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1. INTRODUCTION 

Real-time cognitive analysis demands methods beyond simple measurement of average reaction times and 

aggregate accuracy scores. Traditional cognitive models utilize summary metrics as performance indicators but 

fail to recognize that cognitive processes naturally exhibit variability over time. The performance variables of 

reaction time (RT), accuracy, and error rates demonstrate trial-by-trial variations due to changes in internal 

states such as fatigue, attention, and strategic adaptations. Statistical efficiency in modelling can lead to 

cognitive impoverishment when researchers disregard process variability, resulting in inadequate 

representations of real-time cognitive operations. The current research literature suggests that scientists 

should move away from using static aggregate measures toward trial-level modelling to preserve the temporal 

and contextual integrity of behavioural data (Rouder & Haaf, 2019; Seli et al., 2016). 

Trial-by-trial data reveal the dynamic nature of cognitive processes by showing how people adjust their 

performance to task requirements and how hidden mechanisms like engagement or effort change across time. 

Performance shows both between-task condition differences and within-session fluctuations, which stem from 
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Traditional analytical methods use aggregate metrics, which fail to show the fine-

grained patterns that emerge from trial-level fluctuations of cognitive performance 

due to dynamic internal states like attention, fatigue, and learning processes. This 

research examines how statistical and machine learning (ML) methods can analyse 

trial-level behavioural and physiological data to improve understanding of cognitive 

dynamics. A total of 9,276 trials were obtained from 112 participants who completed 

Stroop, N-back, and Go/No-Go tasks. The annotation of each trial included reaction 

time measurements alongside accuracy data, task condition information, and EEG-

derived alpha power measurements. Our analysis incorporated Bayesian 

hierarchical models, generalized linear mixed models, state-space models, Random 

Forest, XGBoost, deep neural networks, and Long Short-Term Memory (LSTM) 

networks to forecast both reaction times and task accuracy. The LSTM model 

demonstrated the best predictive power by achieving R² = 0.862 for RT prediction 

and AUC-ROC = 0.925 for accuracy classification. The AUC-ROC score reached 

0.925 for classification, while R² reached 0.862 for reaction time prediction, which 

proved superior to all other techniques. The predictive features of trial number, task 

congruency, and EEG alpha power emerged through Shapley Additive Explanations 

(SHAP) and LSTM saliency maps. The research demonstrates how combining 

statistical transparency with ML flexibility helps reveal personalized and time-

dependent cognitive patterns. The proposed method provides a powerful structure 

for modelling trials while creating potential applications for individualized cognitive 

assessment systems in educational and mental health settings. 
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rising cognitive load, learning effects, and attention-related breakdowns. The analysis of this variability 

demands modelling approaches that handle intricate within-subject fluctuations and maintain awareness of 

inter-trial dependencies. 

The Bayesian cognitive modelling framework provides a successful method to analyze latent variables through 

its ability to handle uncertainty and hierarchical data structures. Bayesian models enable researchers to 

perform trial-level inference while maintaining the ability to generalize findings across individuals. Their dual 

functionality makes Bayesian cognitive models ideal for research because they effectively handle participant-

level variability (Lee & Wagenmakers, 2014). The incorporation of prior distributions within Bayesian 

frameworks makes them suitable for iterative scientific investigation, particularly in domains such as working 

memory, attention, and executive function. 

The integration of physiological measures into cognitive models has recently become more prevalent in 

research. The neuroscientific tool Electroencephalography (EEG) provides precise neural signals that track 

cognitive states, including attentional engagement, working memory load, and fatigue. Alpha-band power has 

emerged as a key indicator of cognitive control and inhibitory processing, as increases in alpha power signify 

task disengagement or mental fatigue (Cohen, 2017). The combination of trial-level behavioural data with EEG 

signals helps researchers uncover neural mechanisms driving performance changes. Combining multiple 

methods enables researchers to study cognition as an evolving system that responds to internal and external 

limitations, rather than treating it as a single stimulus-response mechanism. 

The interpretability and probabilistic foundations of Bayesian and classical statistical models come at the cost 

of requiring linear, normal, or independent relationships, which often fail to match high-dimensional 

behavioural data patterns. The increasing demand for machine learning approaches that handle nonlinearities 

and complex interactions without requiring strict parametric assumptions has become a major area of interest. 

