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Deep Belief Networks (DBNs) are a stack of networks, each having picked up unique 

characteristics and attributes from the original data. DBNs can handle supervised and 

unsupervised tasks thanks to their intricate layer-wise neural architecture. This article 

presents an adaptive approach for training DBN and also analyzes the various training 

algorithms used in the process of training DBNs. This paper begins by delving into the 

pre-training phase, where Restricted Boltzmann Machines (RBMs) play a central role. 

We review the Contrastive Divergence (CD) and Persistent Contrastive Divergence 

(PCD) algorithms, highlighting their advantages and disadvantages in initializing deep 

belief nets. These networks have a variety of applications. Importance is placed on their 

pertinence to different data types and scales. Moving to the fine-tuning stage, the paper 

explores the use of backpropagation with gradient descent. Furthermore, the 

architectural variants of DBNs like CDBNs and RDBNs with their respective areas of 

application are discussed. CDBNs have an accuracy of over 95% when operated on 

standard image classification benchmarks like MNIST and ImageNet whereas RDBNs 

achieve an accuracy of over 90% on sentiment analysis and 85% for speech recognition 

on longer audio sequences. We highlight the adaptation of DBNs for specific tasks, 

including classification, regression, clustering, and generative modeling. We also 

compare the training complexity of the proposed algorithm with the existing algorithm. 

We found that the proposed algorithm outperformed other algorithms by training the 

model in 500 seconds. 

Keywords: Contrastive Divergence, Deep Belief Networks, Fine-tuning, Pre-training. 

 

INTRODUCTION 

Deep belief networks [1, 2] are composed of multiple layers of the neurons, each of which is coupled to the neuron in 

the layer below it. The general architecture is akin to that of an MLP; however, the only connections are between the 

layers; there are no connections within layers. Since each layer learns on the results of the one before it separately, 

each layer may be thought of as a distinct model. In this sense, a DBN is a stack of networks, each having picked up 

unique characteristics and attributes from the original data.  

An important component of the deep learning framework is the undirected graphical model known as the Restricted 

Boltzmann Machine [3].By building limited Boltzmann machines and using the subsequent activations from one to 

be the training data for the subsequent, several hidden layers can be learned efficiently. In essence, these represent 

the neural network that is a part of the so-called energy-based models. This algorithm can be applied to feature 

learning, topic modelling, regression collaborative filtering, dimensionality reduction, and classification.  

Deep belief networks are considered to be the best option eliminating the need of convolutional neural network due 

to its advantages. Among these are: the capacity to work with enormous amounts of data and extract underlying 

correlations utilising hidden units, quicker training and improved outcomes global minima are reached as a result of 

improved weight initialization. Deep Belief Networks can handle big datasets and many kinds of input, and they 
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function similar to deep neural networks. As a result, they excel at tasks like speech recognition, image generation, 

text classification, and image classification. 

RELATED WORKS 

The fundamental component of deep belief nets and other deep learning techniques is the restricted Boltzmann 

machine (RBM). Rapid learning and prediction are necessary for RBM-based machine learning approaches to be 

used in real-world scenarios. To expedite RBM learning and prediction without affecting the outcomes, Lean 

Contrastive Divergence (LCD) [8-10], a modified version of the Contrastive Divergence (CD) algorithm, is employed.  

LCD uses two optimisation approaches to circumvent the majority of the necessary computations. The first is known 

as limits-based filtering, which uses triangle inequality to quickly compute bounds instead of costly calculations of 

several vector dot products. The second technique is delta product, that efficiently identifies and steers clear of several 

repeated computations in Gibbs Sampling, the fundamental process of RBM [6-7]. Both the original contrastive 

divergence learning algorithm and its modifications can benefit from the optimisations. It operates by approximating 

the gradient of the data's log-likelihood. CD iteratively updates its model's parameters to reduce the discrepancy 

between the distribution of the data and the model. 

