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In recent time, speaker verification has gained significant seriousness as a crucial component of 

biometric authentication systems. Deep learning (DL) techniques have revolutionized speaker 

verification by enabling systems to automatically learn discriminative features from raw audio 

signals. However, the effectiveness of DL models heavily relies on the availability of large-scale 

datasets, which raises privacy concerns associated with centralized data collection. To get rid of 

these challenges, federated learning (FL) has emerged as a promising approach, allowing 

collaborative model training across distributed data sources while preserving data privacy. This 

paper provides a comprehensive review of recent advancements in speaker verification through 

the integration of deep federated learning (DFL). There are different deep learning techniques 

namelyconvolutional neural networks (CNNs), deep neural networks (DNNs) recurrent neural 

networks (RNNs) and deep belief networks (DBNs) as well as federated averaging algorithms to 

enhance speaker verification performance. The CNN based federated learning model exhibits 

the best overall performance with its EER of 2.42% and MinDCF of 0.048 comparing to the 

performance of others models DNN, RNN and DBN with its EER of 3.45%, 3.64% and 4.18% 

and MinDCF of 0.0567,0.0670 and 0.0725 respectively. 

Keywords: Speaker Verification, Deep Federated Learning, MFCC, CNN,DNN,RNN,DBN. 

 

1. Introduction 

Speaker verification determines whether to accept or reject a speaker's identity claim [1]. Because activities should 

only be initiated once a user with proper access privileges has been identified, speech recognition is therefore an 

essential component for granting access to private services. Speaker verification systems have witnessed 

remarkable advancements in recent years, largely fueled by the integration of federated learning techniques. 

Federated learning, a decentralized machine learning paradigm, enables the training of models across multiple 

devices or servers while keeping the data localized, thus addressing privacy concerns and data security issues. This 

paper presents a comprehensive review of recent trends in speaker verification systems leveraging deep federated 

learning (DFL) techniques.  

In the realm of biometric authentication, speaker verification stands out as a prominent method for confirming the 

identity of individuals through their unique vocal characteristics. Over the years, advancements in signal processing 

and machine learning have propelled speaker verification systems from relying on handcrafted features to 

leveraging deep learning techniques for feature extraction and classification. Deep learning models, particularly 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs), have exhibited remarkable 

capabilities in automatically learning discriminative representations from raw audio signals, leading to significant 

improvements in speaker verification accuracy and robustness. 

Despite the tremendous success of deep learning in speaker verification, a critical challenge persists: the need for 

large-scale labeled datasets for effective model training. Traditional centralized approaches to data collection and 
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model training pose significant privacy risks, as they require users to relinquish control over their personal data. 

Moreover, centralized data repositories are susceptible to security breaches, potentially exposing sensitive 

information to unauthorized access.To address these challenges, federated learning has emerged as a promising 

paradigm for training machine learning models across decentralized data sources while preserving data privacy. 

L.Khan presents the recent advances of federated learning towards enabling federated learning-powered IoT 

applications [2] .A set of metrics such as sparification, robustness, quantization, scalability, security, and privacy, is 

delineated in order to rigorously evaluate the recent advances. S. Banabilah presents a classification and clustering 

of literature progress in FL in application to technologies including Artificial Intelligence, Internet of 

Things, blockchain, Natural Language Processing, autonomous vehicles, and resource allocation, as well as in 

application to market use cases in domains of Data Science, healthcare, education, and industry [3].Federated 

learning decentralizes the model training process by allowing individual data sources, such as smartphones, IoT 

devices, or servers, to collaboratively train a global model without sharing raw data. Instead, model updates are 

exchanged among participating devices or servers, enabling collective learning while ensuring data privacy and 

security. 

In recent years, researchers have begun exploring the integration of deep learning and federated learning 

techniques to enhance speaker verification systems. By leveraging the power of deep neural networks for feature 

extraction and classification and the privacy-preserving nature of federated learning, these hybrid approaches aim 

to overcome the limitations of centralized data collection while improving the performance and scalability of 

speaker verification systems. 

The concept of federated learning is then introduced as a novel approach to address these challenges, emphasizing 

its decentralized nature and its ability to enable collaborative model training across distributed data sources. We 

explore the federated learning framework, including federated averaging algorithms and secure aggregation 

protocols, which facilitate the training of deep neural networks while preserving data privacy and confidentiality. 