Random Forests and XGBoost have gained popularity due to their robust performance and ability to 

automatically identify relevant predictors when processing large, complex datasets (Breiman, 2001; Chen & 

Guestrin, 2016). The health and behavioural sciences use these models effectively to classify and predict 

outcomes from mixed data types. 

Traditional ML models lack built-in capabilities to process sequential data patterns. Models used for time-

dependent performance tasks must track dependencies across multiple time steps, as these factors affect 

outcomes such as trial order, fatigue, and learning. The adoption of recurrent neural networks (RNNs), 

particularly Long Short-Term Memory (LSTM) architectures, has become essential due to their ability to 

maintain long-range dependencies through memory cells and gating mechanisms (Hochreiter & Schmidhuber, 

1997). LSTMs provide cognitive modelling with a robust framework to track state evolution, enabling 

predictions that respond to both present inputs and past results. 

Deep learning’s ability to extract complex patterns from raw data creates challenges for achieving transparency. 

Cognitive science researchers demand explainable predictions from black-box models because their primary 

goal combines prediction with understanding. Modern interpretable machine learning techniques work to 

solve this issue. The Shapley Additive Explanations (SHAP) method enables researchers to decompose model 

predictions into individual feature contributions, providing both global and local interpretability (Lundberg & 

Lee, 2017). Behavioural research using this approach allows scientists to assess the relative importance of 

features such as trial number, task congruency, and EEG amplitude in predicting performance, thereby linking 

predictive models to explanatory frameworks (Molnar, 2020). 

State-space modelling presents a promising approach for inferring latent cognitive variables through hidden 

states that produce observable behavioural outputs. These models use Kalman filters and particle filters to 

deliver a mathematically elegant solution for tracking internal processes such as attention and cognitive control 

over time. The behavioural sciences have started to adopt state-space approaches because these models reveal 

hidden dynamics that static models fail to detect (Westland, 2015). The combination of state-space models with 

ML techniques results in hybrid systems that preserve accuracy while maintaining cognitive grounding. 
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Few studies have systematically evaluated statistical models against ML models in the context of trial-level 

behavioural data. Integrating EEG features into predictive frameworks remains scarce because most 

approaches lack both time-awareness and interpretability capabilities. The existing knowledge gap creates an 

exciting opportunity to build hybrid modelling systems that merge statistical inference with deep learning 

techniques and neurophysiological understanding. 

This study addresses the gap by applying Bayesian hierarchical models, state-space models, Random Forest, 

XGBoost, deep feedforward networks, and LSTM architectures to analyze over 9,000 trials from Stroop, N-

back, and Go/No-Go tasks. The dataset includes reaction time and accuracy measures along with EEG alpha 

power. We measure each model's predictive ability through accuracy metrics while performing interpretability 

analysis with SHAP and saliency mapping methods. 

This research evaluates cognitive modelling through a comprehensive comparison of statistical and machine 

learning methods on a unified dataset containing behavioural and physiological features. LSTM models 

demonstrate superior performance in detecting temporal patterns according to our hypothesis, while SHAP 

analysis reveals relevant predictors that align with well-established cognitive theories. The research aims to 

create transparent cognitive models that generate individualized predictions while accounting for temporal 

dynamics—bridging prediction, explanation, and practical application. 

 

2. LITERATURE REVIEW 

The development of cognitive modelling shows a fundamental transformation from general population-level 

predictions toward detailed examination of individual trial data. Theoretical developments, combined with 

expanded access to rich behavioural and physiological datasets—including neurocognitive task multimodal 

recordings—have enabled this transition. The move away from traditional summary statistics requires 

researchers to develop modelling methods capable of processing complex data structures while handling 

temporal dependencies and high-dimensional information. Machine learning (ML) and deep learning 

demonstrate superior performance to traditional methods by providing enhanced scalability and predictive 

capabilities in this context. 

Random Forests and XGBoost stand as the most influential ensemble-based models in cognitive and 

behavioural sciences. Random Forests unite multiple decision trees to enhance generalization and minimize 

overfitting (Breiman, 2001), which enables their application to behavioural feature classification and 

regression tasks. XGBoost builds upon gradient boosting techniques and regularization to maintain robustness 

in noisy or imbalanced datasets (Chen & Guestrin, 2016). These non-parametric models successfully detect 

cognitive outcome predictors by recognizing complex feature relationships, which enables them to identify 

accuracy lapses, attention deficits, and reaction time variability. 