PCD is used to address the slow convergence of CD. It preserves an enduring chain of samples from the model's 

distribution, which speeds up training and improves stability. 

After pre-training the individual layers with RBMs, fine-tuning the entire DBN involves using SGD with 

backpropagation. SGD adjusts the weights of the network in a direction that minimizes a specified loss function. 

Modern variants such as mini-batch SGD help improve convergence and efficiency. Techniques like Adagrad, 

Adadelta, and Adam change the rate of learning during training depending on the past inclines, helping to accelerate 

convergence and improve training stability.  

When L1 regularisation [11] is paired with normalisation, there is no regularisation effect; hence, L1 regularisation 

will not work in the DNN method. Additionally, we can pick high-dimensional features by applying L2 constraints to 

a single L1 regularisation. This enables the DNN method to incorporate L2 norm to avoid overfitting in addition to 

performing selection of features through L1 regularisation.  

Batch normalisation [12-15] in a neural network is accomplished by way of a normalisation step that corrects the 

variances and means of the inputs to each layer. Although it would be ideal to perform the normalisation over the 

whole training set, using the global information makes it impractical to apply this step in conjunction with stochastic 

optimisation techniques. Therefore, during the training phase, normalisation is limited to each mini-batch.  

An observation in latent space can be probabilistically described using a variational autoencoder (VAE) [16,17]. We 

will thus structure our encoder to present a probability distribution for every latent attribute instead of creating an 

encoder that produces a single value to represent each latent state characteristic.  

It can be used for a variety of tasks, including creating synthetic data and compressing data. In contrast to an 

autoencoder, a variational autoencoder offers a statistical means of characterising the dataset's samples in latent 

space. Therefore, rather than producing a single output value at the bottleneck layer, the encoder in the variational 

autoencoder outputs a probability distribution. 

Table 1 below highlights the methods used in various articles from which insights were taken to proceed with the 

current research. 

Table 1. Summary of Methods Used and Their Advantages. 

Ref. No. Methods Used Advantages Drawbacks 

[2] k-means clustering, LSTM 

High recognition accuracy, 

reduced computational 

complexity 

Requires complex architecture 

to train large datasets 
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[3] Phased Gibbs Sampling 
Reduced reconstruction error and 

training time 

Performance is sensitive to 

learning rate and batch size 

[6] Fuzzy RBM, SVM Speedy feature extraction 
The process of fuzzification is 

complex 

[13] SVM, Logistic Regression High Recognition Accuracy Limited generalization 

[18] Euclidean Stability High learning rate 
Stability is affected by 

regularization techniques 

[19] SVM, Random Forest Effective pattern classification 
The availability of high-quality, 

diverse datasets is limited. 

[20] 
Variational Mode 

Decomposition, LSTM, GRU 
Reduced RMSE and relative errors 

LSTM/GRU models are 

computationally intensive 

[21] 
Random Forest, Gated 

Recurrent Unit 
High Prediction Accuracy 

Increased training time and 

complex computational 

resources 

[25] 
Auto-encoders, vanishing 

gradient 

Eliminates the vanishing gradient 

problem, even distribution of 

rating data 

Needs complex computational 

resources 

[27] Transfer Learning, QCNN High Qualification Accuracy 
Quantum systems are subject 

to noise and errors 

[29] Generative models and LLMs 
Provides fine-grained structure 

information 

Controlling design aspects are 

challenging 

 

METHODOLOGY  

Pretraining Phase 

In order for the learned weights to accurately represent the input data, the pre-training stage attempts to initialise 

the DBN. Unsupervised learning is used in this pre-training phase, and each RBM module receives independent 

feature detector training. The initial layer of the ensemble, sometimes referred to as the input layer or bottom layer, 

works directly with the raw data to extract its features and build a latent representation in the process. Then, the next 

layer is trained using the output of the previous layer. Efficient feature learning is made possible by this greedy layer-

wise learning.  