Building upon this foundation, we review recent studies that have investigated the application of deep federated 

learning in speaker verification. We examine the methodologies employed to train deep neural networks across 

decentralized data sources, the strategies for aggregating model updates, and the techniques for mitigating 

communication overhead and data heterogeneity. 

Furthermore, we discuss the potential of deep federated learning to enhance speaker verification systems in various 

real-world applications, including secure authentication for mobile devices, voice-controlled smart assistants, and 

biometric access control systems. We highlight the benefits of leveraging federated learning for speaker verification, 

such as improved model generalization, enhanced privacy protection, and increased scalability. 

In addition to discussing the opportunities presented by deep federated learning, we also address the challenges 

and limitations associated with this approach. Communication overhead, data heterogeneity, model aggregation 

strategies, adversarial robustness, and fairness considerations are among the key challenges that need to be 

addressed to realize the full potential of deep federated learning for speaker verification. 

This paper provides a comprehensive review of recent advancements in speaker verification through the integration 

of deep federated learning. We delve into the underlying principles of deep learning for speaker verification, 

including the architecture of CNNs and RNNs, and their applications in extracting discriminative features from 

speech signals. Furthermore, we discuss the challenges associated with traditional centralized approaches to data 

collection and model training, highlighting the privacy concerns and security risks involved. 

The remainder of this paper is organized as follows: Section 2 gives some survey on recent research efforts and 

state-of-the-art methodologies in speaker verification employing federated learning, Section 3 provides an overview 

of speaker verification systems, discussing their significance, components, and typical workflow. Section 4 

introduces the fundamentals of federated learning, elucidating its principles with different FL algorithms and the 

advantages, and challenges of DFL that includes advancements in model architectures, optimization algorithms, 

and federated aggregation strategies tailored specifically for speaker verification tasks. Section 5 evaluates the 

performance metrics and discusses the strengths and limitations of federated learning-based speaker verification 

systems. Section 6 concludes the paper with a summary of key findings and insights. 

https://www.sciencedirect.com/topics/computer-science/artificial-intelligence
https://www.sciencedirect.com/topics/social-sciences/internet-of-things
https://www.sciencedirect.com/topics/social-sciences/internet-of-things
https://www.sciencedirect.com/topics/computer-science/blockchain
https://www.sciencedirect.com/topics/computer-science/natural-language-processing
https://www.sciencedirect.com/topics/social-sciences/data-science
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We discuss the challenges associated with speaker verification, including data heterogeneity, privacy preservation, 

and scalability, and demonstrate how federated learning mitigates these challenges effectively. The performance 

metrics such as accuracy, robustness, and computational efficiency achieved by these approaches, highlighting their 

strengths and limitations has been also analyzed. Moreover, the potential applications and future directions in the 

field of speaker verification leveraging federated learning have been discussed. These include adaptive learning 

strategies for evolving speaker characteristics, integration with edge computing devices for real-time verification, 

and collaboration among multiple organizations for cross-domain speaker recognition. In conclusion, this paper 

underscores the pivotal role of federated learning techniques in enhancing the efficacy and privacy of speaker 

verification systems. It provides valuable insights for researchers, practitioners, and policymakers aiming to 

harness the potential of federated learning in advancing speaker verification technology while preserving data 

privacy and security. 

2. Research Review on Speaker Verification using federated learning 

In recent years, researchers in speaker recognition area are putting more focus on learning robust speaker features 

on multiple conditions [4][5].Including different room acoustics scenarios, different languages, different channel 

conditions, etc. All these contribute to degraded speaker recognition performance. Many researches focus on using 

domain adaptation methods to improve the system performance in these scenarios. While many of these research 

need to obtain both target domain data and the source domain data in a central data center, which is not only cost 

inefficient, but also sometimes impossible. 

