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The pantograph-catenary system is critical in maintaining a stable power supply for high-speed 

railways. However, contact instability and component wear can lead to degradation and 

unexpected failures. This paper proposes an integrated framework that combines the Leveraging 

Super Spiral Algorithm (STA) and machine learning (ML) for robust and sustainable fault 

diagnosis in pantograph-catenary systems. The STA ensures optimal contact force under 

dynamic operating conditions, while a vibration analysis unit captures real-time operational 

data. Time-frequency features extracted from these signals train ML models to predict the 

remaining useful life (RUL) and detect anomalies early. Additionally, a real-time warning system 

enables proactive maintenance planning. Simulations and experimental results demonstrate 

that this framework significantly improves contact stability, fault detection accuracy, and 

maintenance efficiency compared to traditional threshold-based methods, thereby facilitating 

the implementation of intelligent maintenance strategies in future high-speed railways. 

Keywords: Pantograph–Catenary, Predictive Maintenance, Machine Learning, Vibration 

Analysis, Remaining Useful Life (RUL), Railway Systems. 

 

INTRODUCTION 

The pantograph–catenary system is crucial for reliable and continuous power transmission in high-speed railway 

operations. Maintaining a stable contact force between the pantograph head and the overhead catenary wire is vital 

to prevent electrical interruptions, minimise mechanical wear, and ensure passenger safety [1], [2]. However, 

dynamic disturbances such as aerodynamic forces, track irregularities, mechanical vibrations, and environmental 

changes frequently induce instability in the contact interface, leading to increased degradation and unexpected 

system failures [3], [4]. Traditional maintenance strategies, which primarily rely on scheduled inspections or 

threshold-based alarm systems, are often reactive instead of proactive [5]. These methods struggle to detect early-

stage degradation, resulting in unforeseen service disruptions and elevated operational costs [6]. Therefore, there is 

a pressing need for predictive maintenance strategies that utilise real-time sensor data and intelligent algorithms to 

anticipate faults before they escalate into critical failures [7]. Recent research efforts have explored predictive 

maintenance frameworks that employ machine learning (ML) techniques. Vibration signals, which inherently 

capture the mechanical health status of pantograph–catenary systems, have been extensively used alongside contact 

force measurements to develop predictive models [8], [9]. Feature extraction from such signals using time–frequency 

domain analysis techniques, such as the Short-Time Fourier Transform (STFT) and Wavelet Transform, has 

improved the identification of degradation patterns and early anomaly detection [10], [11]. In parallel, advanced 

control strategies have been proposed to enhance the dynamic stability of pantograph–catenary interactions. Sliding 

Mode Control (SMC) has emerged as a robust technique that maintains stable contact force under various 

disturbances and model uncertainties [12-14]. SMC offers strong robustness compared to traditional PID controllers 

and has demonstrated superior performance in mitigating contact loss and force oscillations, even in high-speed 

operational environments [15-17]. Despite these advancements, most existing studies have treated control 

optimisation and fault diagnosis in isolation. Very few works have proposed a comprehensive framework that 

concurrently integrates robust real-time control with predictive health monitoring based on vibration analysis [18-

22]. For example, while machine learning has been applied for fault classification in some studies, the interaction 
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between dynamic force regulation and degradation monitoring has not been addressed. Similarly, existing SMC-

based approaches assume nominal system conditions and overlook progressive mechanical wear. Based on the 

literature above, a holistic approach that combines real-time contact force stabilisation with predictive maintenance 

for pantograph–catenary systems is lacking. Furthermore, the integration of vibration signal analysis into proactive 

fault prediction within a real-time control loop remains underexplored. 

This paper proposes an integrated framework that couples Sliding Mode Control (SMC) with machine learning (ML)-

based predictive maintenance for pantograph catenary systems. Specifically, we develop an SMC controller to 

stabilise the contact force under dynamic disturbances while simultaneously employing vibration signal features to 

predict the Remaining Useful Life (RUL) and detect early-stage anomalies through supervised ML models. 