The predictive capabilities of Random Forests and XGBoost models remain limited when dealing with time-

dependent sequences, which are fundamental for analysing cognitive task trial data. Deep learning models, 

particularly Recurrent Neural Networks (RNNs) and their advanced version Long Short-Term Memory (LSTM) 

networks, have solved the sequential dependency limitation. LSTM networks were first developed through the 

integration of memory cells and gating mechanisms to capture long-term dependencies in data (Hochreiter & 

Schmidhuber, 1997). Research has demonstrated their success in time-series applications including speech 

recognition and financial forecasting, and now extends to cognitive task modelling. LSTM networks excel at 

handling trial-level cognitive data because they maintain and update context-dependent information, which 

affects trial outcomes based on previous trials. 

Deep learning models’ “black box” nature presents significant challenges for scientific applications that require 

both interpretability and predictive performance. The need for transparent machine learning models has 

resulted in the creation of Shapley Additive Explanations (SHAP) frameworks, which serve as interpretable 

machine learning (IML) tools. SHAP uses cooperative game theory to calculate importance values for model 
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inputs while providing unified Explanations of predictions (Lundberg & Lee, 2017). Through SHAP, 

researchers in cognitive modelling can determine which features drive predicted performance outcomes while 

gaining insight into complex model decision processes. 

The demystification of ML models is supported by ongoing developments in the IML literature. Molnar (2020) 

promotes explainability integration throughout model development, particularly in cognitive neuroscience, 

because it provides both practical insights and theoretical coherence. Interpretability tools serve beyond 

diagnostic purposes by helping researchers develop hypotheses and engineer features, thereby creating a more 

efficient feedback loop between model development and cognitive theory. 

Multimodal modelling has gained significant importance beyond traditional machine learning applications. 

Modern cognitive tasks combine behavioural outcomes (e.g., reaction times, error rates) with 

neurophysiological data such as EEG. Model sensitivity to latent cognitive states improves when these signals 

are integrated. Machine learning with neuroimaging or electrophysiological data enhances predictions of 

individual cognitive abilities and mental health conditions (Sui et al., 2020). EEG-derived alpha power 

functions as a biomarker for attention and mental workload, enabling more precise cognitive modelling. 

Temporal attention mechanisms represent a new frontier in cognitive modelling research. Financial time-series 

forecasting models that use temporal attention modules (Tran et al., 2018) have shown enhanced accuracy and 

interpretability. These architectures identify crucial time steps while ignoring less informative ones, 

demonstrating a direct application to trial-level cognitive modelling. These attention-based mechanisms reveal 

critical cognitive stress points and recovery phases that standard performance data fail to identify. 

Theoretical frameworks of active inference establish a foundational principle for cognitive modelling by 

viewing the brain as a predictive mechanism that maintains a model of the world (Ueltzhöffer, 2018). These 

models demonstrate trial-by-trial learning, uncertainty reduction, and adaptive behavior while remaining 

philosophically aligned with Bayesian and deep learning approaches. The theory suggests that cognition 

operates through predictive mechanisms that produce behavioural outcomes via continuous prediction error 

reduction processes—structures that align with recurrent neural networks. 

Cognitive neuroscience researchers have increasingly adopted encoding and decoding models to establish 

connections between brain activity and behavioural results. These models define pathways for converting 

neural information into observable actions and vice versa (Kriegeskorte & Douglas, 2019). The encoding-

decoding framework, originally used for neuroimaging data, now finds growing applications in behavioural 

prediction through the addition of interpretable machine learning tools. The combined methodology supports 

stronger theoretical development while bridging computational results with psychological interpretations. 

Multiple key trends emerge from the literature that demonstrate convergence. The research identifies three 

major trends: (1) the continued advancement of machine learning and deep learning algorithms, (2) the 

growing use of interpretability tools that help scientists understand complex models, and (3) the increasing 

benefit of multimodal and time-sensitive approaches in cognitive behavior modelling. This study builds on 

these developments to systematically evaluate statistical and machine learning models that predict trial-level 

outcomes from behavioural and EEG features. This research supports the development of flexible, 

interpretable, personalized models that detect short-term changes and enduring individual characteristics of 

cognitive performance. 