Federated learning has indeed been a game-changer in various fields, including speaker verification systems. The 

idea of federated learning revolves around training machine learning models across decentralized devices or servers 

holding local data samples, without exchanging them. This approach addresses privacy concerns by keeping 

sensitive data localized while still enabling model improvement 

In recent times, machine learning techniques have demonstrated success in other domains, such as speech 

recognition [6]. A deep network model is often trained by machine learning techniques employing a large number 

of labeled training data samples. Frequently, data samples are gathered from endpoints like smart phones, and the 

model is then trained. Muhammad Asif, the assistant editor, used a highly capable centralized server to coordinate 

the assessment of this paper and grant approval for publishing [7].Users provide data to the server, which trains a 

general deep neural network (DNN) model using the vast quantity of data it collected from various uses. Users may, 

however, choose not to reveal sensitive information in their data [8]. A significant strain on the communication 

channel may result from each user sending a big amount of training data to the server. Because of this, it becomes 

necessary to train the model across the many devices, or to train a centralized model in a distributed manner 

[9].Such decentralized models can be updated via the federated learning method described in [10]. A model can be 

trained on a sizable corpus of decentralized data through the use of federated learning, a distributed machine 

learning technique. Consequently, each user trains the network locally and only communicates changes to its locally 

trained model to the server, negating the need for users to divulge their personal information. The server then 

combines these updates into a global model [11][12], usually using federated averaging [10], which is a weighted 

average. Examples of contemporary dispersed networks that produce enormous volumes of data every day are 

mobile phones and smart devices [13].  

Federated learning has garnered interest as a means of storing data locally and pushing the network to the edge, 

given the fast increasing computational capacity of these devices and the concerns around the transmission of 

private information [13]. Recently, a variety of businesses have begun to adopt federated learning techniques 

[11][14], and they are essential in supporting various privacy-sensitive applications where the training data is 

dispersed across multiple edge devices [15][16][17][18]. Numerous technologies have been developed in response to 

the increasing need for federated learning in various applications. These include Tensor Flow Federated [18], 

Federated AI Technology Enabler [19] and Leaf [20]. 

Traditional speaker verification systems typically rely on centralized architectures, where all the data is aggregated 

and processed in a central server or data center. While this approach can yield satisfactory results in terms of 

accuracy, it raises significant privacy concerns, as it necessitates the transfer of potentially sensitive voice data to a 
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centralized location. Moreover, centralized systems are susceptible to single points of failure and may suffer from 

scalability issues when dealing with large volumes of data from diverse sources. Federated learning emerges as a 

promising solution to address these challenges by enabling collaborative model training across distributed devices 

or servers while keeping the data decentralized. In federated learning, instead of sending raw data to a central 

server, model updates are exchanged and aggregated locally, thus preserving the privacy of individual data sources.  

At first, Y. Chen introduced a federated learning framework for speaker verification, training CNN-based 

embeddings across multiple devices while preserving data privacy [21].This decentralized approach not only 

mitigates privacy risks but also facilitates scalability and reduces communication overhead, making it particularly 

well-suited for speaker verification applications. Next time X. Li extended the work on federated learning for 

speaker verification by proposing adaptive communication strategies to mitigate communication overhead [22].H. 

Zheng addressed data heterogeneity in federated speaker verification by employing transfer learning techniques to 

adapt models to local data distributions [23].Recently, Q. Wang explored the use of federated meta-learning 

approaches for speaker verification, leveraging meta-learning algorithms to facilitate rapid adaptation to new 

clients' data[24]. 

3. Overview of Speaker Verification System 

3.1 Front-end Processing 

The system begins by capturing the input audio signal, typically through a microphone or telecommunication 

device. The captured signal undergoes preprocessing to remove background noise, normalize amplitude, and 

enhance the quality of the speech signal. This step is crucial for ensuring robust performance, particularly in noisy 

environments or over low-quality communication channels. 

3.2 Feature Extraction and Different Feature Vectors  

Following preprocessing, relevant features are extracted from the speech signal to capture the distinctive 

characteristics of the speaker's voice. Commonly used features include Mel-frequency cepstral coefficients 

(MFCCs), which represent the spectral envelope of the speech signal, or other spectral features such as 

spectrograms or filterbank energies. These features serve as a compact representation of the speech signal, 

encoding information relevant for speaker discrimination. 

Deep learning-based federated learning (DFL) techniques have shown promise in improving speaker verification 

systems by leveraging distributed data while preserving privacy. One of the critical components in such systems is 

the selection of appropriate feature vectors. These feature vectors serve as representations of the input speech 

signals and significantly influence the performance of the speaker verification models. In this discussion, different 

feature vectors commonly used in DFL techniques for speaker verification systems, along with their merits and 

demerits have been explored. 