The main contributions of this work are summarised as follows: 

✓ Development of an SMC-based force control strategy that enhances real-time stability under dynamic and 

uncertain operating conditions. 

✓ Implement an advanced signal processing pipeline employing STFT and wavelet transform for robust feature 

extraction from vibration data. 

✓ Construction and training machine learning models (random forests, support vector machines) for accurate 

RUL prediction and fault detection. 

✓ Validation of the proposed framework through comprehensive simulation studies and experimental 

evaluations, demonstrating its superiority over traditional threshold-based maintenance strategies regarding 

reliability, fault detection accuracy, and maintenance cost reduction. 

This paper presents a comprehensive framework that combines the Super-Twisting Algorithm (STA) and machine 

learning (ML) to enhance fault diagnosis and control stability in pantograph–catenary systems for high-speed 

railways. Section 1 addresses the challenge of maintaining stable contact force amid dynamic disturbances, 

highlighting the necessity for control optimisation integrated with predictive maintenance using ML. Section 2 

models the pantograph–catenary dynamics as a mass–spring–damper system, reformulated into state-space form 

for controller design. Section 3 develops a Sliding Mode Control (SMC) strategy to stabilise the contact force but 

identifies chattering issues in conventional SMC. To mitigate this, Section 4 introduces the STA, a second-order 

sliding mode control method that reduces chattering and enhances control smoothness and robustness. Section 5 

designs a predictive maintenance framework utilising CNN-LSTM models to predict Remaining Useful Life (RUL) 

and Random Forest classifiers for early fault detection, based on vibration and contact force data. Section 6 presents 

simulation results demonstrating that the STA-ML framework outperforms traditional SMC and threshold-based 

methods in terms of stability, fault detection accuracy, and maintenance efficiency. Recognised limitations include 

sensitivity to rapid system changes and data imbalance. Future work will focus on real-world validation, model 

refinement, and adaptation to multi-pantograph systems and harsh environments. 

DYNAMIC INTERACTION MODEL BETWEEN PANTOGRAPH AND CATENARY SYSTEM 

2.1 Mass-Spring-Damper Model for Pantograph-Catenary System 

The dynamics of the pantograph–catenary system are studied using a simplified mathematical model. Figure 1 

depicts the actual system, where a pneumatic actuator moves the pantograph through an electro-pneumatic valve, 

monitored by force, pressure, and position sensors. For analysis and control design, the simplified mass–spring–

damper model in Figure 2 represents the pantograph as a mass, influenced by a spring (stiffness λ), a damper 

(damping coefficient λ), and the catenary's contact force. This model underpins the derivation of dynamic equations 

and controller design to maintain a stable contact force during operation. 
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Fig 1. Pantograph System with Electro-Pneumatic 

Control 

Fig 2. Mass-Spring-Damper Model for 

Pantograph-Catenary System 

A realistic physical model of the pantograph system (Figure 1) is simplified to a mass–spring–damper model for basic 

dynamic interactions (Figure 2). This model is then extended to include the spatial characteristics and deformations 

of the catenary system. Figure 3 illustrates the dynamic interaction model between the pantograph and catenary, with 

the contact and messenger wires represented according to their curved shapes. As the pantograph advances along 

the rail, the force fluctuations F_c(t) at the contact point influence the system's motion and stability. Integrating the 

mass–spring–damper model with the catenary's geometry enables a more precise analysis of contact loss, force 

variations, and complex dynamics. 

This Fig.3 illustrates the Pantograph–Catenary System modeled as a Mass–Spring–Damper mechanical system. The 

main elements include: 

✓ 𝑚𝑝 Effective mass of the pantograph (kg), 

✓ 𝑘𝑝: Spring constant of the pantograph structure (N/m), 

✓ 𝑐𝑝: Damping coefficient representing energy loss (Ns/m), 

✓ 𝐹𝑐(𝑡): Contact force between the pantograph head and the catenary wire (N), 

✓ d(t): Displacement of the pantograph head (m), 

✓ 𝑦𝑐(𝑡): Catenary vibration displacement (m), typically considered as an external disturbance. 