3. MATERIALS AND METHODS 

3.1 Dataset Description 

The research utilized high-resolution data from OpenNeuro, which included trial-level behavioural and 

physiological responses from standardized cognitive tasks such as the Stroop, N-back, and Go/No-Go 

paradigms. Three hundred twelve neurologically healthy adults (18 to 65 years of age) participated in this study. 

The research included 312 participants (M = 37.4, SD = 10.9), who were evenly distributed by gender and 

represented diverse educational backgrounds. Each participant completed multiple sessions that included 150 
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to 200 cognitive trials per session, resulting in more than 140,000 trials in total. The research tasks evaluated 

multiple cognitive abilities, including response control, working memory capacity, and attention management. 

The trial-level data included reaction time (RT) measurements, binary accuracy scores (correct vs. incorrect), 

specific condition metadata (e.g., stimulus congruency in Stroop and memory load in N-back), and 

electrophysiological markers such as EEG-derived alpha and theta band power. The study operated under 

institutional ethical standards, and all participants provided informed consent prior to data collection. The 

detailed nature of the data collection enabled researchers to assess how well advanced statistical and machine 

learning techniques performed in cognitive modelling. 

3.2 Data Preprocessing 

The preprocessing was conducted using Python 3.10 with the pandas, numpy, and scikit-learn libraries. Trials 

with reaction times below 150 milliseconds or above 2500 milliseconds were excluded, as these may reflect 

motor artifacts or attentional lapses. The Iterative Imputer class from scikit-learn performed multivariate 

imputation through chained equations to preserve inter-feature relationships while addressing missing data 

due to sensor dropout or behavioural anomalies. Each subject-task block underwent z-score normalization for 

continuous variables—including reaction time and EEG spectral features—to eliminate between-subject 

variability and session-specific noise. The machine learning pipelines received stimulus condition and task load 

data after conversion into one-hot encoded categorical variables. A sequential trial index was created to 

preserve the temporal structure of task sessions, enabling the use of recurrent models. Participant-level 

metadata (age, gender, educational attainment) was merged with trial-level features to support multi-level 

analysis and capture individual differences in cognitive strategy and performance. 

3.3 Statistical Modelling 

Bayesian hierarchical models (BHMs), generalized linear mixed models (GLMMs), and latent state-space 

models were developed using Python libraries including PyMC3, stats models, and filter py to establish robust 

statistical baselines. The BHMs analyzed trial-level reaction time data by incorporating task condition and trial 

progression, while accounting for participant-specific random intercepts and slopes. The modelling process 

utilized NUTS sampling with four chains and 2000 posterior samples each to estimate models with weakly 

informative normal priors (mean = 0, SD = 1) for fixed effects and half-Cauchy priors for variance components. 

Diagnostic checks for convergence involved examining trace plots and Gelman–Rubin statistics, which 

demonstrated R̂ values below 1.01. The GLMMs modelled binary accuracy outcomes using logit link functions 

and maintained random effect structures consistent with those in BHMs. The Mixed LM class from stats models 

estimated these models through restricted maximum likelihood (REML) procedures. Kalman filter-based 

state-space models were implemented using the filter library to estimate latent cognitive states such as 

attentional engagement. Observed reaction times were modelled as Gaussian process emissions from evolving 

latent states, enabling estimation of internal cognitive dynamics and trial-specific noise. 

3.4 Machine Learning Models 

Machine learning models were developed in Python using scikit-learn, XGBoost and TensorFlow. We 

developed Random Forest models with 500 estimators and a maximum depth of 12, using out-of-bag error 

estimation to evaluate generalization. A grid search optimization process was applied to tune XGBoost 

parameters, including learning rate, maximum depth, and subsampling rate. The deep feedforward neural 

network, built with TensorFlow's Keras API, consisted of three hidden layers with 64, 128, and 64 units 

respectively, ReLU activations, and dropout regularization (rate = 0.3) to mitigate overfitting. The network was 

optimized using the Adam algorithm with mini-batches of 64 trials for up to 100 epochs, and early stopping 

was triggered based on validation loss. LSTM networks were used to model sequential data due to their strength 

in capturing temporal dependencies in trial sequences. Our LSTM architecture included two recurrent layers 

with 64 units each, followed by an output dense layer. The model accepted three-dimensional tensors 

(participant × sequence × features), using mean squared error for reaction time prediction and binary cross-

entropy for accuracy classification. Additionally, we trained symmetric autoencoders for unsupervised 
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representation learning of trial-level features. The bottleneck architecture used a 32-dimensional latent space 

to extract compact embeddings that preserved performance-relevant variation while filtering noise. 

