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This study compares four methods—Fuzzy C-Means, Region Growing, K-Means, and 

Expectation-Maximization—for splitting MRI spine images into different sections. Accurate 

segmentation of MRI spine images is key for diagnosing, planning treatments, and keeping 

track of spine conditions. We assess each algorithm's performance in MRI spine picture 

segmentation and discuss its advantages, disadvantages, and common uses.FCM's ability to 

handle noise and overlapping structures, Region Growing's suitability for capturing irregular 

shapes, K-Means' computational efficiency, and EM's probabilistic modeling capabilities are 

examined in the context of MRI spine image segmentation. The comparative analysis aims to 

provide valuable insights into the performance and suitability of these algorithms for MRI 

spine image segmentation, thereby aiding medical professionals and researchers in selecting 

appropriate segmentation techniques for clinical and research purposes. 

Keywords: MRI spine image segmentation, Clustering algorithms, Comparative analysis, 

Fuzzy C-Means (FCM), Region Growing (RG), K-Mean, Expectation-Maximization (EM), 

Computational efficiency, automated segmentation. 

 

INTRODUCTION 

Segmentation of MRI spine images into sections is crucial for many medical tasks, including diagnosing and 

planning treatment for spine problems. Accurate delineation of anatomical structures within MRI scans is essential 

for precise localization of abnormalities and subsequent clinical decision-making. Clustering algorithms offer 

powerful tools for automated image segmentation by partitioning the image into homogeneous regions based on 

intensity, texture, or other features. In this study, we conduct a comparative analysis of four widely used clustering 

algorithms—Fuzzy C-Means (FCM), Region Growing, K-Means, and Expectation-Maximization (EM)—specifically 

tailored for MRI spine image segmentation. Fuzzy C-Means (FCM) is known for its ability to handle noise and 

accommodate overlapping structures, making it suitable for segmenting MRI spine images where signal intensity 

variations can be subtle. Region Growing, on the other hand, excels in capturing irregularly shaped regions, which 

are common in MRI spine images due to complex anatomical structures and pathology. K-Means clustering is 

valued for its computational efficiency and simplicity, making it an attractive option for large-scale segmentation 

tasks. Expectation-Maximization (EM) algorithm offers probabilistic modeling capabilities, allowing for a flexible 

representation of the underlying data distribution in MRI spine images. 

In our comparative analysis, we're focusing on understanding the strengths, weaknesses, and common uses of 

clustering algorithms like Fuzzy C-Means, Region Growing, K-Means, and Expectation-Maximization specifically 

in segmenting MRI spine images. By examining their performance metrics, computational efficiency, and how well 

they handle image imperfections, we aim to offer insights for choosing the right segmentation approach for clinical 

and research needs. Ultimately, this study aims to advance automated MRI spine image segmentation methods, 
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leading to more accurate and efficient diagnosis and treatment planning for spinal disorders in clinical practice. 

This paper presents a way to make camouflage patterns by mixing rectangle blocks and FCM clustering. First, it 

rearranges the background picture using rectangles but keeps its texture. Then, it finds the main colors of the 

background with FCM clustering, which is faster than other ways. It also smooth’s the edges of the blocks. They 

compared this method to others and found it's faster and the pattern it creates looks more like the background. 

Tests show that the camouflage made with this method blends nicely with the background. [1]  

The paper underscores the importance of Fuzzy C-Means (FCM) clustering for image segmentation, particularly in 

medical imaging. It emphasizes the significance of each step's results for manual analysis and improvement. FCM 

is lauded as the most effective unsupervised learning method, offering accurate segmentation crucial for 

diagnosing conditions like brain tumors. The method facilitates boundary detection and ROI identification, 

enabling medical professionals to make informed decisions for patient care. [2] 

The research presents a new method for finding lumbar spine problems by using advanced techniques for 

extracting features, preparing data, dividing images, classifying results, and checking accuracy. These 

improvements make the method more accurate and effective, tackling major challenges in the field. Validation 

using the NOS strengthens the study's credibility, with implications for medical diagnosis and treatment, 

potentially improving healthcare outcomes. Future research may explore real-time datasets to further refine the 

approach in the evolving landscape of machine learning and medical imaging. [3] 