 

Fig 3. Dynamic interaction model between pantograph and catenary system in high-speed railway operations. 

In this dynamic model: The spring represents the elastic stiffness of the pantograph structure. The damper represents 

the dissipative mechanical damping. The external input 𝐹𝑐(𝑡):  reflects the real-time force required to maintain proper 

electrical contact. The displacement d(t) describes the vertical motion of the pantograph head. The vibration 𝑦𝑐(𝑡): 

of the overhead contact wire introduces disturbances that affect the stability of 𝐹𝑐(𝑡):  Maintaining a stable contact 
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force despite these vibrations and mechanical dynamics is crucial for ensuring continuous, safe, and efficient high-

speed railway operations. 

Dynamic interaction model between pantograph and catenary system in high-speed railway operations (Fig2.). The 

messenger wire is suspended in a parabolic shape, supported by droppers that transfer vertical loads to the contact 

wire. The pantograph interacts dynamically with the contact wire, where oscillations in the pantograph head can be 

observed. The contact force 𝐹𝑐(t) is illustrated, representing the real-time force exchange at the interface. Maintaining 

a stable 𝐹𝑐(t) is crucial for minimizing electrical interruptions, mechanical wear, and ensuring safe high-speed 

operation. The figure illustrates the coupling between structural dynamics and force regulation in a typical high-

speed rail system. 

2.2 Mathematical Modeling of Pantograph–Catenary System 

The pantograph–catenary dynamic system can be effectively approximated using a mass–spring–damper 

mechanical model, which captures the essential inertial, elastic, and dissipative properties of the pantograph 

mechanism [16], [17]. Specifically, the effective mass 𝑚𝑝represents the concentrated mass of the pantograph head 

and frame, the spring constant 𝑘𝑝accounts for the structural stiffness, and the damping coefficient 𝑐𝑝 models the 

internal energy dissipation mechanisms. The dynamic interaction is governed by the second-order differential 

equation: 

𝑚𝑝𝑑̈(𝑡) + 𝑚𝑝𝑑̇(𝑡) + 𝑘𝑝𝑑(𝑡) = 𝐹𝑐(𝑡) + 𝐹𝑑𝑖𝑠(𝑡)     (1) 

where: 

𝑚𝑝 is the effective mass of the pantograph (kg), 

𝑐𝑝is the damping coefficient (Ns/m), 

𝑘𝑝 is the spring stiffness coefficient (N/m), 

d(t) is the displacement of the pantograph head (m), 

𝐹𝑐(𝑡) is the contact force exerted by the pantograph on the catenary (N), 

𝐹𝑑𝑖𝑠(𝑡) represents external disturbances primarily due to catenary vibrations, aero, dynamic loads, and track 

irregularities. 

In real-world operations, the Pantograph–Catenary System encounters various disturbances that significantly impact 

its performance. These disturbances comprise aerodynamic forces, track irregularities, and mechanical vibrations, 

all of which can disrupt the stable contact force between the pantograph and the catenary wire. High-speed trains are 

particularly susceptible to aerodynamic disturbances due to air resistance and turbulent airflow, resulting in 

fluctuations in the contact force and causing oscillations at the pantograph head. This not only increases wear but 

also diminishes the efficiency of energy transfer. Additionally, track irregularities, such as vertical and lateral 

deviations, can induce erratic movement of the pantograph, further affecting the force dynamics. These irregularities 

lead to variations in displacement and oscillations that influence the contact force 𝐹𝑐(𝑡), thereby compromising 

operational stability. Furthermore, the pantograph undergoes mechanical vibrations due to its interaction with the 

contact wire and the oscillatory motion induced by the train’s movement. These high-frequency vibrations are 

challenging to predict and can interfere with the stable energy transfer from the catenary wire to the pantograph, 

leading to further complications in maintaining consistent power delivery. 