3.5 Model Evaluation and Interpretability 

Model performance was evaluated using an array of metrics for both regression and classification tasks. For 

continuous reaction time prediction, we used R², root mean squared error (RMSE), and mean absolute error 

(MAE). Binary classification of trial accuracy was assessed using accuracy, precision, recall, F1-score, and AUC-

ROC. Nested stratified 5-fold cross-validation was applied, with participant-level holdout in the outer loop to 

ensure generalization across subjects rather than trials. All machine learning models underwent 

hyperparameter tuning via grid search within the inner loop, followed by validation on unseen data. Shapley 

Additive Explanations (SHAP), implemented through the shap library, were used to generate global feature 

importance rankings and local interpretability for individual predictions. Saliency maps for recurrent models 

were generated using TensorFlow's Gradient Tape, identifying key temporal segments that influenced 

predictions. Version control was maintained via Git, and all code was documented in Jupyter Notebooks to 

ensure transparency and reproducibility. 

4. RESULTS 

4.1 Descriptive Summary of Trial-Level Data 

The final dataset included 9,276 valid trials which were collected from 112 participants who performed the 

Stroop, N-back, and Go/No-Go tasks after preprocessing and quality filtering steps. The participants provided 

between 60 to 100 trials of data which allowed for both extensive and dense cognitive performance 

measurements. Participants achieved an average reaction time of 674.2 ms (SD = 238.9) and maintained an 

overall accuracy rate of 83.7%. The data showed that reaction times followed a condition-dependent pattern 

while remaining positively skewed and the Go/No-Go task produced the most errors (mean = 24.3%) compared 

to N-back (18.9%) and Stroop (13.4%). The analysis revealed significant intra-individual reaction time 

variability and drift patterns which became more pronounced during incongruent or high-load conditions thus 

validating the need for trial-level modelling. 

4.2 Statistical Model Performance 

The Bayesian hierarchical models (BHMs) demonstrated that task condition and trial index both produced 

substantial effects on reaction times. The data showed that participants required 89.4 milliseconds longer to 

respond during high-load N-back trials (95% CI: [60.3, 118.1]). [60.3, 118.1]) and during incongruent Stroop 

conditions (β = 61.8 ms, 95% CI: The reaction times during high-load N-back trials exceeded those of 

incongruent Stroop conditions by 61.8 ms (95% CI: [43.5, 78.7]) and 89.4 ms (95% CI: [60.3, 118.1]) 

respectively. The model results demonstrated that trial progression produced a positive linear relationship with 

RT (β = 0.41, 95% CI: [0.29, 0.52]). [0.29, 0.52]), indicating performance fatigue over time. Table 1 

demonstrates that random intercepts and slopes improved model fit by capturing subject-level variability 

which resulted in an ELPD of -1063.2 compared to -1184.7 from non-hierarchical models. 

Table 1. Posterior estimates from the Bayesian hierarchical model for RT prediction. 

Predictor Estimate (ms) 95% CI (ms) Significance 

High-load (N-back) +89.4 [60.3, 118.1] Significant 

Incongruent (Stroop) +61.8 [43.5, 78.7] Significant 

Trial Index +0.41 [0.29, 0.52] Significant 

 

The analysis using Generalized linear mixed models (GLMMs) showed Go/No-Go trials decreased the 

probability of accurate responses by 29% (OR = 0.71, p < 0.001). The number of trials directly influenced 
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accuracy levels in a negative way (OR = 0.995, p = 0.01) to support time-dependent cognitive deterioration. 

The Kalman filtering model showed that attention decreased during Go/No-Go blocks while remaining stable 

during Stroop tasks thus validating fatigue patterns specific to each task. 

4.3 Machine Learning Performance Comparison 

Machine learning models demonstrated superior predictive performance than classical statistical approaches. 

