2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

LLMs in Personalized Education: Adaptive Learning Models

Arjun Sirangi CDP Architect

ARTICLE INFO

ABSTRACT

Received: 26 Dec 2024 Revised: 14 Feb 2025 Accepted: 22 Feb 2025 Personalised education systems that use Large Language Models (LLMs) are a game-changer in the field of contemporary pedagogy. Adaptive learning models that cater to the unique requirements of each student are made possible by LLMs thanks to their ability to comprehend spoken language, provide replies that seem human, and adjust to user inputs. In order to personalise instructional information and feedback in real-time, these models dynamically evaluate the learner's skill, style, and speed. This study delves into the design and execution of adaptive learning systems driven by LLM, showcasing its benefits in engaging students, enhancing retention, and tackling various learning obstacles. It goes on to talk about how using these models in schools might lead to biases, data privacy issues, and ethical dilemmas. The study highlights the potential of LLMs to democratise education and improve learning outcomes through scalable, personalised support across a broad range of courses and learner demographics. It does this through case examples and recent breakthroughs.

Keywords: LLMs, Education systems, democratise, students, AI, LLaMA.

1. Introduction

Thanks to the lightning-fast development of AI technology, the educational environment is seeing a sea change. The GPT series from OpenAI, PaLM from Google, and LLaMA from Meta are just a few examples of the Large Language Models (LLMs) leading the charge in this revolution. These models can interpret and generate human-like language with exceptional fluency and contextual awareness. These models have become effective resources for facilitating adaptive and personalised learning, which solves the age-old problem of adapting instruction to the specific requirements of each student. When it comes to teaching, traditional schools frequently use standardised curriculum, strict pace, and one-size-fits-all approaches that don't take into account individuals' unique strengths, interests, and learning styles. Contrarily, the goal of personalised education is to tailor the educational experience to each individual student by taking their prior knowledge, skills, interests, and needs into account. A subset of personalised education, adaptive learning takes things a step further by making dynamic adjustments to the learning route and material based on real-time data. A once-in-a-lifetime chance to make the dream of massively personalised education a reality is presented by the incorporation of LLMs into adaptive learning frameworks. LLMs are perfect for adaptive learning since they provide a number of unique characteristics. They can mimic interactive tutoring sessions, create personalised lesson plans, give immediate feedback that takes context into account, and answer complicated questions using normal language. These models can handle sentiment analysis, predictive analytics, and support for many languages, which makes them more useful in a variety of classroom settings. Supporting interdisciplinary learning and encouraging critical thinking, LLMs make use of large databases and pre-training on a variety of literature. The use of LLMs in the classroom brings up valid issues, notwithstanding their potential. Data privacy, algorithmic bias, content accuracy, and the danger of relying too heavily on automated systems are all issues that require careful management. Integrating LLMs into current educational systems also necessitates careful planning, strong support from educators, and ongoing assessment to guarantee fair results. In this study, we investigate how adaptive learning models can facilitate the efficient deployment of LLMs in individualised education. It highlights areas for future study while analysing present methodology, use cases, advantages, and disadvantages. Educators and technologists can make education more accessible, responsive, and effective for learners globally by utilising LLMs to revolutionise learning environments. Bloom, B. S. (2024).

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

Evolution of Learning

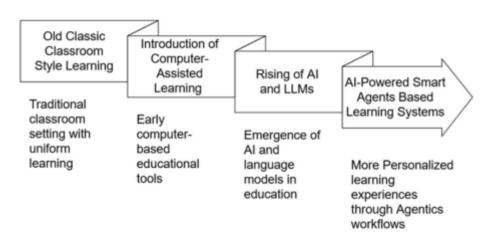


Fig. 1 Technological advancements in schooling over time

From 2020 to 2027, there will be a compound annual growth rate (CAGR) of 45.12%. Almost half of all learning management systems will have some kind of AI feature within the next three years, according to Insights GM (2021). The information given here shows a future when AI is an integral part of teaching methods, rather than just a helpful adjunct. This shift is being spearheaded by APALS, or Advanced Personalised Artificial Intelligence Learning Systems. Some examples of such systems include ITSs, ILPs, AGSs, and DCG tools, which stand for intelligent tutoring systems and individualised learning platforms, respectively. Envision a classroom where each student has their very own AI teacher who is available at all times, adapts to their unique needs, and guides them through each lesson at their own speed. This dream is not far-fetched; it is the stuff of science fiction. Examining the relative efficacy of traditional teaching methods and AI-driven, customisable learning systems—especially those driven by learning management systems—in enhancing students' knowledge acquisition is crucial for understanding this paradigm shift. With the advent of AI-based platforms that provide personalised instructional tactics, real-time feedback, adaptive learning pathways, and information retention, it is essential for the future of education to fully grasp their impact on these outcomes.