Steps in Pretraining 

The Contrastive Divergence algorithm is used to train RBMs. CD is an iterative algorithm that approximates the slope 

of the log-likelihood of the data. There are two phases to the training: the good and the negative. The likelihood for 

the activation of the hidden units are computed in the positive phase by sampling the activation of the visible layer, 

and in the negative phase the opposite is true. Iterating this process several times covers different data samples, with 

weights updated following each iteration. The output layer, the final layer, is where the network's prediction is finally 

output. It involves the following steps: 

• Compute the expected values of the concealed units based on the input data (positive phase). 

• Sample from the hidden units to reconstruct the input (negative phase). 
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• To reduce the disparity between the beneficial and detrimental phases, modify the RBM's weights and 

biases. 

• If you have a deep architecture with multiple hidden layers, you repeat the RBM training process step by 

step. The result of one RBM becomes the information for the following one. This is referred to as layer-

wise pre-training. 

After training all the RBMs, you stack them together to create the deep architecture of the DBN. The connections 

between layers are set based on the trained RBM parameters. 

Fine-Tuning 

Once the DBN is constructed with initialized weights, it undergoes a fine-tuning phase. After the model weights are 

initialised and pre-training is finished, it is further adjusted for activities that come after. Labelled information and 

a supervised approach to learning, such as backpropagation, are used for fine-tuning. This allows the model to be 

trained for a variety of tasks, such as regression or classification, with faster training times and improved performance 

due to the initialised weights. Table 2 gives a comparative study of Contrastive Divergence (CD) and Persistent 

Contrastive Divergence (PCD). 

Table 2. Comparison of CD and PCD. 

Strength/Weakness CD PCD 

Simplicity Simple and easy to understand Relatively simple to implement 

Efficiency Converges quickly in early stages Faster convergence than CD 

Widely Used Commonly applied in practice Widely used in training deep networks 

Sampling Noise Sensitive to sampling noise 
Mitigates sampling noise through 

persistence 

Slow Convergence 
Slower convergence, especially in deep 

networks 

Faster convergence, particularly in deep 

networks 

Initialization Dependency Sensitive to initialization 
Improved weight initialization compared 

to CD 

ComputationCost Lower computational cost 
Higher memory requirements due to a 

persistent chain 

 

After comparing the existing training algorithms, we propose a training algorithm that aims at reducing the time 

complexity of the training algorithm while concentrating on achieving high accuracy. The process followed by the 

training algorithm is as follows: 

• Initialize Parameters 

• Load Training Data 

• Define Adaptive Learning Algorithm 

• Define Training Step 

• Training the Network 

• Evaluate Convergence 

• Post-Training Analysis 
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Algorithm 1. Proposed Training Algorithm for DBN 

1. Set the units that are visible to a training vector initially.  

2. Using the sigmoid function and the hidden layer's bias, update the hidden units concurrently concerning 

the visible units.  

3. Update the hidden units simultaneously with the visible units. We refer to this as the "reconstruction" 

process.  

4. Update the hidden units based on the rebuilt visible units.  

5. Execute the weight modification. 

 

Architectural Variants 

The basic structure of DBN can be extended to address the requirements of specific types of data to be operated on 

and types of tasks to be performed. One kind of deep belief network made up of several layers of convolutional RBMs 

stacked together is called a convolutional deep belief network (or CDBN). Although it has been used to other fields 

as well, this hierarchical generative model excels at object detection and image processing. The model's translation 

invariance and good scaling to high-dimensional images are among its key characteristics. 

Probabilistic max-pooling is a technique used by CDBNs to minimise the dimensions of the network's upper layers. 

CDBNs are employed in processing images. The other variant called Recurrent Deep Belief Networks are employed 

in processing the time series data and forecasting applications.  