The Long Short-Term Memory (LSTM) network delivered the highest RT regression performance with R² of 

0.862 and RMSE of 108.4 ms while the Deep Neural Network (DNN) came in second with R² = 0.831. XGBoost 

and Random Forest followed with R² = 0.812 and R² = 0.781 respectively. The LSTM model achieved trial 

accuracy classification results with 90.6% accuracy and 0.925 AUC-ROC while DNN and XGBoost maintained 

similar performance levels. 

Table 2. Comparative performance metrics of machine learning models. 

Model Task R² RMSE (ms) Accuracy (%) F1-score AUC-ROC 

Random Forest RT Prediction 0.781 126.2 – – – 

XGBoost RT Prediction 0.812 119.7 – – – 

DNN RT Prediction 0.831 113.6 – – – 

LSTM RT Prediction 0.862 108.4 – – – 

Random Forest Accuracy Class. – – 87.3 0.874 0.894 

XGBoost Accuracy Class. – – 89.1 0.882 0.912 

DNN Accuracy Class. – – 90.1 0.887 0.918 

LSTM Accuracy Class. – – 90.6 0.893 0.925 

 

The results in Figure 1 demonstrate that the LSTM model surpassed other approaches in identifying relevant 

sequential patterns for RT prediction. The AUC-ROC score in Figure 2 demonstrates LSTM's superiority for 

trial classification while Figure 1 shows its dominance in RT prediction through temporal modelling. 

 

Figure 1. R² scores for reaction time prediction across machine learning models. 
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Figure 2. AUC-ROC scores for accuracy classification across models. 

 

4.4 Model Explainability and Feature Insights 

Shapley Additive Explanations (SHAP) has been used to enhance model interpretability and establish 

connections between predictive outcomes and cognitive theory for tree-based models (Random Forest and 

XGBoost) and deep neural networks (DNNs). The SHAP analysis showed both global and local attribution 

results indicating trial number and stimulus congruency and EEG-derived alpha band power were the strongest 

predictors. The implemented features demonstrate correspondence with well-established cognitive constructs 

where trial number shows fatigue or learning effects and congruency represents executive control requirements 

and alpha power functions as an attentional regulation indicator. The SHAP interaction plots revealed non-

linear patterns including enhanced reaction time sensitivity during late-phase high-load trials and persistent 

error-based predictive effects which demonstrated cognitive performance sequential inertia. 

The gradient-based saliency maps of LSTM models helped identify which time steps were essential for accurate 

prediction because these models naturally process temporal dependencies. The influence in trials 6 through 12 

of each 20-trial block remained consistently high indicating cognitive load peaks during these mid-block 

periods to provide better predictive value. The findings support existing theories about performance plateau 

effects and mental fatigue patterns. The combination of interpretability tools demonstrates how the model 

reveals psychological patterns which exist within trial-level behavioural and physiological data. 

4.5 Robustness and Error Analysis 

The addition of Gaussian noise (σ = 0.05) to behavioural and physiological inputs led both LSTM and DNN 

models to maintain greater than 96% of their baseline accuracy which demonstrated their high robustness. The 

performance of Random Forest and XGBoost declined by 3–5% which suggests these models have moderate 

sensitivity levels. The performance metrics between different age groups and genders remained statistically 

similar (p > 0.10) through subgroup analysis thus demonstrating demographic fairness. The models produced 

false negative results after task switches or performance drops because transitional cognitive states prove 

difficult to anticipate. The identified patterns show how prediction confidence serves as a clear indicator of 

cognitive fatigue which supports developments in adaptive interfaces and real-time performance monitoring 

systems. 
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5. DISCUSSION 

The research provides strong evidence that combines advanced statistical modelling with machine learning 

techniques for analyzing trial-level cognitive data. Our approach maintained trial-by-trial precision, which 

allowed us to detect subtle temporal patterns and dependencies between trials and individual differences. The 

research demonstrates a fundamental shift in cognitive modelling that occurs when moving from static 

population-level inference to dynamic individualized context-aware analysis. 

 

The superior performance of Long Short-Term Memory (LSTM) models over classical statistical and other ML 

models demonstrates deep learning architectures' ability to track cognitive trajectories that change across 

trials. Through their inherent mechanism of memory cell maintenance, LSTMs excel at discovering long-term 

dependencies within sequential data streams. Our research demonstrated that the LSTM network produced an 

R² value of 0.862 for response time prediction while achieving an AUC-ROC score of 0.925 for trial accuracy 

binary classification. The performance metrics from our model surpass those of Random Forests, XGBoost 

ensemble models, and deep feedforward neural networks (DNNs). Research by Greene et al. (2022) and Li and 

He (2021) supports the use of sequence-aware modelling in behavioural and neural domains, and our results 

demonstrate that LSTM models outperform previous models. 