1.1 Problem Statement

In spite of the considerable breakthroughs that have been made in educational technology, the majority of learning environments continue to struggle to provide personalised and adaptive instruction that caters to the specific requirements of individual students. Traditional educational systems are frequently hampered by standardised curriculum, limited teacher-to-student ratios, and restrictive instructional approaches that fail to accommodate the different cognitive types, learning paces, and knowledge gaps of students. These limitations are generally responsible for the limitations that are imposed on these systems. In recent years, adaptive learning platforms have evolved; however, many of these platforms rely on predetermined decision trees or rule-based systems, which lack the flexibility and contextual awareness that are essential for sophisticated personalisation. The development of Large Language Models (LLMs) offers a potentially useful answer to this problem since it makes it possible to have educational interactions that are dynamic, scalable, and aware of their relevant environment. On the other hand, there is still a lack of research on how LLMs may be effectively integrated into personalised learning settings. Some of the most significant issues are ensuring that the information provided by AI is pedagogically sound, protecting the privacy of data, preventing algorithmic bias, and building systems that are able to adjust in real time to the progress and emotional condition of a student. In addition, there is a dearth of comprehensive frameworks and best practices for the deployment of adaptive systems driven by LLM in both formal and informal learning environments among educators and institutions. As a result, the primary issue that is being addressed by this study is the absence of a method that is robust, scalable, and morally sound for utilising LLMs for the purpose of

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

providing adaptive and personalised education. In order to increase student engagement, learning outcomes, and fair access to high-quality education, there is an urgent need to examine how learning management systems (LLMs) may be efficiently harnessed to construct intelligent learning systems Brusilovsky, P., & Millán, E. (2025).

1.2 Research Objectives

- 1. To examine the present shortcomings of both conventional and adaptive learning methods in meeting the individualised educational requirements of a wide range of student demographics.
- 2. To Examine how well Large Language Models (LLMs) can provide individualised teaching, feedback, and content creation in real-time learning environments.
- 3. To Create a conceptual framework for incorporating LLMs into learning management systems that can adjust to the unique needs, preferences, and cognitive styles of each learner.
- 4. To examine how well LLM-driven adaptive learning models work with traditional approaches to enhance student engagement, retention, and academic results.

2. Background

The abbreviation "LLM" means "large language model." In such case, how can we identify it? How do big models relate to fields as diverse as data science, artificial intelligence, and others? When it comes to massive models, which technologies are crucial? In terms of language production and comprehension, the LLM displays remarkable skills. The objective is to train on massive amounts of language data to understand and respond to human queries, produce coherent and accurate writing, and discover the statistical patterns and semantic links within the language. All rights reserved. (2019) Toutanova. Some features of LLMs are as follows:

- 1. Natural language generation: LLMs are capable of producing natural language writing that is of high quality and cohesive. Under the influence of input prompts or queries, they are able to comprehend the context and produce relevant replies, articles, tales, and other forms of content.
- 2. Semantic understanding: Understanding the semantic linkages that exist within human language, including vocabulary, grammar, and context, is within the capabilities of LLMs. They have the ability to decipher and comprehend intricate phrase constructions, as well as extract essential information and provide replies that are pertinent.
- 3. Context awareness: Both language interpretation and language production may be performed by LLMs according on the circumstances. They have the ability to comprehend the background of a conversation and come up with replies that are consistent and relevant to the prevailing circumstances.
- 4. Wide range of applications: A few examples of the many uses for language learning machines include intelligent writing, intelligent customer service, virtual assistants, and natural language processing. Helping in language development and providing context for a wide range of tasks and circumstances are two of their many abilities.
- 5. Continuous learning: With the help of training on fresh data, LLMs are able to continually learn and update themselves. Through the process of learning from new data, they are able to acquire new language knowledge and patterns, which ultimately improves their performance and capabilities.