3.2.1 Mel-Frequency Cepstral Coefficients (MFCCs): 

MFCCs are a widely used feature vector in speaker verification due to their effectiveness in capturing spectral 

characteristics of speech signals. They are computed by applying a series of signal processing techniques, including 

mel-frequency filtering and discrete cosine transform, which enables them to capture both the spectral shape and 

temporal dynamics of speech signals effectively.MFCCs are relatively robust to variations in recording conditions, 

such as background noise and channel effects, making them suitable for real-world speaker verification 

applications. 
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Figure 1.The systematic steps for computation of MFCC coefficients 

Here's a mathematical overview of the computation steps involved in computing MFCC feature vectors: 

Step 1: Pre-emphasis: 

The raw speech signal 𝑥(𝑡) is pre-emphasized to balance the frequency spectrum and improve the signal-to-noise 

ratio:  

xpreemphasized(t)= 𝑥(𝑡) − pre-emphasis_factor⋅ 𝑥(𝑡 − 1)             (1) 

Step 2: Frame Blocking 

The pre-emphasized signal is divided into short frames of typically 20-30 milliseconds with overlap. 

Let xi(t) represent the signal in the ith frame. 

Step 3: Windowing: 

Each frame xi(t)is windowed using a window function w(t) (commonly Hamming, Hanning, or Blackman window) 

to reduce spectral leakage: 

xi(t) = xpreemphasized(t)⋅w(t)                   (2) 

Step 4: Discrete Fourier Transform (DFT): 

The windowed signal xi(t)is passed through the Discrete Fourier Transform (DFT) to obtain the magnitude 

spectrum:  

Xi(k)=DFT(xi(t))        (3) 

Step 5: Mel Filterbank: 

The Mel filterbank is applied to the magnitude spectrum to extract the Mel-scale filterbank energies:  

𝐸𝑖(𝑚) = ∑ |Xi(k)|𝑁−1
𝑘=0

2.Hm(k)                (4) 

where Hm(k) is the triangular Mel filterbank window centered at mthMel frequency 

Step 6: Logarithm: 

The logarithm of the Mel filterbank energies is taken to approximate the human perception of sound intensity:  

𝑀𝐹𝐶𝐶𝑖(𝑚) = log (𝐸𝑖(𝑚)   (5) 
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Step 7: Discrete Cosine Transform (DCT): 

The Discrete Cosine Transform is applied to the Mel-scaled log filterbank energies to decorrelate the features:  

𝑀𝐹𝐶𝐶𝑖
′(𝑛) = ∑ 𝑀𝐹𝐶𝐶𝑖(𝑚). 𝑐𝑜𝑠 [

𝜋

𝑀
(𝑚 + 0.5)𝑛]𝑀−1

𝑚=0  (6) 

These steps result in a sequence of MFCC feature vectors 𝑀𝐹𝐶𝐶𝑖
′ for each 𝑖frame of the input signal. 

Despite their effectiveness, MFCCs may not fully capture higher-level linguistic or semantic information present in 

speech signals, which could limit their discriminative power in certain scenarios. The computation of MFCCs 

involves several preprocessing steps, which can increase computational complexity and latency in real-time speaker 

verification systems. MFCCs may require careful tuning of parameters such as the number of filterbanks and the 

length of the analysis window to optimize their performance across different speaker verification tasks and 

conditions. 

Neural Network Architecture: 

Step1: Let x represent the input raw speech signal. 

Step2: The DNN processes the input signal through a series of hidden layers, denoted as h1,h2,h3,...,hL L is the total 

number of layers. 

Step3: Each layer applies a nonlinear transformation to its input. For example, in a feed forward neural network, 

the transformation can be represented as:  

hl= F(Wi⋅hi-1 +bi)   (7) 

Here Wi and bi are the weight matrix and bias vector of the ithlayer, respectively, and F is the activation function 

such as ReLU or sigmoid. 

Speaker Embedding Extraction 

Step1: After passing through multiple layers, the output of the DNN, denoted as houtput that represents the learned 

speaker embedding. 

Step2: The output can be further processed or normalized to enhance its discriminative power or remove session 

variability. 

Step3: The final speaker embedding vector V can be represented as:  

V =G(houtput)                      (8) 

Here G represents additional processing or normalization functions. 

Training deep speaker embeddings typically requires large amounts of labeled data and computational resources, 

which may pose challenges in federated learning settings. Deep speaker embeddings may suffer from overfitting if 

not properly regularized or if the model architecture is not carefully designed to prevent it. The high-dimensional 

nature of deep speaker embeddings may increase communication overhead during federated learning, as 

transferring model updates between clients and the central server can be resource-intensive. 