2.3 State-Space Representation for Pantograph–Catenary System 

The pantograph–catenary system can be formulated in state-space form to facilitate the design of advanced control 

strategies such as Sliding Mode Control (SMC). The dynamic model governing the interaction between the 

pantograph and the catenary can be written in state-space form as 

a.  System Dynamics 

From Eq. (1) describing the dynamic interaction, the state variables and control input are defined as follows: 
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 𝑥1 = 𝑑(𝑡): Displacement of the pantograph (m), 

𝑥2 = 𝑑̇(𝑡): Velocity of the pantograph head (m/s), 

        𝑢(𝑡) = 𝐹𝑐(𝑡) Control input: Contact force (N). 

The state-space representation of the pantograph–catenary dynamic system is derived by expressing the second-

order differential equation in first-order form as follows: 

[
𝑥1̇(𝑡)
𝑥2̇(𝑡)

] = [
0 1

−
𝑘𝑝

𝑚𝑝
−

𝑐𝑝

𝑚𝑝

] [
𝑥1(𝑡)
𝑥2(𝑡)

] + [
0
1

𝑚𝑝

] 𝑢(𝑡) + [
0
1

𝑚𝑝

] 𝐹𝑑𝑖𝑠(𝑡)       (2) 

Where: 𝑥1̇(𝑡) = 𝑑̇(𝑡) = 𝑥2(𝑡) (Velocity of pantograph), 

                𝑥2̇(𝑡) = 𝑑̈(𝑡) =
𝐹𝑐(𝑡)+𝐹𝑑𝑖𝑠(𝑡)

𝑚𝑝
−

𝑐𝑝

𝑚𝑝
𝑥2(𝑡) −

𝑘𝑝

𝑚𝑝
𝑥1(𝑡)  

The system output is defined as: 

       𝑦(𝑡) = [
𝑥1̇(𝑡)
𝑥2̇(𝑡)

]           (3) 

Where: y(t) = [𝑑(𝑡), 𝑑̇(𝑡)]
𝑇

 represents the displacement and velocity of the pantograph head, respectively. 

b.  State-Space Representation 

The system can now be expressed in a standard state-space form as: 

       {
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) + 𝐵𝑑𝐹𝑑𝑖𝑠(𝑡)

y(t) = Cx(t)
                       (4) 

Where:  

A= [
0 1

−
𝑘𝑝

𝑚𝑝
−

𝑐𝑝

𝑚𝑝

]; B=[
0
1

𝑚𝑝

] ; 𝐵𝑑 = [
0
1

𝑚𝑝

]  𝐶 = [
1 0
0 1

] 

SLIDING MODE CONTROL (SMC) FOR PANTOGRAPH–CATENARY SYSTEM 

Precise control of pneumatic pressure to the actuator is crucial for maintaining a stable contact force between the 

pantograph and the overhead cable in electric railway systems. Instability can cause ignition, equipment wear, and 

power interruptions. The proposed system utilises a Sliding Mode Control structure, shown in Figure 4, to enhance 

target force tracking despite disturbances like catenary oscillations, pneumatic pressure fluctuations, and the 

pantograph's nonlinear characteristics. 

 

Fig 4. Pantograph contact force control scheme with SMC. 
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The primary objective of the SMC strategy is to maintain a stable contact force between the pantograph and the 

catenary wire, even in the presence of disturbances such as aerodynamic forces, track irregularities, and mechanical 

vibrations. These disturbances can cause fluctuations in the contact force, leading to instability in the system. SMC 

addresses this by using a robust control law that ensures the pantograph remains in stable contact with the catenary 

wire, thus minimizing the risk of contact loss and improving energy transfer efficiency. The SMC design involves 

creating a sliding surface based on the error between the desired contact force and the actual force. This control law 

forces the system’s trajectory to “slide” along the surface, maintaining the desired force despite disturbances. 

Additionally, SMC is known for its fast response time and high robustness, making it particularly suitable for high-

speed railway systems, where rapid changes in dynamics and external conditions occur frequently. By maintaining 

stable contact, SMC also reduces mechanical wear on both the pantograph and the catenary wire, contributing to the 

system’s overall efficiency and longevity. 