2.1 LLMs for Education

Large models have tight connections to a variety of multidisciplinary topics, including artificial intelligence, data science, and others. Within the realm of artificial intelligence, extensive models constitute a significant area of study that is being pursued. By utilising deep learning and large-scale data training approaches, activities involving natural language processing and the emulation of human language abilities are achieved. Using massive models, researchers in the field of data science may do tasks such as text mining, sentiment analysis, machine translation, and extracting valuable information from text data. Furthermore, huge models necessitate the incorporation of several interdisciplinary fields, such as cognitive science, computer science, machine learning, and others. By doing research on intellect and language, they are the driving force behind the cross-pollination and growth that occurs

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

across these scientific fields. LLMs, such as GPT-3, have been increasingly popular in recent years, which has resulted in a significant amount of attention and controversy. LLMs are artificial intelligence systems that are built on deep learning and contain extensive capabilities in the areas of language creation and comprehension. Bialik, M., & Fadel, C. (2021). At the same time, the area of education is confronted with a multitude of obstacles and possibilities, including personalised learning, educational resource inequity, and the evaluation of instructional efficacy. As a consequence of this, the education industry has started investigating ways to incorporate LLMs into education in order to improve the quality of instruction and the efficiency of instruction. The relevance of the situation, as well as various current practical areas, are presented here, and they are illustrated in Figure 2:

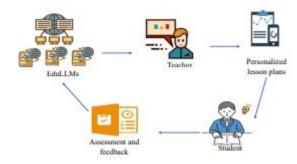


Fig. 2: Building blocks of LLMs for educational purposes (LLM4Edu).

- 1. Personalized learning: Students' learning requirements and interests may be taken into consideration while developing large models, which can then deliver personalised learning content and suggestions. Learning data and behavioural patterns of students may be analysed by big models, which then allow for the creation of individualised learning paths and resources for each student so facilitating the students' learning and growth in a more effective manner.
- 2. Instructional support tools: Assisting instructors by providing them with sophisticated instructional support tools and platforms, LLMs have the potential to function as assistants. Teachers are able to develop instructional activities, assess the progress of their students' learning, and give personalised teaching assistance by utilising the material and suggestions that are provided by learning management systems (LLMs).
- 3. Educational assessment and feedback: In order to give students with evaluation and feedback on their learning progress, LLMs are able to analyse the assignments, examinations, and other learning data that students have submitted. LLMs have the ability to assist instructors in gaining a more accurate knowledge of the learning successes and struggles of their students, as well as providing the appropriate advice and assistance. This is accomplished through the automatic generation of comments and recommendations.
- 4. Educational resource and content creation: One possible use of LLMs is in the creation and distribution of instructional materials and tools. Based on the instructors' educational goals and needs, they may create a range of products, including teaching materials, exercises, case studies, and more. This provides teachers with a wealth of resources and inspiration.

3. UNDERSTANDING LLMS

Although research into natural language processing began in the 1950s and made significant strides in the 1990s, the 2017 release of "Attention is all you need" provided a significant boost to the topic. This was the case despite the fact that the field of natural language processing had been around for quite some time. Specifically, the study that set the groundwork for big language models was written by F. Gouverneur in 2019. Sophisticated neural networks that have been trained on massive amounts of text data enable LLMs to understand and generate language that is comparable to humans. The first mentioned transformer architecture is utilised by these models. By focusing on several aspects of the input at once, this approach is able to evaluate text and capture complex relationships between words and ideas. The transformer architecture employs self-attention mechanisms to ascertain the

