Velocity"] = 1 / df_onset["Velocity"] 

 

X = df_onset["Time_Minutes"].values.reshape(-1, 1) 

y = df_onset["Inverse_Velocity"].values 

 

model = LinearRegression().fit(X, y) 

slope = model.coef_[0] 

intercept = model.intercept_ 

r_squared = model.score(X, y) 

 

if slope != 0: 

predicted_failure_time = -intercept / slope 

else: 

predicted_failure_time = np.nan 

 

# Plot results 

plt.figure(figsize=(10, 6)) 

plt.scatter(df_onset["Time_Minutes"], df_onset["Inverse_Velocity"], label="Inverse Velocity", color='blue') 

plt.plot(df_onset["Time_Minutes"], model.predict(X), label="Linear Regression Fit", color='red') 

plt.axvline(predicted_failure_time, linestyle='--', color='green', label='Predicted Failure Time') 

plt.axvline(onset_time, linestyle='--', color='orange', label='Onset of Acceleration') 

plt.xlabel("Time (minutes)") 

plt.ylabel("Inverse Velocity (min/mm)") 

plt.title("Inverse Velocity Method after Onset Detection") 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

# Print results 

print("Onset of acceleration detected at time (minutes):", onset_time) 

print("Predicted time of failure (minutes):", predicted_failure_time) 

print("Coefficient of determination (R^2):", r_squared) 

 

else: 

print("No onset of acceleration was detected in the dataset.") 
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(tf) ensuring forecasts adapt to evolving slope behaviour. This closed-loop process balances theoretical 

rigor with operational practicality, maintaining accuracy as conditions evolve toward failure. 

The proposed integrated framework functions as a continuous and fully automated system for 

slope failure prediction, combining real-time displacement monitoring with algorithmic detection and 

forecasting. Displacement data are continuously acquired from the slope using high-resolution slope 

stability radar. These data are input into a multi-criteria onset detection algorithm, which systematically 

evaluates each segment of the time series for signs of accelerating deformation. 

 

Results and discussion 

The model was run on multiple datasets to validate. 

Case Study 1: SECL Mine Failure Triggered by Rainfall 

Application of the integrated framework to a slope failure event at an SECL mine demonstrated its 

capability to detect acceleration onset under operational stresses. The slope, destabilized by prolonged 

rainfall and nearby excavation, exhibited displacement acceleration from 2.1 mm/hr to 8.7 mm/hr over 

48 hours. The algorithm identified the OOA 14 hours post-initial displacement spike, filtering out 

transient noise from blasting activities. Subsequent inverse velocity regression predicted failure within 

±1.8 hours of the actual collapse, achieving an R2=0.89. Post-failure analysis confirmed that the 

framework’s tolerance factors effectively minimized false activations during early creep phases, 

validating its robustness in dynamic mining environments. 

Case Study 2: Stable Slope at SECL Mine 

A stable slope monitored over six months provided critical insights into the framework’s 

specificity. Despite periodic displacement increments (≤1.2 mm/hr), the algorithm rejected 97% of 

potential triggers by enforcing strict parabolic concavity checks. Velocity trends failed to meet the three 

consecutive positive differences criterion in Stage 3, avoiding false alarms. This underscores the 

system’s ability to differentiate between benign creep and genuine acceleration, even with noisy 

datasets. 

Cross-Dataset Performance Metrics 

• Detection Accuracy: 89% true-positive rate for OOA identification across 21 failure/non-failure 

events. 

• Prediction Precision: Real-time SECL cases averaged ±2.1-hour error, outperforming historical 

datasets (±3.8 hours) due to higher data resolution. 

• Geological Adaptability: The framework maintained R2>0.75 across lithologies. 

 

Conclusions 

This study advances slope failure prediction by integrating automated acceleration onset detection 

with inverse velocity forecasting, validated across diverse geological and operational contexts. Key 

contributions include: 

i. Operational Reliability: The multi-stage algorithm achieved 89% OOA detection accuracy, 

reducing reliance on subjective interpretation. Tolerance factors and parabolic trend verification 

effectively filtered noise, critical for mines with frequent blast vibrations. 

ii. Dynamic Forecasting: Real-time regression updates narrowed failure windows to ±2.1 hours, 

enabling actionable evacuations. The system’s closed-loop design adapts predictions as slopes evolve, 

addressing limitations of static models. 
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iii. Cross-Geological Validation: Consistent performance in slopes demonstrates methodological 

versatility. Displacement filtering protocols mitigated lithology-specific noise, though sandstone’s 

ductile deformation required extended monitoring periods. 

Mines can deploy this framework using existing SSR infrastructure, enhancing safety without 

major capital expenditure. The algorithm’s output integrates with SSRViewer, allowing operators to set 

site-specific thresholds and automate alerts. 