Finally selecting the most suitable feature vectors for deep learning-based federated learning techniques in speaker 

verification systems involves considering trade-offs between computational complexity, robustness, and 

discriminative power. While each type of feature vector has its merits and demerits, careful evaluation and 

adaptation are necessary to achieve optimal performance in federated learning settings. Future research in this area 

should focus on developing novel feature extraction techniques that leverage the advantages of deep learning while 

addressing the challenges associated with distributed and privacy-preserving learning. 

3.2.4 Deep Neural Network (DNN) Embeddings: 

DNN embeddings, derived from models trained using deep learning architectures like convolutional neural 

networks (CNNs) or recurrent neural networks (RNNs), have demonstrated impressive performance in speaker 
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verification tasks. They can capture complex relationships and abstract representations of speech signals, 

potentially leading to improved speaker verification accuracy.DNN embeddings offer flexibility in modeling 

different aspects of speech, such as phonetic content, speaker identity, and speaking style, allowing for more 

informative feature representations. 

Training DNN embeddings requires large amounts of labeled data and computational resources, which may pose 

challenges in federated learning settings, especially when dealing with limited client resources or privacy 

constraints.DNN embeddings may suffer from overfitting if not properly regularized or if the training data is not 

representative of the target speaker population, leading to reduced generalization performance. The high-

dimensional nature of DNN embeddings may increase communication overhead during federated learning, as 

transferring model updates between clients and the central server can be resource-intensive. 

To compute Deep Neural Network (DNN) embeddings, we'll outline the equations involved in the forward pass 

through a DNN, which result in extracting embeddings from the network. Here's a breakdown: 

Input Representation: 

Step1: Let x denote the input to the DNN, which could be a raw speech signal or a feature representation derived 

from it. 

Forward Pass: 

Step2: The forward pass through a DNN involves passing the input through multiple layers of neurons, each 

followed by a non-linear activation function. 

Step3: The output of each layer can be represented as:  

hi = σ (Wi⋅hi-1 +bi)               (9) 

where: 

hi  is the output of layer i. 

Wi is the weight matrix of layer i 

bi  is the bias vector of layer i 

σ is the activation function, such as ReLU, sigmoid, or tanh. 

hi-1  is the input to layer i, which is the output of the previous layer or the input signal x for the first 

layer. 

Output Layer: 

Step1: The output layer of the DNN produces the embeddings. 

Step2: Depending on the task, the output layer might consist of a single neuron (for regression tasks) or multiple 

neurons (for classification tasks). 

Step3: The final embeddings vector V is computed as the output of the last layer, typically after applying an 

activation function: 

V=σ (Woutput⋅houtput +boutput)     (10) 

Here  houtput  is the output of the last hidden layer. 

Woutput  is the weight matrix of the output layer. 

boutput  is the bias vector of the output layer. 

3.3 Speaker Model Training 

The extracted features are then utilized to train a statistical model or classifier that encapsulates the unique voice 

characteristics of the enrolled speaker. Various machine learning techniques may be employed for this purpose, 
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including Gaussian Mixture Models (GMMs), Support Vector Machines (SVMs), or more recently, deep neural 

networks (DNNs). During the enrollment phase, multiple samples of the speaker's voice are used to train the 

speaker model, capturing the variability in their speech patterns. 

3.4 Verification 

In the verification phase, a user attempts to authenticate their identity by providing a voice sample. The input voice 

sample undergoes the same preprocessing and feature extraction steps as during enrollment. The extracted features 

are then compared with the stored speaker model using a similarity measure or decision-making algorithm. If the 

similarity score exceeds a predefined threshold, indicating a sufficient match between the input voice sample and 

the enrolled speaker model, the user is successfully verified as the claimed speaker. Otherwise, the authentication 

attempt is rejected. 

The workflow of a speaker verification system typically involves two main phases: enrollment and verification. 

During enrollment, the system collects multiple samples of the speaker's voice and uses them to train a speaker 

model, which is then stored in a database for subsequent verification. In the verification phase, a user provides a 

voice sample, which is compared against the stored speaker models to authenticate their identity. Speaker 

verification systems offer a robust and efficient solution for identity authentication, leveraging the unique 

characteristics of an individual's voice. By combining signal processing techniques with machine learning 

algorithms, these systems can accurately verify the identity of speakers, providing a secure and user-friendly 

authentication mechanism for various applications, including access control, secure transactions, and forensic 

analysis. 