It uses LSTMs and GRUs in order to manage long term dependencies. An input gate, an output gate, a forget gate, 

and a cell make up a typical LSTM unit. The three gates control the information flow into and out of the cell, and the 

cell retains values for arbitrarily long periods of time. Forget gates use a value between 0 and 1 to indicate which 

information from a prior state should be discarded in relation to the present input. 

With a mechanism that allows users to provide or forget specific features, the GRU functions similarly to an LSTM 

[2], but it has fewer parameters because it does not have an output gate or context vector.[3] It was discovered that 

GRU performed comparably to LSTM on a few tasks related to polyphonic music modelling, speech signal modelling, 

and natural language processing. 

Challenges 

• Vanishing [23-25] and Exploding Gradients: The obstacle known as the "vanishing gradient 

problem" arises during backpropagation when the activation functions' derivatives, or slopes, get lower 

as we proceed backward through a neural network's layers. This issue is especially noticeable in deep 

networks with plenty of layers, which makes it more difficult for the model to be trained effectively. It 

can greatly extend the training duration, cause the weight updates to become minuscule or exponentially 

small, or, in the worst case, completely stop the training process. 

• Data Availability: For efficient training, deep networks—including DBNs—need a lot of labeled data. 

It can be costly and time-consuming to obtain labeled data, particularly for specialized or specialist 

topics. But it is suggested to have a lot of labelled data for the training to be effective. 

• Choice of Hyperparameters: Selecting appropriate hyperparameters, such as learning rates, batch 

sizes, and regularization strengths, can be challenging. Grid search, random search, and automated 

hyperparameter tuning methods help in this regard. 

Trends 

• Transfer Learning [26, 27]: Pre-training DBNs on large datasets and fine-tuning them for specific 

tasks has been a successful trend. Models like convolutional neural networks (CNNs) and transformer-

based architectures are often pre-trained on vast corpora and fine-tuned for various tasks. 

• AutoML and Neural Architecture Search: Automated Machine Learning (AutoML) and Neural 

Architecture Search (NAS) aim to automate the process of finding optimal neural network architectures 

and hyperparameters, reducing the burden on practitioners. 
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• Sparse and Efficient Architectures: Research into making deep networks more computationally 

efficient and compact continues. Sparse activation techniques, quantization, and model compression are 

explored to deploy deep models on resource-constrained devices. 

• Self-Supervised Learning: Self-supervised learning techniques, where networks are trained to 

predict parts of their input data, have gained attention as a way to leverage unlabeled data for pre-

training. 

ADAPTATION OF DBNS 

Deep Belief Networks (DBNs) can be applied to a variety of machine learning tasks, such as classification, regression, 

clustering, and generative modeling. These networks can be modified suitably for each of the following tasks: 

Classification 

• Adaptation: For classification tasks, we modify the architecture of DBN by using a softmax layer or a 

sigmoid layer (for binary classification). This modified top layer allows the network to output class 

probabilities. 

• Process: After pre-training, we fine-tune the DBN using labeled data. In this case, we would be able to 

minimize the classification loss during training. 

• Applications: DBNs are used in applications where image processing is a major task. Frequent use 

cases include image classification, text categorization, and video processing for motion recognition. 

Regression 

• Adaptation: For regression tasks, you can modify the top layer of the DBN to have a single neuron with 

a linear activation function. This setup allows the network to predict continuous values. 

• Process: Similar to classification, after pre-training, you fine-tune the DBN using labeled data. In this 

case, you minimize a regression loss during training. 

• Applications: DBNs adapted for regression are employed in tasks like predicting housing prices, stock 

market analysis, and any problem involving the prediction of continuous numerical values. 

Clustering 

• Adaptation: To use DBNs for clustering tasks, you can leverage the features learned by the DBN's 

hidden layers to represent data points. Then, you apply clustering algorithms, such as k-means or 

Gaussian mixture models, to these feature representations. 

• Process: After pre-training the DBN, you extract the activations of the hidden layers for each data point. 

We use these feature representations as input to a clustering algorithm to group similar data points into 

clusters. 