The paper reviews current ways to divide the human spinal cord from MRI scans. It covers methods for segmenting 

images, using shape features, preparing the images, and checking the results. It outlines the pros and cons of 

current segmentation algorithms, noting that intensity-based techniques are fast but may produce errors in 

complex cases, while co-registration to templates can aid segmentation accuracy. Overall, the paper aims to 

enhance understanding and address challenges in spinal cord segmentation for improved medical imaging 

analysis. [4] 

This paper presents VBSeg, a novel segmentation approach for extracting lumbar vertebrae from MRI scans. 

Utilizing superpixel segmentation and Otsu's method, VBSeg effectively delineates vertebra contours, particularly 

useful for detecting malignant fractures. The final segmentation employs region growing with user-selected seeds, 

significantly reducing the time and effort required for manual segmentation by medical specialists. Comparative 

experiments demonstrate VBSeg's high precision (80%) and recall (87%), highlighting its potential to aid clinical 

practices by assisting in the identification of bone marrow abnormalities in vertebral bodies. [5] 

This study aims to recognize chronic low back pain (CLBP) during various movements using different feature sets. 

Through statistical analysis and feature selection, 31 features are categorized into five sets. Employing two SVM 

classifiers improves recognition accuracy, achieving a maximum of 98.04% with a feature subset. Limitations 

include a small sample size and exclusion of patients with complicated CLBP conditions, suggesting the need for 

larger datasets and advanced machine learning tools for future research [6]. 

The paper presents improvements to the fuzzy C-means (FCM) algorithm for dividing images. It adds a special 

weighted factor and a kernel metric to make the method more accurate and reliable. Tests show that these changes 

help the algorithm handle noise better in image segmentation. [7] 

The study presents a semiautomatic method for lumbar intervertebral disc segmentation using probabilistic atlases 

and fuzzy clustering. RFCM methods notably enhance accuracy over FCM, especially for degenerated discs. Despite 

reduced accuracy for degenerated discs, atlas-RFCM accurately identifies pathologies like herniation. Pilot testing 

indicates comparable classification accuracy between manual and semiautomatic segmentation, with substantial 

time savings for the latter. [8] 

The paper addresses the increasing demand for disc herniation diagnosis by proposing a Computer-Aided 

Diagnosis (CAD) system to support radiologists. It implements variational level set and watershed segmentation 

techniques to accurately isolate herniated discs from medical images. While watershed segmentation exhibits 

better accuracy, it faces challenges with over-segmentation, prompting future research on classification and 

alternative diagnostic modalities. [9] 
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The paper introduces parallel versions of an image segmentation algorithm used in remote sensing, achieving 

faster processing with similar results to sequential methods. It utilizes GPUs to process each pixel separately, 

leading to significant speedups. Addressing large image processing challenges remains an open issue for future 

research, with algorithm implementations available for educational and research purposes. [10] 

This paper looks at automatically highlighting important parts of the lumbar spine in MRI scans, which is essential 

for finding lumbar spinal stenosis, a common cause of long-term lower back pain. Compared with eleven other 

approaches, we achieved improved segmentation accuracy by using a patch-based neural network trained on 

individual MRI data. Our method shows potential for enhancing the diagnosis of lumbar spinal stenosis in clinical 

settings by effectively highlighting significant boundaries through the use of metrics like pixel accuracy and 

Intersection over Union. [11] 

Advancements in digital image editing make it easy to alter images undetectably, raising concerns about verifying 

their authenticity. Digital images are vital in fields like newspapers and courts, but many modern cameras lack 

built-in safeguards like watermarks for authentication. Detecting unauthorized changes in these images is crucial 

but challenging, requiring ongoing efforts in image forensics. [12] 

This study examines how well expert annotators agree when marking medical image abnormalities, which is vital 

for training AI systems. It uses heat maps and statistical tools like Cohen’s kappa and Fleiss’ kappa to measure 

agreement. The STAPLE algorithm helps create reliable training data for AI models by assessing metrics like 