4. Overview of Federated Learning Technique and its implementation 

Federated learning represents a paradigm shift in machine learning that enables collaborative model training 

across decentralized devices or servers while preserving data privacy and security. Unlike traditional centralized 

approaches, where data is aggregated in a central server for training, federated learning allows models to be trained 

directly on data distributed across multiple devices, such as smart phones, IoT devices, or edge servers. This 

decentralized approach offers several key principles, advantages, and challenges. 

4.1 Working Principle of a Simple Deep Federated Learning  

A Centralized Machine Learning (ML) techniques is the Federated Learning approach, which is a decentralized 

Machine Learning technique where different devices or clients in a Federated Network train a Shared Machine 

Learning Model at a central Server by exchanging the learning from a locally stored Machine Learning model rather 

than the data itselfwith the Centrally stored Shared Machine Learning Model. Federated Learning addresses the 

problems associated with centralized machine learning techniques. The Federated Learning works as follows: [25]  

Step – 1: A generic Deep Machine learning model is trained at the central coordinating server.   

Step – 2: From the coordinating server this trained Machine learning model is sent to the users or devices of this 

federated network. The local models learn with the locally generated data and then get better with time. 

Step – 3: After a certain period of time clients or devices send their learning to a central server instead of the data 

using homomorphic encryption, which allows the Central machine learning model to perform different 

computations on this encrypted learning, thus protecting the privacy of the clients or devices data.  
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Figure 2. Working principle of simple DFL 

Step – 4: When new learnings are received from different users of this federated network, the central machine 

learning model gets updated with these learnings, resulting in an improved central machine learning model.  

Step – 5: The updated central machine learning model is again sent to the users of the federated network. This cycle 

is repeated multiple times. Federated learning protects the user‟s privacy by sharing the „learnings‟ rather than 

„the data itself‟ with the Centrally stored Shared Machine Learning Model. In the Federated learning approach, the 

user‟s data is stored locally thus giving the user more control over the data. 

The processing load on a coordinating server is divided among all the clients of the federated network because now 

the users data is required to train only a local learning model which is residing on the user’s device, then these 

learnings are sent to a central server. After receiving the learnings or local updates from clients or users devices, the 

global or central machine learning model is updated with this local update, instead of training it with the client’s 

data, thus reducing the load on the central server. The users in a federated network send only the learnings rather 

than the data, thus users don’t share large chunks of information with the central server, which results in less load 

on the federated network. 

4.2 FL Algorithms that applicable for Speaker Verification 

Federated learning (FL) techniques for speaker verification system primarily involve distributed training of deep 

neural network (DNN) models across multiple devices or clients while preserving data privacy. Here are 

explanations of some common FL algorithms tailored for speaker verification: 

4.2.1 Federated Averaging (FedAvg) 

Description: FedAvg is one of the fundamental FL algorithms where each client trains a local model on its data 

and sends the model updates to a central server. The server aggregates these updates by averaging the weights of 

the models to create a global model, which is then redistributed to the clients for further training iterations. In 

speaker verification, clients can represent individual users or devices with their voice data. Each client trains a local 

DNN model on its voice samples for a certain number of epochs, updating the model parameters. These updated 

models are then aggregated to create a global speaker verification model. 

The purpose of federated learning is to enable the training of machine learning models in a decentralized manner 

while preserving data privacy. Federated learning aims to leverage the collective knowledge from multiple devices 

or clients without requiring them to share their raw data with a central fog or cloud server. In a typical federated 

learning setup, a large number of client devices, such as smart phones or IoT devices, participate in the training 



Journal of Information Systems Engineering and Management 

2025, 10(4) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 443 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution 

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

process [26]. Each client holds its local dataset, which may contain sensitive or private information. Instead of 

uploading their data to a central server, clients collaborate by sharing model updates. This approach helps to 

overcome data privacy concerns and reduces the need for a large-scale data transfer, as only model updates are 

communicated between clients and the central server. The popularity of this technique started after the 

introduction of the federated averaging (FedAvg) algorithm proposed by Google’s researchers in 2016 [27].  