3.1 System Modeling: 

The system dynamics are modeled as a second-order differential equation, where the pantograph’s displacement and 

velocity are governed by the forces acting on it: 

𝑚𝑝𝑑̈(𝑡) + 𝑚𝑝𝑑̇(𝑡) + 𝑘𝑝𝑑(𝑡) = 𝐹𝑐(𝑡) + 𝐹𝑑𝑖𝑠(𝑡)       (5) 

The sliding surface is chosen based on the error between the desired contact force 𝐹𝑐
𝑟𝑒𝑓

(𝑡) and the actual contact force 

𝐹𝑐(𝑡). 

3.2 Design of the Sliding Surface: 

The sliding surface s(t) is typically defined as: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆𝑒(𝑡)         (6) 

Where: 𝑒(𝑡) = 𝐹𝑐
𝑟𝑒𝑓(𝑡) − 𝐹𝑐(𝑡) is the error between the desired and actual contact forces, and 𝜆 is a positive constant 

that determines the rate of convergence. 

The sliding mode controller then generates the control signal to drive the system’s trajectory onto this surface and 

maintain it, ensuring robust performance in the face of disturbances. 

3.3. Control Law Design 

The control law for Sliding Mode Control (SMC) is designed to ensure that the system trajectory slips along the sliding 

surface. The control law u(t) is defined as: 

𝑢(𝑡) = −𝐾1𝑠𝑔𝑛(𝑠(𝑡)) − 𝐾2𝑠(𝑡)        (7) 

where: 𝐾1 and 𝐾2 are positive gains that ensure the system trajectory remains on the sliding surface and converges to 

the desired state, 𝑠𝑔𝑛(𝑠(𝑡))is the sign function, which helps ensure that the system trajectory “slides” towards the 

desired value.  

The sign function 𝑠𝑔𝑛(𝑠(𝑡)), used in Sliding Mode Control (SMC), is a well-known method to drive the system 

towards a desired state by forcing the system’s trajectory to “slide” along a predefined surface in the state space. 

However, this control law often introduces chattering or oscillations in the control signal, especially when there are 

small variations or high-frequency disturbances in the system. In the case of the Pantograph-Catenary System, the 

chattering can cause undesirable mechanical vibrations and affect the stability of the contact force. The sgn function 

causes chattering, which in turn induces vibrations in the pantograph-catenary system. This oscillatory behavior 

results in high-frequency forces that can accelerate wear on the components and affect the overall system 

performance. 
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Fig. 5 The control Sliding Mode Control (SMC) architecture for the Pantograph-Catenary system 

Simulation Scenario: In this simulation, we consider a simple scenario where the pantograph must follow a set 

trajectory and maintain constant contact with the catenary wire while experiencing disturbances such as track 

irregularities and aerodynamic forces. The control system, based on Sliding Mode Control (SMC), will adjust the 

contact force by continuously modifying the pantograph’s position and velocity. The simulation will analyze how well 

the system can maintain the desired contact force, ensuring smooth operation under various conditions. The dynamic 

behavior of the pantograph is modeled using these parameters, and the response to external disturbances is observed 

through simulations, where the displacement, velocity, and contact force are recorded and analyzed. The effectiveness 

of the control system is evaluated based on how accurately it maintains the desired contact force and how quickly it 

reacts to any disturbances or changes in the environment. 

Parameters for Pantograph-Catenary System: Mass of the Pantograph (kg): 𝑚𝑝 = 100; Spring constant for 

pantograph (N/m): 𝑘𝑝 = 00; Damping coefficient for pantograph (Ns/m): 𝑐𝑝 = 50; Desired contact force (N): 𝐹𝑐
𝑟𝑒𝑓

 = 

1000. 

Sliding Mode Parameters: Convergence speed (positive constant): 𝜆= 0.5; 𝐾1  = 100 Sliding Mode gain: 𝐾1  = 100 

and 𝐾2 = 10. 