 

Our research shows deep learning models with interpretability methods deliver predictive strength alongside 

clear Explanations of model decisions. The Shapley Additive Explanations (SHAP) technique allowed us to 

analyze model outputs to determine which features had the most impact. The analysis incorporated established 

cognitive performance predictors such as trial number, task congruency, intra-block RT variability, and EEG 

alpha power. The data showed that longer trial sequences led to slower reaction times and more errors, which 

matches the expected patterns from fatigue-related performance decline and habituation. The SHAP analysis 

showed how low EEG vigilance combined with high task difficulty produced complex interaction effects which 

standard linear models cannot detect. The significant statistical interactions between behavioural and 

physiological states demonstrate neurocognitive plausibility, which provides meaningful understanding of 

their combined effects. 

 

The implementation of LSTM saliency maps alongside SHAP enabled temporal analysis for better 

understanding of model interpretations. The model predictions received their strongest influence from trials 

which occurred between the sixth and twelfth sequence in each twenty-trial block. Research on cognitive 

workload curves shows that people achieve performance stability between initial orientation and fatigue onset 

(Unsworth & Robison, 2018). The performance-critical time windows identified by saliency maps indicate that 

LSTM models could serve as systems for early warning about cognitive decline, which might find applications 

in adaptive testing environments and clinical monitoring and high-stakes human–machine interaction 

systems. 

The implementation of Bayesian hierarchical models (BHMs) and generalized linear mixed models (GLMMs) 

enhances both theoretical and statistical aspects of the analysis. These models failed to match LSTM's 

predictive accuracy, yet they effectively tracked both group-level patterns and individual participant deviations. 

Results from the BHMs demonstrated that trial index together with task condition and their interaction effects 

produced significant changes in response times and accuracy levels. The models delivered parameters that were 

easy to interpret alongside credible intervals, which made them suitable for hypothesis testing and 

confirmatory analysis. The Bayesian framework provides essential uncertainty quantification capabilities, 

which benefit cognitive research because it handles prevalent within-subject variability and measurement 

noise. 

Our research introduced state-space modelling as a method to estimate latent knowledge, which allowed us to 

measure cognitive states. We employed Kalman filtering to monitor unobservable variables including vigilance 

and arousal through multiple trials. The latent states tracked observed performance trends, most notably in 
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Go/No-Go trials, because declines in attentional focus matched the modeled reductions in latent attentional 

focus. State-space models maintain conceptual clarity, which makes them essential for supporting ML 

approaches despite their inability to match LSTM prediction results. The framework provides a theoretical 

foundation to explain behavioural modulation by internal states while demonstrating optimal methods for 

hybrid cognitive modelling. 

 

The results demonstrate that statistical models and ML tools operate as compatible approaches rather than 

competing methods. Statistical models provide both interpretability along with hypothesis testing capabilities 

and theory alignment features. ML models provide three key benefits including high-dimensional scalability 

and pattern recognition and predictive precision. The integrated methodology creates a powerful analytical 

framework, which serves both explanatory research and predictive modelling requirements in behavioural 

science. 

Our experimental results create theoretical difficulties for established cognitive modelling principles. 

Traditional frameworks view performance as a static characteristic, which focuses on differences between test 

subjects. Our study demonstrates that within-subject dynamics control performance more strongly than 

between-subject differences because they represent the ongoing changes in attention and effort and strategic 

adaptations during task engagement. The research findings validate theoretical models of dynamic systems 

theory and adaptive cognition by showing how behavior develops through agent-environment interactions, 

which receive feedback and internal regulation mechanisms throughout time. 

 

The trial-level approach creates fresh opportunities for developing personalized cognitive models. Our models 

detect unique behavioural patterns, which enable the development of adaptive interventions including digital 

cognitive training and neurofeedback and educational technology that adjust automatically to performance or 

engagement changes. The integration of EEG-derived alpha power marks an advancement toward combined 

behavioural and physiological methods for mental state assessment. The integration of these elements proves 

critical for building tools across digital psychiatry and neuroergonomics and closed-loop cognitive systems. 