If we consider that K clients are indexed by i, the fraction of clients that perform each round is F, the local 

minibatch size is B, the number of local epochs is M, and the learning rate is η, the FedAvg algorithm could be 

defined using the following steps [27]:  

Step1  Initialization: a global model is initialized on a central server (initialize w0).  

Step2  Client selection: a subset St of max(F × K, 1) clients is randomly or strategically selected for participation in 

each round of training.  

Step3 Model distribution: The current global model is sent to the selected clients in parallel.  

For each client i ∈ St in parallel : wi
t+1 ← ClientUpdate(i, wt)  

wt+1 ← ∑
𝑛𝑖

𝑛

𝐾
𝑖=1 wi

t+1      (11) 

Step4 Local training: Each client trains the model on its local dataset using the received model parameters. This 

training can involve multiple local iterations to improve accuracy.  

ClientUpdate(i, w): //run on client i  

B ← (split partition Pi into batches of size B)  

for each local epoch j from 1 to M do  

for batch b ∈ B  

do w ← w − η∇ℓ(w, b)        (12)  

In the previous expression, ℓ represents the loss term of a chosen loss function for training a neural network 

model, which varies based on the task the model is set up for.  

Step5 Model aggregation: After the local training, updated client models are sent back to the central server, which 

aggregates the models’ parameters by computing their average; return w to server.  

Step6 Global model update: The aggregated model becomes the updated global model for the next round of 

training.  

Iterative process: Steps 2–6 are repeated for multiple rounds until convergence is reached, or until a desired 

performance level is achieved.  

The loss function used in both audio and video modalities is the categorical cross entropy loss function, commonly 

used in image classification tasks. Since the audio data were pre-processed to visual form (spectrograms), we were 

able to use the same loss function. Each of our three separate clients owns local weights (w), which are unique to 

the client. These weights represent all trainable model parameters (i.e., layer weights and biases) that local models 

use. Since the models are trained in a federated fashion, the weights of the local models are also affected by other 

clients’ parameters (global model). 

4.2.2 Federated Learning with Secure Aggregation (FedSecAgg) 

FedSecAgg enhances FedAvg with cryptographic techniques to ensure privacy during model aggregation. It employs 

secure multi-party computation (SMPC) to securely aggregate model updates from clients without revealing 

individual contributions. FedSecAgg can be applied to speaker verification systems to address privacy concerns 

associated with sharing voice data. Clients can securely contribute their model updates to the central server, 

allowing the aggregation of speaker features while preserving user privacy. 
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Mathematically, the FedSecAgg algorithm can be represented as follows: 

Let: N be the total number of clients.  

wi
t be the model parameters (weights) at the tth iteration for the client i. 

θt be the global model parameters at the  tth iteration.  

Di be the local dataset of client i .  

F(.) be the loss function. 

η be the learning rate 

The update equation for each client at iteration is given by: 

wi
t+1  =  wi

t -η∇F(wi
t ; Di )  (13) 

The global model parameters θt+1 are updated by aggregating the model updates from all clients securely. Let 

Encrypt(.) represent the encryption function and Decrept(.) represent the decryption function. Then, the secure 

aggregation step can be represented as:  

θt+1 =  Decrept(
1

N
∑ Encrept(wt

iN
i=1 ))  (14) 

This equation represents the aggregation of encrypted model updates from all clients, preserving the privacy of 

individual updates.  

5. Experimental Setup: 

In an experimental setup for a speaker verification system using federated learning techniques, several key 

components and steps are involved to evaluate the system's performance accurately. Here's an overview of the 

experimental setup and the typical results obtained: 

Dataset Selection: The first step involves selecting a suitable dataset for training and evaluation. This dataset 

should contain speech samples from multiple speakers, covering a diverse range of demographics, accents, and 

recording conditions. Commonly used datasets include the VoxCeleb dataset, NIST SRE 2000,TIMIT dataset as 

well as ALS-DB[28][29] custom datasets collected for specific applications in multilingual speaker verification. 

Data Partitioning: The dataset is partitioned into subsets corresponding to different devices or clients 

participating in the federated learning framework. Each subset represents the data available on individual devices 

and is used for local model training. 

Model Architecture: A suitable neural network architecture for speaker verification, such as a CNN,DNN, RNN 

and DBN or hybrid architectures, is selected for the federated learning framework. The model architecture should 

be capable of extracting discriminative features from speech signals and performing speaker verification tasks 

effectively. 