Intersection over Union (IoU), sensitivity, and specificity. Tests on cervical colposcopy and chest X-ray images 

show why using multiple evaluation methods is crucial for fair and reliable medical image annotation. [13] 

This paper introduces a method to accurately find and identify vertebrae using a mix of advanced and traditional 

computer techniques. It automates the process of outlining the spine and pinpointing each vertebra's location 

without needing detailed annotations for training. Tested on real medical data, including challenging cases like 

scoliosis, the method proved highly accurate. By sharing the code openly, this research helps others replicate and 

build upon these results for better spine analysis in medicine. [14] 

METHODOLOGY 

The objective of this work is to compare four clustering techniques for MRI spine image segmentation: 

Expectation-Maximization (EM), K-Means, Region Growing, and Fuzzy C-Means (FCM). Performance indicators, 

computational efficiency, and noise resilience will be the basis for comparison. 

1. Dataset Preparation 

Dataset: Obtain a well-annotated dataset of MRI spine images. 

Preprocessing: Apply preprocessing steps such as noise reduction (e.g., Gaussian filter), intensity normalization, 

and possibly contrast enhancement. 

2. Clustering Algorithms Overview 

Fuzzy C-Means (FCM): Fuzzy C-Means (FCM) is a flexible method that allows each data point to be part of multiple 

clusters, with varying degrees of membership. 

Region Growing: A region-based segmentation technique starts with a point (the seed) and expands the area by 

adding nearby pixels that match a certain similarity criterion.  

K-Means: A hard clustering algorithm splits the data into K clusters by minimizing the distance between data 

points and the center of each cluster. 

Expectation-Maximization (EM): A probabilistic algorithm that repeatedly adjusts the parameters of a Gaussian 

Mixture Model (GMM) to make the model fit the observed data as well as possible. 

  3. Data Preparation 

Selection of Images: Select a subset of images for training and testing, ensuring a variety of cases including 
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different pathologies and noise levels. 

Ground Truth: Use expert-annotated segmentations as ground truth for evaluation. 

4. Implementation of Algorithms 

Parameter Tuning: Optimize the parameters for each algorithm (e.g., number of clusters for K-Means and FCM, 

seed selection criteria for Region Growing, initialization and convergence criteria for EM). 

5. Segmentation Process: 

FCM: Apply FCM clustering to the preprocessed images and obtain membership values for each pixel. 

Region Growing: Initiate region growing from manually or automatically selected seed points and grow regions 

based on intensity similarity. 

K-Means: Apply K-Means clustering and assign each pixel to the cluster with the nearest centroid. 

EM: Apply the EM algorithm to fit a GMM to the image intensities and assign each pixel to the cluster with the 

highest posterior probability. 

6. Performance Evaluation Metrics 

Dice Coefficient: Measures how much the segmented area matches the actual (ground truth) area.  

Accuracy: The ratio of correctly identified pixels to the total number of pixels. 

Sensitivity and Specificity: Measure the true positive and negative rates, respectively. 

Computational Time: Measure the time taken to segment each image. 

7. Implementation Details 

1. Fuzzy C-Means (FCM) 

Initialization: Randomly initialize the membership matrix. 

Iteration: Update cluster centers and membership values until convergence. 

Stopping Criterion: Typically based on the change in membership values or a predefined number of iterations. 

2. Region Growing 

Seed Selection: Manually or automatically select seed points. 

Growth Criterion: Define a similarity measure (e.g., intensity threshold). 

Stopping Criterion: Region growth stops when no more pixels satisfy the similarity criterion. 

3. K-Means 

Initialization: Randomly select initial cluster centers. 

Iteration: Assign pixels to the nearest cluster center and update cluster centers until convergence. 

Stopping Criterion: Typically based on the change in cluster centers or a predefined number of iterations. 

4. Expectation-Maximization (EM) 

Initialization: Estimate initial parameters for the GMM. 

E-Step: Calculate the posterior probabilities for each pixel belonging to each Gaussian component. 