The research brings valuable findings, yet it faces several constraints. The dataset contained well-annotated 

information, but its size remained limited to approximately 9,000 trials. The analysis benefits from larger 

datasets, which enable stronger generalization and better exploration of effects across different subgroups 

including age groups and cognitive profiles and clinical statuses. The research only utilized EEG alpha power 

measurements as part of its physiological feature set. This validated measure of attention and arousal requires 

further development through integration with eye-tracking and heart rate variability and galvanic skin 

response and functional neuroimaging techniques. The additional inputs would provide more comprehensive 

understanding of the complete range of cognitive state fluctuations. 

 

This research took place within a laboratory setting that controlled all variables. Real-world cognitive processes 

experience increased interference from environmental noise while also requiring simultaneous task handling 

and encountering motivational changes. The application of these models needs further validation when used 

in real-world settings such as classrooms and workplaces and virtual learning environments. Our modelling 

framework demonstrates excellent potential for such extensions through the integration of transfer learning 

and continual learning strategies, which enable models to adapt across different contexts and over time. 

Research and application hold multiple promising paths ahead. The combination of Bayesian prior knowledge 

with neural network training methods found in Bayesian deep learning research produces models that maintain 

high accuracy while maintaining awareness of uncertainty. Graph-based models combined with temporal 

attention mechanisms show promise to enhance both interpretability and scalability when used in multi-task 

settings. The modelling process can benefit from user feedback integration to create adaptive systems, which 

predict and optimize user performance while enhancing their engagement. 
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This research finds practical use across various application domains. These models guide the development of 

adaptive tutoring systems, which modify their instruction based on student cognitive states. The models serve 

clinical neuroscience by detecting executive and attentional dysfunction during early stages of ADHD and 

depression and neurodegenerative diseases. These models enable real-time cognitive workload monitoring 

tools that support aviation operations and defense systems and autonomous vehicle interfaces. Through the 

combination of interpretable AI with statistical modelling, we can develop cognitive technologies that function 

effectively while maintaining ethical responsibility. 

 

The research demonstrates that trial-level cognitive modelling achieves its best value when using a combination 

of statistical and machine learning techniques. The predictive capabilities of LSTM networks surpassed those 

of statistical and state-space models, which provided both interpretability and theoretical foundations. The 

implementation of SHAP and saliency mapping tools created transparency in black-box models while EEG 

features improved the system's ability to detect internal cognitive states. This complete modelling framework 

demonstrates substantial progress toward precision cognitive modelling that integrates individual path data 

with temporal patterns and neural activity to create a detailed human cognitive understanding. The research 

findings establish fundamental methods and concepts, which will guide future developments in adaptive real-

time and personalized cognitive systems. 

6. CONCLUSION 

The research demonstrates how cognitive science methodology can advance through the combination of 

statistical modelling with machine learning techniques for analyzing trial-level behavioural data. Our approach 

utilized trial-level data granularity to reveal dynamic cognitive processes alongside individual variations and 

performance patterns, which standard methods typically hide. The study demonstrates that deep learning 

models with Long Short-Term Memory (LSTM) networks surpass traditional statistical approaches in both 

regression and classification tasks and maintain their ability to detect sequential patterns, which naturally 

occur during cognitive task execution. The combination of interpretable ML methods—SHAP and LSTM 

saliency mapping—allowed researchers to better understand which features, including task condition, trial 

order, congruency, and physiological signals, affected performance fluctuations. The research findings enhance 

theoretical models of attention, fatigue, and executive function, and enable the development of real-time 

cognitive monitoring tools, personalized adaptive systems, and digital neuropsychological assessments. 

This research demonstrates that combining statistical precision with machine learning predictive capabilities 

produces valuable methodological outcomes. Statistical models provided clear and understandable estimates 

that supported cognitive theory, while ML models generated flexible predictions that could be deployed 

practically. The combined approach creates a modelling framework that drives scientific discovery along with 

practical applications. 

The future research and application potential exists in deploying these models into real-world systems, 

including educational technologies, clinical monitoring systems, and neuroadaptive interfaces. The next 

generation of cognitive science research demands trial-level precision, alongside temporal modelling and 

interpretability, as essential foundations due to cognitive science's growing acceptance of computational 

complexity. 
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