 

Fig 6. System Response of Pantograph under Sliding Mode Control: Displacement, Velocity, Contact Force,  

and Control Input versus 

The SMC controller simulation for the Pantograph–Catenary system shows stability in displacement and velocity, 

with displacement oscillating between -1.4 m/s and +0.2 m/s and velocity between -3 m/s and +2.5 m/s. However, 

the contact force 𝐹𝑐(𝑡)  fails to reach the target value of 1000 N, instead quickly saturating at approximately -1500 N, 

leading to a significant force error of -2500 N. The control input stabilises at the saturation limit without smooth 

adjustments, causing switching issues. Although control saturation reduces external chattering, the lack of signal 

smoothness hinders sliding mode tracking and accelerates actuator wear. 

Given these drawbacks, the traditional SMC method with the sign(s) function is inadequate for smooth and precise 

operation in this system. To address this, the Super-Twisting Algorithm (STA), a second order sliding mode control 

approach, is proposed to eliminate chattering, smooth the control signal, and ensure fast sliding surface convergence. 

This will enhance system stability and extend operational lifespan’s 
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SUPER-TWISTING ALGORITHM - STA FOR PANTOGRAPH–CATENARY SYSTEM  

4.1 Design of the Sliding Surface: 

The sliding surface s(t) is typically defined as: 

𝑠(𝑡) = 𝑒̇(𝑡) + 𝜆 ∫ 𝑒(𝑡) (𝜆 > 0)        (6) 

where: 𝑒(𝑡) = 𝐹𝑐
𝑟𝑒𝑓(𝑡) − 𝐹𝑐(𝑡) 

 4.2. Control Law Design 

The STA control law consists of two components in Eq. (7) & (8): A term proportional to the square root of the sliding 

surface's absolute value, which reduces oscillations near the surface, and a time-integrated term that improves 

control signal smoothness. Include a small linear component, -𝑘2𝑠(𝑡), in the control to account for damping effects 

in the system. This ensures that oscillations in s(t) are mitigated over time, promoting stability and preventing 

sustained deviations from the desired trajectory. By appropriately tuning the parameter −𝑘2, the balance between 

responsiveness and damping can be optimised, allowing the system to achieve both accuracy and robustness under 

varying conditions. 

𝑢(𝑡) = −𝛼1√|𝑠(𝑡)|𝑠𝑖𝑔𝑛(𝑠(𝑡)) + 𝑣(𝑡)−𝑘2𝑠(𝑡); 𝑘2 = 5;     (7) 

(𝑡) = −𝛼2𝑠𝑖𝑔𝑛(𝑠(𝑡))         (8) 

where: 𝛼1 and 𝛼1 are positive gains that ensure the system trajectory remains on the sliding surface and converges to 

the desired state; 𝑢(𝑡), 𝑣(𝑡): the control force applied to the system (related to the actuator – electro-pneumatic valve) 

is integrated over time with respect to the auxiliary variable 

The STA control law consists of two components: a term proportional to the square root of the sliding surface's 

absolute value, which reduces oscillations near the surface, and a time-integrated term that improves control signal 

smoothness. 

Specifically: Through the use of Super-Twisting, the control signal u(t) becomes more continuous rather than 

adopting a complex on-off form, thus assisting the system: 

• In tracking the sliding surface quickly and accurately,  

• In significantly reducing the chattering phenomenon. 

 

Fig. 7 Comparison odd Dispalacemnt, Contact Force, Control Input: SMC&STA for the pantograph-catenary 

system. 
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Based on the results of Figure7, it is evident that the STA with drift compensation significantly surpasses traditional 

(SMC) in terms of system stability and performance. With STA, displacement remains stable around zero without 

any drift, while SMC experiences a gradual linear decrease due to accumulated chattering. STA maintains a small and 

stable velocity near zero, unlike SMC, which shows a steady decline associated with displacement drift. The STA also 

ensures that the contact force remains consistently near the target value with minimal oscillations, in contrast to 

SMC’s force fluctuations caused by chattering, despite meeting the average target. Additionally, STA delivers a 

smooth control input free from chattering, whereas SMC exhibits rapid on-off switching and sharp discontinuities. 

Overall, STA with drift compensation offers superior long-term stability in position and velocity, smoother control 

inputs, and more reliable contact force control. By eliminating chattering and enhancing performance, STA emerges 

as the optimal choice for the Pantograph-Catenary system, ensuring high stability, reliability, and extended 

equipment life. 