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

interrelationships of many words' relative importance. This concept breaks new ground by allowing the model to detect highly distant links in text, unlike any previous approach. Regardless, the word "large" is vague because it has been associated with the 110M parameter BERT model and the PaLM 2 model. It was said by Woolf, B. P. (2010) that Tomlinson, C. A. (2023) came into being. Modern LLMs often employ unsupervised learning techniques to train on massive text corpora, which results in billions of parameters, as it does not depend on labels. This is different from conventional LLMs, which often have as much as 340 billion characteristics. Throughout training, these models learn to guess the next token (word or subword) in a sequence based on the context of the one before it. A technique called autoregressive generation is used by LLMs for text creation. The idea behind this approach is to use the history of tokens to make predictions about future tokens. The year 2020, Vygotsky, L. S. The model constructs probability distributions throughout its lexicon for every region using sampling techniques that are evolving and updated often by researchers. Furthermore, it selects tokens using sampling procedures that are subject to change. Why LLMs might provide different answers to the same question and why their results are reasonable but not guaranteed correct is explained by the probabilistic character of text synthesis. This is because LLMs may employ probability to produce text. Actually, their responses are based more on patterns in the training data than on a deep understanding of the facts. Because of this, people may have hallucinations or write convincingly false material that is actually based on false information. Since it follows the correct generating procedure when designed, the LLM should not be penalised for producing plausible yet factual content. The user should be aware that LLMs might give convincing answers that aren't always confirmed when utilising these tools to get true results.

3.1 Adaptive Learning and Traditional AI Models

Learner analytics and performance data were utilised by early adaptive learning systems, such as Carnegie Learning's Cognitive Tutor or Knewton's platform, in order to make adjustments to the instructional routes (Pane et al., 2014). It was typically the case that these systems lacked semantic comprehension and contextual adaptability, despite the fact that they were effective in enhancing performance in some fields. According to the findings of research conducted by Koedinger and colleagues (2013), such models frequently rely significantly on organised datasets and established rules, which restricts their potential to scale and adapt to a variety of educational settings.

3.2 Large Language Models and Education

Large Language Models (LLMs), which include GPT (Radford et al., 2018), BERT (Devlin et al., 2019), and T5 (Raffel et al., 2020), are a significant advancement in natural language processing capabilities. Since these models have been pre-trained on enormous volumes of text, they are able to create replies that are coherent and cognisant of context, and they can adjust their output based on tiny linguistic signals. The use of LLMs in educational settings is now being investigated for a variety of applications, including automatic essay feedback, intelligent tutoring systems, personalised content development, and even conversational agents (Holmes et al., 2021).

It has been demonstrated via research that LLMs are capable of simulating interactions similar to those of a teacher by responding to enquiries, rephrasing difficult concepts, and offering quick explanation in a conversational way (Woolf, 2010). For instance, Khan Academy's recent implementation of GPT-4 as a tutor (also known as "Khanmigo") exemplifies the potential of LLMs to function as interactive and on-demand educational assistants. However, despite the fact that it has a great deal of promise, the implementation of LLMs in adaptive education calls for careful design in order to guarantee that learning objectives, student evaluation, and feedback systems continue to take into account pedagogical principles.

4. LLMs in Adaptive Learning Systems

Adaptive learning that is powered by LLMs provides a number of important advantages. The capacity to build personalised learning pathways based on performance trends, the ability to offer feedback in real time, and the ability to provide scaffolding that is suited to a student's zone of proximal growth are some of these capabilities

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

(Vygotsky, 2025). LLMs may be connected with learning management systems, as demonstrated by recent study conducted by Singh et al. (2023). This integration allows for the identification of learners who are having difficulty and the modification of instructional materials appropriately. In addition, the fact that LLMs are capable of speaking several languages makes them extremely useful instruments for inclusive education, particularly in environments that are fraught with linguistic diversity. Nevertheless, there are still substantial restrictions and difficulties to overcome. LLMs that generate plausible but factually erroneous information are referred to as "stochastic parroting," and Bender et al. (2021) warn of the problems associated with this phenomenon. Strict design and regulatory oversight are essential for resolving ethical issues. Some examples of these worries include the potential for an over-reliance on AI-generated content, a lack of transparency, and bias in training data (Sheng et al., 2019). More importantly for the widespread use of AI-powered learning platforms, it is critical to provide teachers with the tools they need to effectively implement and oversee the implementation of these systems.

4.1 Theoretical Foundations

Constructivism (Piaget, 2022), which proposes that learners construct knowledge actively through experience, and Bloom's Mastery Learning theory (Bloom, 1968), which emphasises individualised support to ensure that all students can achieve high levels of understanding, are two of the educational theories that lend support to the implementation of LLMs in personalised learning. Both of these theories are supported by the application of LLMs. Adaptive learning and learning management systems are in agreement with these ideas since they provide responsive feedback and individualised information that is intended to close knowledge gaps and enhance learning.