• Applications: DBNs adapted for clustering are useful in unsupervised learning scenarios, including 

customer segmentation, anomaly detection, and document clustering.  

Generative Modelling 

• Adaptation: DBNs can be used for generative modeling tasks by fine-tuning them as generative models. 

This typically involves training the network to create fresh data samples that bear a resemblance to the 

training set. 

• Process: After pre-training, you fine-tune the DBN using a generative modeling [28, 29] approach. One 

popular approach is to use the contrastive divergence algorithm for fine-tuning RBMs in the DBN. Once 

fine-tuned, the DBN can create fresh samples by taking a sample from the probability distributions it has 

learned. 

• Applications: DBNs adapted for generative modeling are used in image generation, text generation, 

recommendation systems, and other tasks where generating new data samples is valuable. Here we delve 

into some of the prominent applications of DBNs and their impact on different fields. 

Image Recognition and Computer Vision 
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DBNs have revolutionized image recognition tasks by automatically learning feature hierarchies from raw pixel data. 

They have played a key role in enabling cutting-edge results in tasks including segmentation, classification, and object 

detection. 

Applications include medical image analysis for disease diagnosis, autonomous vehicles for scene understanding, 

and satellite image analysis for environmental monitoring. 

Natural Language Processing (NLP) 

Text categorization and sentiment analysis are two examples of natural language processing jobs that have been 

handled by DBNs.Sentiment analysis recognises and extracts "feeling" information from text by utilising machine 

learning and natural language processing (NLP) techniques. Sentiment information is frequently used to determine 

the overall emotion of a text and might be favourable, adverse, or neutral. The technique of giving unstructured text 

data predetermined categories is known as text classification. This is a typical NLP problem that has several uses, 

including spam detection, subject tagging, and sentiment analysis. 

Recommendation Systems 

Content-based and collaborative filtering, and even other systems like knowledge-based systems, are frequently used 

by recommender systems. Collaborative filtering techniques create a model based on historical user behaviour 

(products previously selected or bought, along with any numerical ratings) and comparable decisions taken by other 

users. Next, the user's potential interest in certain items (or rankings for objects) is predicted using this model. 

Content-based filtering techniques make use of an item's discrete, pre-tagged attributes to suggest other items that 

have those attributes. 

Drug Discovery and Bioinformatics 

Applying DBNs to bioinformatic analysis helps speed up the identification of therapeutic targets, as well as the 

screening and improvement of drug candidates. It can also make it easier to characterise adverse effects and 

anticipate drug resistance. They are also used in the course of developing a novel medication that targets a certain 

ailment.  

Financial Forecasting and Time Series Analysis 

In order to forecast future trends, behaviours, and responses based on historical data, time series analysis and 

forecasting are essential. Predicting market demand, sales changes, stock prices, and other factors helps 

organisations make well-informed decisions, optimise resources, and minimise risks. DBN promotes efficiency and 

competitiveness by supporting planning, budgeting, and strategy in a variety of fields, including banking, economics, 

medical care, environmental science, and resource management. 

In increasingly complex configurations, we use deep belief networks instead of deep feedforward chains as well as 

convolutional neural networks. They have the advantage of requiring less computing power. Unlike feedforward 

neural networks, where computational complexity increases exponentially with an increasing number of layers, it 

grows exponentially with the size of layers and is less vulnerable to the diminishing gradient issue. Table 3 

summarizes some common applications of Deep Belief Networks. 

Table 3. Applications of DBN. 

Application Description 

Image 

Recognition 

Using their capacity to learn hierarchical features, DBNs are applied to tasks including object 

identification, image classification, and facial recognition. 

Natural Language 

Processing 

In NLP, DBNs have been used for tasks like sentiment analysis, document classification, 

machine translation, and named entity recognition. 
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Speech 

Recognition 

DBNs are suitable for tasks like speech-to-text conversion, speaker identification, and 

emotion detection from speech. 