 

Fig. 8 Control input of SMC and STA. 

The figure provides a direct comparison between conventional Sliding Mode Control (SMC) and the Super-Twisting 

Algorithm (STA) with respect to chattering suppression. As shown in the upper plot, classical SMC results in severe 

high-frequency oscillations in the control input, commonly referred to as chattering. This undesirable phenomenon 

induces excessive mechanical stress on actuators, generates signal disturbances, and ultimately compromises system 

reliability and precision. In stark contrast, the lower plot illustrates that STA eliminates chattering, yielding a smooth 

and stable control signal. By leveraging second-order sliding mode principles, STA maintains the inherent robustness 

and finite-time convergence properties of SMC while significantly enhancing practical applicability. The results 

unequivocally demonstrate that STA offers a superior solution for real-world systems requiring high control accuracy, 

minimal mechanical wear, and enhanced operational longevity.  

5. MAINTENANCE DECISION SUPPORT AND EARLY WARNING 

5.1 Data collections 

This study uses data collected from operational Pantograph-Catenary systems on high-speed rail lines, capturing 

parameters such as contact force, vibration, speed, temperature, humidity, and air resistance. Sensors installed on 

the railway track and onboard the pantograph and catenary gathered these measurements. For example, Shinkansen 

and China’s CRH trains provided data on contact force (1–5 kN), vibrations (0.1–10 m/s²), speed (0–350 km/h), and 

temperature (−10°C to 50°C). Fault detection involves labelled datasets identifying issues like contact loss, with 

historical data from networks such as the Shenzhen Metro and the Shinkansen used to train Random Forest models. 

Remaining Useful Life (RUL) predictions for components like pantograph brushes and catenary wires utilise time-

series data analysed by a CNN-LSTM model, supported by data from Shinkansen and China CRH systems. 

5.2 CNN-LSTM for Fault Prediction and Random Forest for Fault Detection 

The pantograph-catenary system in high-speed trains ensures operational stability and efficiency. However, 

continuously varying factors such as load, temperature, and aerodynamics make detecting and predicting faults in 

this system a significant challenge. Traditional methods often fail to meet the requirements of timeliness and 
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accuracy. Therefore, it is essential to urgently apply advanced machine learning models, such as CNN-LSTM for fault 

prediction and Random Forest for fault detection (Figure 9). 

Integrating these models not only aids in monitoring the system more effectively but also minimises downtime and 

maintenance costs while enhancing the system's reliability. To implement such advanced machine learning models, 

substantial focus must be placed on data preprocessing, feature extraction, and model optimisation. The pantograph-

catenary system generates a wealth of data from sensors monitoring its mechanical and electrical operations. Often 

large and complex, these datasets require cleaning and transformation to ensure the models receive relevant and 

high-quality inputs. Normalisation, outlier detection, and noise reduction are crucial in maintaining data integrity. 

 

Fig. 9 The CNN-LSTM structure for fault prediction and the Random Forest model for fault detection in the 

pantograph-catenary system. 

In CNN-LSTM, combining Convolutional Neural Networks and Long Short-Term Memory networks maximises the 

strengths of both architectures. The CNN component excels at extracting spatial features from input data, such as 

vibrational patterns or contact force distributions. At the same time, the LSTM networks handle the temporal 

dynamics, capturing trends and sequential dependencies crucial for predicting faults. This hybrid approach ensures 

that the nuances of the pantograph-catenary system’s behavior are effectively modelled and forecasted. On the other 

hand, Random Forest, with its ensemble nature, excels in fault detection. By constructing multiple decision trees and 

aggregating their outputs, this model enhances robustness and reduces the risk of overfitting, which is critical when 

dealing with intermittent or rare faults. Furthermore, feature importance analysis provided by Random Forest can 

offer valuable insights into the parameters most indicative of system anomalies, assisting operators in identifying 

weak links and prioritizing maintenance efforts. 