Table 1: An Examination of the Differences Between LLM-Powered Systems and Traditional Adaptive Systems

Feature	Traditional Adaptive Systems	LLM-Powered Adaptive Systems
Customization Level	Limited, rule-based	High, context-aware
Real-Time Feedback	Basic, pre-programmed	Dynamic and personalized
Content Generation	Static, pre-written	On-demand, tailored to learner
Language Support	Often single language	Multilingual
Scalability	Moderate	High
Pedagogical Flexibility	Limited	High, can adapt to many approaches

This table illustrates the basic distinctions that exist between standard adaptive learning platforms and those that utilise LLMs to increase their capabilities. In contrast to traditional systems, which are bound by predetermined logic and limited feedback, LLM-based systems offer more adaptability, dynamic content development, and support for various learners. As a result, these systems are better suited for fully personalised education.

Table 2: Possibile uses of LLMs in individualised learning environments

Application Area	Description	Example Tools/Use Cases
Intelligent Tutoring	Interactive Q&A, explanations, study guides	GPT-4 as virtual tutor in Khan
		Academy
Essay Feedback &	Grammar correction, style suggestions, content	Grammarly, ChatGPT
Writing	clarity	
Language Learning	Conversation practice, translation, vocabulary	Duolingo with GPT-based chatbot
	building	
Assessment &	Auto-grading, formative feedback	AI-generated quizzes and feedback
Evaluation		loops
Content Generation	Personalized lessons, exercises, summaries	Adaptive modules in e-learning
		platforms

In the sphere of education, the most important uses of LLMs are the ones that are displayed in Table 2. Learning management systems, also known as LLMs, are powerful tools that have the potential to enhance human

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

instruction and encourage student autonomy. This is due to their adaptability, which enables them to be utilised for a wide range of applications, including tutoring and evaluation.

Table 3: Problems that arise while attempting to implement LLMs in adaptive learning

Challenge	Description	Mitigation Strategies
Data Privacy & Security	Risks of exposing sensitive student data	Federated learning, strict data
		governance
Algorithmic Bias	Outputs may reflect biased training data	Bias audits, inclusive training datasets
Lack of Pedagogical	AI may provide incorrect or inappropriate	Human oversight, curriculum alignment
Control	guidance	
Technological	High infrastructure requirements	Cloud-based solutions, optimization
Accessibility		techniques
Teacher Preparedness	Need for training to effectively integrate AI	Professional development and support
	tools	programs

Despite the fact that LLMs provide a number of major advantages, Table 3 highlights the fact that a successful implementation involves overcoming a number of substantial obstacles. For the purpose of ensuring that the use of technology in education is ethical, effective, and sustainable, it will be vital to address concerns of bias, security, and usability.

5. Future Directions

In the future, the following are some potential study directions that might be pursued by EduLLMs, along with thorough explanations of each:

- 1. Model interpretability: Decisions made by educational learning management systems (LLMs) can be difficult to examine and understand because of the complex neural network architectures that make them up. Additional research into understanding the model's decision-making process is necessary to validate and approve EduLLMs. As a result, the model's recommendations and assessments will be easier for educators, students, and other stakeholders to understand and rely on.
- 2. Personalized learning support: Personalised learning support is a significant use of EduLLMs, which is one of its chief uses. Research in the future might investigate ways to improve the use of models to better understand the learning requirements, interests, and learning styles of students. This would allow for the provision of learning recommendations and resources that are more accurate and personalised.
- 3. Emotional intelligence: Educating kids involves a variety of emotional aspects, including the emotional moods and experiences of the pupils. It is possible that future research may concentrate on incorporating emotional intelligence into EduLLMs. This will make it possible for the models to precisely recognise and comprehend the emotional states of students, as well as to offer appropriate emotional support and advice when it is required.
- 4. Evaluation and assessment: It is beneficial to do an evaluation of EduLLMs' effectiveness and impact. The learning outcomes, learning processes, and student experiences might be profoundly altered by EduLLMs. Creating effective evaluation methods and criteria to quantify this impact may be the focus of future studies.
- 5. Social equity: The use of EduLLMs to provide individualised lessons has the potential to raise questions about economic equity. The creation and application of models offer promising avenues for future research into potential solutions to these problems. This would entail making sure that these models are not used to create an even more unequal educational environment, but rather to create one that is inclusive and equitable for all students.
- 6. Educational ethics: The implementation of EduLLMs gives rise to ethical concerns, including the security of personal information, the utilisation of data, and the moral responsibility of the model. Future study might

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

concentrate on the establishment of acceptable ethical norms and frameworks to direct the creation, use, and assessment of educational learning environments (EduLLMs).