M-Step: Update the parameters of the GMM to maximize the likelihood. 

Stopping Criterion: Typically based on the change in log-likelihood or a predefined number of iterations. 

To implement FCM/RG/Kmeans & EM for spinal cord segmentation, we have followed these steps: Start by 
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loading the MRI image. Then, get it ready for analysis. Apply FCM/RG/Kmeans & EM to create a refined image. 

Use methods like erosion and dilation to enhance the segmentation and reduce any noise. Finally, compare the 

segmented image with the actual spinal cord image to ensure accuracy. 

  Here's a detailed breakdown of the code implementation steps along with the type of output obtained at each step: 

  Read the input image first.  

Step 2: Use Otsu's threshold to convert to binary.  

Step 3: Complete the gaps.  

Step 4: Use morphological processes  

Step 5: Create the ROI Mask by filling in the gaps.  

Step 6: To eliminate the undesired backdrop from the  

              original image, apply a mask.      

Step 7: Use EM, Kmeans, RG, and FCM clustering  

Step 8: Locate disc sections.  

Step 9: Use erode to smooth the edges.  

Step 10: Eliminate distracting, noisy pixels.  

Step: 11. Examine the disc section in relation to the 

                ground truth.     

Step 12: Determine the segmentation accuracy.  

Step 13: Conduct a comparison study. 

The implementation and output involve a systematic approach to segmenting spinal cord images from MRI scans 

using a series of computational steps. Initially, the MRI image is loaded and processed through Otsu's thresholding 

method to convert it into a binary format, distinguishing foreground (spinal cord) from background. Post-

thresholding, the binary image undergoes hole-filling to ensure continuity, followed by morphological operations 

like dilation and erosion to refine the spinal cord structure. A region of interest (ROI) mask is created to focus on 

the spinal cord area and is used on the original image to eliminate unwanted background noise. Various clustering 

algorithms such as Fuzzy C-means, Region growth, K-means, and Expectation-Maximization are employed to 

segment the spinal cord into distinct regions. Specific segments, like intervertebral discs, are identified within 

these clusters. Edge smoothing techniques are applied to enhance segmentation boundaries, while noise reduction 

methods ensure clarity in the final segmented image. The accuracy of segmentation is evaluated by comparing it 

against manually annotated ground truth data, using metrics like the Dice coefficient or Intersection over Union. 

Finally, a comparative analysis assesses the performance of each clustering algorithm, aiding in identifying the 

most effective approach for accurately delineating spinal cord structures in MRI images. 

Dataset Description (Lumbar MRI): 

The dataset for the experiment was downloaded from http://vislab.gtu.edu.tr.The T1- and T2-weighted mid-

sagittal lumbar MR images from 80 patients are included in the collection. The expert disc centres and lumbar 

vertebral delineations are in the "expert" folder. Eighty files with the extension "s.mat" exist, where s = {1, 2..., 80} 

represents the subject's number. 

The downloaded dataset is in. Mat format, the program is written to convert. Mat to. Jpg, because .jpg is the 

standard image format for image processing. Following are a few images from the dataset: 

http://vislab.gtu.edu.tr/pages/lumbar-mri-dataset.html
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Figure-1. Out of 80 here two Sample MRI images of Spine image from the dataset. 

Experimental configuration 

The experimental results for Fuzzy C-Means, Region Growing, K-Means, and Expectation-Maximization (EM) 

algorithms were derived using a consistent dataset of lumbar spine MRI images. Preprocessing involved 

normalization and noise reduction to maintain data quality. 

Matlab2023b was used to acquire the results of all the experiments using Fuzzy C Mean, Region Growing, K 

means, and Expectation-maximization (EM) On a Windows 10 system with an Intel Core i5 650 processor running 

at 3.20GHz and 8GB of RAM. The segmentation of the chosen image takes 5–6 seconds, while the analysis of 80 

images takes 8–10 minutes. 

RESULTS: 

The figures (Figure-2, Figure-3, Figure-4, Figure-5, and Figure-6) compare various methods for spinal cord 

segmentation, such as fuzzy C-Means, region growing, K-Means, and expectation maximization (EM).The analysis 

aims to evaluate the accuracy and effectiveness of these methods in segmenting the spinal cord from MRI images. 