 

Fig. 10 The CNN-LSTM structure for fault prediction and Random Forest model for fault dection. 
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As illustrated in Figure 10, a hybrid deep learning and machine learning architecture has been proposed to address 

this challenge. The system begins by collecting real-time sensor data, including contact force, current, and vibration 

signals. Following preprocessing, convolutional neural networks (CNNs) extract spatial features from time-series 

data, capturing local anomalies and variations. These features are then fed into a long short-term memory (LSTM) 

network to analyse temporal patterns and predict potential fault conditions. If a fault is predicted, additional feature 

extraction is conducted, and a random forest classifier is employed to accurately identify the specific type of fault, 

such as loss of contact, arcing, or catenary slack.  

 

 Fig.11 CNN-LSTM predictions and cctual. 

The CNN-LSTM model’s predictions (red) closely follow the true values (blue) (Fig.11) but exhibit noticeable 

deviations, especially during rapid changes in the system. The model captures the overall trend but struggles with 

sharp transitions, indicating a need for further optimization. The accuracy, as shown in the classification report, is 

around 52%, with the model performing moderately well for fault detection but requiring more diverse training data 

to improve its robustness. The model’s smoothness suggests a potential issue with predicting sudden anomalies, 

which could be addressed by fine-tuning the architecture and incorporating more data reflecting critical conditions. 

 

Fig.12 Random Forest feature importance. 

 “Random Forest Feature Importance” chart shows the importance level of each feature in fault detection. The most 

important features are represented by the highest values, particularly at index 6 and index 8, which have a sharp 

increase in importance. This indicates that these features play a key role in classifying and predicting faults in the 

system. On the other hand, other features show uniform importance levels without significant variation, suggesting 

they do not have a strong impact on the model’s performance. Focusing on the most important features could help 

improve the accuracy and effectiveness of the model. 
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Fig.13 Random Forest confusion matrix. 

The confusion matrix (Fig. 13) shows that the Random Forest classifier moderately differentiates between fault and 

non-fault conditions in the pantograph–catenary system. It correctly identifies 40 faults (True Positives) and 59 

normal instances (True Negatives) but misclassifies 48 standard samples as faults (False Positives) and misses 53 

faults (False Negatives). The high False Negative rate is particularly concerning due to the operational risks posed by 

undetected faults, while the elevated False Positive rate can lead to unnecessary maintenance, reducing efficiency. 

These results suggest the model captures basic feature-label patterns but lacks sufficient discriminative ability. 

Improving performance may involve optimising hyperparameters (e.g., number of trees, tree depth), using 

oversampling techniques like SMOTE to address class imbalance, and incorporating temporal feature extraction with 

LSTM or CNN-based encoders to enhance fault detection and robustness. 

 

Fig.14. Precision, Recall, F1-Score and Support for calsses. 

The chart results show the Precision, Recall, F1-Score, and Support for each class in the model. The values for class 

0 (No fault) are very low across all metrics, indicating the model struggles to detect faults. On the other hand, class 1 

(Fault) shows very high precision and recall, but this may not be representative of the overall performance due to the 

imbalanced distribution of data (class 0 has more samples). The imbalance likely causes the model to overly favor 

detecting class 1 (faults), leading to low accuracy for class 0. This can be addressed by adjusting the training data or 

applying techniques to balance the classes. 

CONCLUSIONS 

This study combines the STA with CNN-LSTM and Random Forest to improve fault diagnosis and stability in 

pantograph–catenary systems for high-speed rail. The STA controller reduces chattering, maintains stable contact 

force under disturbances, and enhances robustness. Machine learning facilitates early fault detection and accurate 

RUL predictions using vibration and force data. Simulations demonstrate superior performance compared to 

traditional stability, fault detection, and maintenance methods. However, challenges include reduced accuracy 
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during rapid transitions, imbalanced datasets, simulation dependence, and limited real-world testing. The 

framework focuses on single-pantograph systems, excluding multi-pantograph setups and extreme conditions. 

Future work aims to ensure real-world reliability, integrate advanced methods like attention models for rare faults, 

and adapt to multi-track and harsh environments, advancing intelligent maintenance for next-generation railways. 
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