Anomaly 

Detection 

DBNs are effective for anomaly detection in various domains, such as cybersecurity (detecting 

network intrusions), healthcare (identifying abnormal medical data), and fraud detection. 

Recommender 

Systems 

Personalized recommender systems can be developed using DBNs to enhance user experience 

and engagement on e-commerce, streaming, and content platforms. 

Financial 

Forecasting 

DBNs have been applied to financial time series data for tasks like stock price prediction, risk 

assessment, credit scoring, and algorithmic trading. 

Drug Discovery 
In pharmaceutical research, DBNs are used for drug discovery tasks like molecular structure 

analysis, compound activity prediction, and virtual screening of potential drug candidates. 

Robotics 
DBNs play a role in robotics for tasks like object recognition, path planning, manipulation, 

and learning complex control policies for robotic agents. 

 

RESULTS 

In this section, we present the results by comparing the proposed training algorithm with the existing algorithms. 

Experimental Setup 

An Infinix Hot3G smartphone was utilised to take the photos for this study. In this technique, 1000 distinct 

photographs of both healthy and unhealthy rice plant leaves are taken. Different methods are compared with the 

suggested training algorithm for the performance analysis. Figure 1 - 5 compares the results of using several models 

and algorithms with the processed dataset. Implementation of the training algorithm is done in Python. 

 

Figure 1. Training Time Comparison. 
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Figure 2. Performance metrics comparison. 

 

Figure 3. Training Complexity of Proposed Algorithm. 
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Figure 5. Training Complexity of CD Algorithm. 
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Persistent Contrastive 

Divergence (PCD) 

Training Time (seconds) 500 800 600 

Time Complexity O(I) O(K×I×E) O(I×E) 
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Generalization Performance Good Moderate Good 

Recall 0.85 0.75 0.82 

F1 Score 0.87 0.78 0.85 

Accuracy 0.89 0.80 0.86 
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As seen in Table 4 above, the time required for learning about a specific dataset and the design of the model is 

indicated by the symbol "time," which is expressed in seconds. Big O notation is used to express time complexity, 

where I denote iterations, E denotes examples, and K denotes Gibbs sampling steps. The phrase "training complexity" 

describes the degree of algorithmic and computational complexity. The convergence. During training, speed indicates 

the speed at which the algorithm converges or finds a stable solution. The training process's uniformity and 

dependability are referred to as stability. Hyperparameter Sensitivity evaluates how responsive the algorithm can be 

to changes in the hyperparameters. 

CONCLUSION 

Deep Belief Networks (DBNs) are a stack of networks, each having picked up unique characteristics and attributes 

from the original data. DBNs can handle supervised and unsupervised tasks thanks to their intricate layer-wise neural 

architecture. We presented an adaptive approach for training DBN and also analyzed the various training algorithms 

used in the process of training DBNs. We started by delving into the pre-training phase, where Restricted Boltzmann 

Machines (RBMs) play a central role. We reviewed the Contrastive Divergence (CD) and Persistent Contrastive 

Divergence (PCD) algorithms, highlighting their advantages and disadvantages in initializing deep belief nets. 

Moving to the fine-tuning stage, we explored the use of backpropagation with gradient descent. Furthermore, the 

architectural variants of DBNs like CDBNs and RDBNs with their respective areas of application were discussed. 

CDBNs had an accuracy of over 95% when operated on standard image classification benchmarks like MNIST and 

ImageNet whereas RDBNs achieved an accuracy of over 90% on sentiment analysis and 85% for speech recognition 

on longer audio sequences. We highlighted the adaptation of DBNs for specific tasks, including classification, 

regression, clustering, and generative modeling. We also had compared the training complexity of the proposed 

algorithm with the existing algorithm. We found that the proposed algorithm outperformed other algorithms by 

training the model in 500 seconds whereas the existing algorithms like CD and PCD took 800 seconds and 600 

seconds respectively. 
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