Figures 2, 3, 4, 5, and 6 display a MATLAB GUI used to compare different spinal cord segmentation algorithms. 

The results are compared with the actual data to assess how well each algorithm performs. 

The top row section in the output window shows: 

1. Original Image: The first column shows the original MRI image of the spinal cord. 

2. Generated ROI Mask: The second column displays the generated Region of Interest (ROI) mask, 

highlighting the area of the spinal cord to be segmented. 

3. After Removing Background: The third column presents the image after the background has been 

removed, focusing on the spinal cord. 

4. EM Clustering: The fourth column illustrates the result of the Expectation Maximization (EM) clustering 

algorithm applied to the image. 

   Middle Section: This section highlights the average segmentation accuracy achieved by the algorithm. 

Bottom Row section: 

1. Filtered Binary ROI: The first column shows the filtered binary ROI, indicating the regions identified 

for segmentation. 

2. Final Disc Segments: The second column displays the final segmented discs, color-coded for clarity. 

3. Ground Truth (GT_img_080.jpg): The third column shows the ground truth image, used as a 

reference for evaluating segmentation accuracy. 
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4. Segmentation Accuracy (img_080.jpg): The fourth column presents the segmentation accuracy, 

highlighting correctly and incorrectly segmented areas (red for correctly segmented, blue for not correctly 

segmented). 

 

Figure-2. Comparative Analysis of Segmentation of the Spinal Cord Using Fuzzy C-Means. The Fuzzy-C-Mean 

segmentation algorithm shows promising results with an Avg accuracy of 70.59%, indicating its potential for 

reliable spinal cord segmentation.  

 

Figure-3. The Region Growing Segmentation algorithm shows good results with an average accuracy of 74.87%, 

suggesting it can be reliable for spinal segmentation. However, it takes more time to run than some other 

algorithms. 

 

Figure-4. The K-Means Segmentation algorithm shows promising results with an average accuracy of 88.56%, 

indicating its potential for reliable spinal cord segmentation 
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Figure-5. The figure shows that the Expectation-Maximization (EM) segmentation algorithm reached an average 

accuracy of 86.21%. The results are compared with the actual data to assess how well the algorithm performs. 

 

Figure-6.Tabular Evaluation of the FCM, K-means, Region Growing, and EM Algorithms for Spinal Cord 

Segmentation. The table compares various performance metrics, including accuracy. 

 

Figure-7.MATLAB software result shows the comparison of the average accuracy of FCM, K-means, Region 

Growing, and EM segmentation method 

Average Segmentation Accuracy of FCM, RG, K Means, and EM (Expectation-   Maximization) 

method: 

As shown in the above output of the algorithm the average accuracy shown in Figure 6) in the following table shows 

that  

Segmentation Methods  Average 

Accurac

y 

Fuzzy-C-Mean Segmentation  70.59% 

RG(Region Growing)Segmentation 74.87% 
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The K-Means Segmentation  88.56% 

EM(Expectation-Maximization) 

Segmentation 

86.21%. 

Table 1: The table compares the average accuracy of FCM, K-means, Region Growing, and EM Algorithms for 

Spinal Cord Segmentation. 

CONCLUSION 

This paper introduces a method for comparing different spinal cord disc segmentation algorithms. The results 

show that the accuracy of each algorithm is as follows: Fuzzy C-Means at 73.34%, Region Growing at 74.87%, K-

Means at 88.56%, and EM Segmentation at 86.21%.It is found that among the four segmentation algorithms, K 

means segmentation accuracy is more than other 

Segmentation methods. Accurate disc segmentation helps make the spinal cord disease classification more 

accurate. The comparison gives useful information about the strengths and weaknesses of each algorithm, guiding 

the selection of the most suitable method for specific applications in medical image processing. This study 

highlights how choosing the right algorithm is key to getting accurate and efficient segmentation results, which 

helps improve diagnostic imaging and related areas. 
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