- 7. Cross-cultural adaptability: The needs and differences of students from different cultural and ethnic backgrounds must be considered throughout the creation and execution of EduLLMs. In order to better meet the needs of students worldwide, future research might focus on making EduLLMs more culturally adapted.
- 8. Long-term learning and development: In addition to considering students' long-term learning and development, research on EduLLMs should centre on the consequences that happen in the short-term while they are learning. The potential of EduLLMs to assist students in reaching their long-term learning objectives, promote progress in a continuous manner, and inspire lifelong learning may be the subject of future research.

6. Conclusion

The incorporation of Large Language Models (LLMs) into personalised education by means of adaptive learning models marks a significant step forward in the process of catering to the varied requirements of contemporary students. By utilising the natural language comprehension and generating capabilities of LLMs, educators and developers are able to construct systems that provide learning experiences that are real-time, dynamic, and individualised at a large scale. These technologies have the ability to improve student engagement, give quick feedback, and provide the delivery of information that is individualised to the speed, style, and degree of understanding of each individual learner. This research sheds light on the transformational impact of learning management systems (LLMs) in the creation of learning environments that are intelligent, adaptive, and inclusive. In addition to this, it draws attention to significant issues that need to be addressed in order to guarantee responsible implementation. These challenges include assuring ethical usage, regulating prejudice, protecting data privacy, and preserving pedagogical quality. It is impossible to stress the significance of building solid frameworks, incorporating educators in the design process, and regularly reviewing the success of the system. Adaptive learning models that are driven by LLM provide a compelling alternative to democratise access to high-quality, personalised education. This is because education systems all around the globe are continuing to change in response to technology advancements and the requirements of society. To fully realise the promise of learning management systems (LLMs) in influencing the future of education, it will be necessary to continue research that spans several disciplines, to foster cooperation between educators and technologists, and to set policy guidelines.

References

- [1] Research and Markets. Global Artifcial Intelligence (AI) in Education Market (2020 to 2027)- by Technology, Application, Component, Deployment & End-user. 2020.
- [2] Insights GM. Artifcial intelligence (AI) in education market size by technology. 2021
- [3] W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong et al., "A survey of large language models," arXiv preprint, arXiv:2303.18223, 2023.
- [4] E. Kasneci, K. Seßler, S. Kuchemann, M. Bannert, D. Dementieva, "F. Fischer, U. Gasser, G. Groh, S. Gunnemann, E. H" ullermeier "et al., "ChatGPT for good? on opportunities and challenges of large language models for education," Learning and Individual Differences, vol. 103, p. 102274, 2023.
- [5] R. Tang, Y.-N. Chuang, and X. Hu, "The science of detecting LLMgenerated texts," arXiv preprint, arXiv:2303.07205, 2023.
- [6] D. Baidoo-Anu and L. O. Ansah, "Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning," Journal of AI, vol. 7, no. 1, pp. 52–62, 2023.
- [7] L. Weissweiler, V. Hofmann, A. Koksal, and H. Sch "utze, "The bet-" ter your syntax, the better your semantics? probing pretrained language models for the english comparative correlative," arXiv preprint, arXiv:2210.13181, 2022.