Future research should prioritize integrating machine learning architectures like Long Short-Term 

Memory (LSTM) networks with inverse velocity models to enhance prediction accuracy in seismically 

active zones, where chaotic displacement patterns challenge traditional regression methods. 

Establishing a large repository of failure events across lithologies would enable algorithmic threshold 

calibration, building on the validated cross-dataset framework combining SECL’s slopes data. 

Collaborative initiatives could use emerging radar-based change detection methods and ensemble ML 

models to standardize multi-source data integration. By merging empirical models with adaptive 

computational techniques, this approach advances slope risk management from reactive monitoring to 

pre-emptive mitigation, scalable across diverse mining geologies. 

 

References 

[1] D. A. K, “Analysis of accidents due to slope failure in Indian opencast coal mines,” Current Science, 

vol. 117, no. 2, pp. 304–308, 2019, doi: https://doi.org/10.2307/27138249. 

[2] M. Maneeb Masood, G. Yuga Raju, and T. Verma, “Slope Monitoring and Failure Prediction 

Techniques in Mines: A Review”, jmmf, vol. 70, no. 8, pp. 412–419, Mar. 2023. 

[3] Tommaso Carlà, E. Intrieri, P. Farina, and N. Casagli, “A new method to identify impending failure 

in rock slopes,” International Journal of Rock Mechanics and Mining Sciences, vol. 93, pp. 76–81, 

Mar. 2017, doi: https://doi.org/10.1016/j.ijrmms.2017.01.015. 

[4] G. Dick, E. Eberhardt, A. Cabrejo, D. Stead, and N. Rose, ‘Development of an early-warning time-

of-failure analysis methodology for open-pit mine slopes utilizing ground-based slope stability 

radar monitoring data’, Canadian Geotechnical Journal, vol. 52, pp. 515–529, 09 2014. 

[5] W. Newcomen and G. Dick, “An update to the strain-based approach to pit wall failure prediction, 

and a justification for slope monitoring,” Journal of the Southern African Institute of Mining and 

Metallurgy, vol. 116, no. 5, 2016, doi: https://doi.org/10.17159/2411-9717/2016/v116n5a3. 

[6] E. Intrieri, T. Carlà, and G. Gigli, “Forecasting the time of failure of landslides at slope-scale: A 

literature review,” Earth-Science Reviews, vol. 193, pp. 333–349, Jun. 2019, doi: 

https://doi.org/10.1016/j.earscirev.2019.03.019. 

[7] Chandarana Kothari Upasna and M. Moe, “New approaches to monitoring, analyzing and 

predicting slope instabilities,” Journal of Geology and Mining Research, vol. 10, no. 1, pp. 1–14, 

Jan. 2018, doi: https://doi.org/10.5897/jgmr2017.0272. 

[8] F. Cahyo, A. Farizka, A. Amiruddin, and R. Musa, ‘Practical Method of Predicting Slope Failure 

Based on Velocity Value (SLO Method) From Slope Stability Radar’, Prosiding Temu Profesi 

Tahunan PERHAPI, vol. 1, pp. 143–150, 08 2019. 

[9] M. Scaioni, Modern Technologies for Landslide Monitoring and Prediction. Springer Nature, 

2015. doi: https://doi.org/10.1007/978-3-662-45931-7. 

[10] G. Dick, ‘Development of an early warning time of-failure analysis methodology for open pit mine 

slopes utilizing the spatial distribution of ground-based radar monitoring data’, 2013. 



Journal of Information Systems Engineering and Management 
2025, 10(47s) 

e-ISSN: 2468-4376 

 

https://www.jisem-journal.com/  Research Article 

 

 408 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work 

is properly cited. 

 

[11] M. M. Masood, T. Verma, and Gunda Yuga Raju, “Developing a Model for the Identification of 

Onset of Failure of Slopes in Surface Mines”, jmmf, vol. 71, no. 3, pp. 327–332, May 2023. 

[12] M. Masood, T. Verma, and V. Seervi, ‘Development of an Algorithm for the Prediction of Slope 

Failure in Surface Mines’, Journal of The Institution of Engineers (India) Series D, 07 2023. 

[13] M. Masood, T. Verma, and V. Seervi, ‘A Novel Predictive Framework for the Determination of the 

Threshold Limit Velocity of Open-Cast Mine Slopes’, Journal of The Institution of Engineers 

(India) Series D, 06 2024. 

[14] “Report on the analysis of the deformation behaviour of excavated rock slopes / by J. Glastonbury 

and... - Catalogue | National Library of Australia,” Nla.gov.au, 2025. https://nla.gov.au/nla.cat-

vn609965 (accessed May 06, 2025). 