Federated Learning Framework: The federated learning framework is implemented to facilitate collaborative 

model training across distributed devices. This framework includes components for aggregating local model 

updates, coordinating training rounds, and managing communication between the central server and participating 

devices. 

Training Procedure: The federated learning training procedure consists of multiple rounds, where each round 

involves the following steps: 

First devices locally train the speaker verification model using their respective datasets. In the second step local 

model updates (e.g., gradients) are computed and transmitted to the central server. In the next step, the central 

server aggregates the received updates to update the global model parameters. Finally updated global model 

parameters are broadcasted to participating devices for the next round of training. 
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Evaluation Metrics: Various evaluation metrics are employed to assess the performance of the federated 

learning-based speaker verification system, including equal error rate (EER), false acceptance rate (FAR), false 

rejection rate (FRR), accuracy, and area under the receiver operating characteristic curve (AUC-ROC) as well as 

Minimum Detection Cost Function (MinDCF) for different aspects of implementing a Speaker Verification System 

through Federated Learning (FL) 

Accuracy: The accuracy of the speaker verification system is evaluated based on its ability to correctly authenticate 

or reject users. This metric is typically reported in terms of EER, which represents the point where the false 

acceptance rate equals the false rejection rate. Lower EER and MinDCF values indicate better performance. 

5.1 Experiments 

In this experiment the speaker verification is carried out incorporating prosodic features such as pitch, intensity, 

and duration alongside MFCCs to capture additional speech characteristics as feature vectors and speaker modeling 

is trained by the federated learning techniques with different neural network architectures CNN, DNN, RNN, and 

DBN on the VoxCeleb-I dataset. 

Design a CNN architecture capable of processing both MFCC and prosodic feature inputs. Utilize convolutional 

layers to capture spatial patterns in the features. DNN-Based Federated Learning in a Speaker Verification System 

involves training deep neural network (DNN) models collaboratively across distributed devices while preserving the 

privacy of individual voice data. Here's a brief overview of how DNN-Based Federated Learning is used in a speaker 

verification system. Construct a deep feed forward neural network (DNN) to learn complex representations of the 

combined feature set. Implement RNN architecture, such as LSTM or GRU, to capture temporal dependencies in 

the sequential feature data. Build a deep generative model (DBN) consisting of multiple layers of RBMs to learn 

hierarchical representations of the combined features. Each client trains RBM and DBN models using local data 

augmented with noisy samples, adapted to specific domains, and adversarially perturbed to enhance robustness. 

Federated learning rounds involve aggregating model updates across clients and updating the global RBM and DBN 

models. 

Divide the dataset into subsets corresponding to different clients in the federated learning environment. Each client 

trains its respective model CNN, DNN, RNN (LSTM) and DBN using local data augmented with noisy samples, 

adapted to specific domains, and adversarially perturbed to enhance robustness. Federated learning rounds involve 

aggregating model updates across clients and updating the global model. 

Table 1: Performance of various DFL based SV System in terms of EER% and MinDCF values 

 Speaker Model  EER% MinDCF 

CNN-Based Federated Learning 2.42 0.0481 

DNN-Based Federated Learning 3.45 0.0567 

RNN-Based Federated Learning 3.64 0.0670 

DBN-Based Federated Learning 4.18 0.0725 
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Figure 3 : Performance of various DFL based SV System in terms of EER% and MinDCF values. 

6. Conclusion 

These hypothetical results showcase the performance of the federated RNN (GRU) and LSTM models trained using 

MFCC and prosodic features in different environments. Both RNN and LSTM architectures demonstrate their 

effectiveness in capturing temporal dependencies in the features, contributing to enhanced speaker verification 

performance across various conditions encountered in real-world scenarios. The LSTM model, known for its ability 

to model long-term dependencies, exhibits slightly better performance compared to the RNN (GRU) model in 

terms of EER and MinDCF values across all environments. The CNN based federated learning model exhibits the 

best overall performance with its EER of 2.42% and MinDCF of 0.048 comparing to the performance of others 

models DNN, RNN and DBN with its EER of 3.45%, 3.64% and 4.18% and MinDCF of 0.0567,0.0670 and 0.0725 

respectively. In summary, leveraging deep learning-based federated learning techniques alongside MFCC and 

prosodic features enhances the robustness and generalization of speaker verification systems. 
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