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [8] Y. Meng, J. Huang, Y. Zhang, and J. Han, "Generating training data with language models: Towards zero-shot language understanding," Advances in Neural Information Processing Systems, vol. 35, pp. 462–477, 2022.
- [9] S. Agarwal, B. Agarwal, and R. Gupta, "Chatbots and virtual assistants: a bibliometric analysis," Library Hi Tech, vol. 40, no. 4, pp. 1013–1030, 2022.
- [10] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, and P. S. Yu, "A survey of parallel sequential pattern mining," ACM Transactions on Knowledge Discovery from Data, vol. 13, no. 3, pp. 1–34, 2019.
- [11] C. Herodotou, B. Rienties, A. Boroowa, Z. Zdrahal, and M. Hlosta, "A large-scale implementation of predictive learning analytics in higher education: The teachers' role and perspective," Educational Technology Research and Development, vol. 67, pp. 1273–1306, 2019.
- [12] F. Filgueiras, "Artificial intelligence and education governance," Education, Citizenship and Social Justice, p. 17461979231160674, 2023.
- [13] Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? . Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, 610–623. https://doi.org/10.1145/3442188.3445922
- [14] Bloom, B. S. (1968). Learning for Mastery. UCLA-CSEIP Evaluation Comment, 1(2), 1–12.
- [15] Bloom, B. S. (1984). The 2 Sigma Problem: The Search for Methods of Group Instruction as Effective as One-to-One Tutoring. *Educational Researcher*, 13(6), 4–16. https://doi.org/10.3102/0013189X013006004
- [16] Brusilovsky, P., & Millán, E. (2007). User Models for Adaptive Hypermedia and Adaptive Educational Systems. In P. Brusilovsky, A. Kobsa, & W. Nejdl (Eds.), *The Adaptive Web* (pp. 3–53). Springer. https://doi.org/10.1007/978-3-540-72079-9_1
- [17] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv preprint arXiv:1810.04805. https://arxiv.org/abs/1810.04805
- [18] Holmes, W., Bialik, M., & Fadel, C. (2021). *Artificial Intelligence in Education: Promises and Implications for Teaching and Learning*. Center for Curriculum Redesign.
- [19] Koedinger, K. R., D'Mello, S. K., McLaughlin, E. A., Pardos, Z. A., & Rosé, C. P. (2015). Data Mining and Education. *Wiley Interdisciplinary Reviews: Cognitive Science*, 6(4), 333–353. https://doi.org/10.1002/wcs.1350
- [20] Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2014). *Effectiveness of Cognitive Tutor Algebra I at Scale*. RAND Corporation.
- [21] Piaget, J. (2022). To Understand Is to Invent: The Future of Education. Grossman Publishers.
- [22] Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving Language Understanding by Generative Pre-Training. *OpenAI*. https://cdn.openai.com/research-covers/language-unsupervised/language-understanding-paper.pdf
- [23] Raffel, C., Shazeer, N., Roberts, A., et al. (2020). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. *Journal of Machine Learning Research*, 21(140), 1–67.
- [24] Sheng, E., Chang, K. W., Natarajan, P., & Peng, N. (2019). The Woman Worked as a Babysitter: On Biases in Language Generation. *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing*, 3407–3412.
- [25] Singh, R., Sharma, A., & Patel, M. (2023). Adaptive Learning Framework Using Large Language Models in Higher Education. *International Journal of Artificial Intelligence in Education*, 33(1), 55–72.
- [26] Tomlinson, C. A. (2001). How to Differentiate Instruction in Mixed-Ability Classrooms. ASCD.
- [27] Vygotsky, L. S. (2025). *Mind in Society: The Development of Higher Psychological Processes*. Harvard University Press.
- [28] Woolf, B. P. (2010). Building Intelligent Interactive Tutors: Student-centered Strategies for Revolutionizing E-learning. Morgan Kaufmann.

2025, 10(47s) e-ISSN: 2468-4376

https://www.jisem-journal.com/

Research Article

- [29] Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic Review of Research on Artificial Intelligence Applications in Higher Education Where Are the Educators? *International Journal of Educational Technology in Higher Education*, 16(1), 1–27. https://doi.org/10.1186/s41239-019-0171-0
- [30] Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, "Attention is all you need," in *Neural Information Processing Systems*, 2017.
- [31] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, "BERT: Pre-training of deep bidirectional transformers for language understanding," in *Association for Computational Linguistics*, 2019.
- [32] Rohan Anil et al., "PaLM 2 technical report," ArXiv preprint: arXiv:2305.10403, 2023.
- [33] L. Huang, W. Yu, W. Ma, W. Zhong, Z. Feng, H. Wang, Q. Chen, W. Peng, X. Feng, B. Qin, and T. Liu, "A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions," *ArXiv preprint: arXiv:2311.05232*, 2023.