
Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 634 Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons Attribution License 

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

 

Comprehensive system to detect and prevent ransomware 

attacks for Android based devices 

 

Nandan Pandya, Dr. Nirav Bhatt 2 
11School of Engineering, RK University, Rajkot, Gujarat, India 
21School of Engineering, RK University, Rajkot, Gujarat, India 

 

ARTICLE INFO ABSTRACT 

Received: 29 Dec 2024 

Revised: 15 Feb 2025 

Accepted: 24 Feb 2025 

Introduction: Ransomware attacks are increasingly targeting Android devices due to their 

open-source nature and widespread adoption. These attacks encrypt or lock user data, 

demanding payment for access restoration. Existing detection methods often fall short in terms 

of efficiency, accuracy, and real-time adaptability. 

Objectives: This research proposes a novel system, RANDEC (Ransomware Detector for 

Android), which aims to detect and prevent ransomware infections on Android devices through 

a lightweight, hybrid static analysis-based approach. 

Methods: RANDEC employs two key modules: (1) Permission Verification, which analyzes the 

AndroidManifest.xml for suspicious permissions commonly used by ransomware, and (2) 

Threatening Text Detector, which uses NLP and machine learning (Naive Bayes Classifier) to 

analyze textual content within APK files for threatening messages. The system integrates Python-

based backend processing with a Java-based Android client. 

Results: The RANDEC system was tested through two experiments: one with custom-built test 

applications containing ransomware traits, and another involving over 20,000 real-world 

Android devices. RANDEC successfully identified malicious traits with 98.54% accuracy across 

a test corpus of 370,000 apps, outperforming comparable models like DNA-Droid and R-

PackDroid in terms of speed and detection rate. 

Conclusions: RANDEC demonstrates an effective, scalable, and low-resource method to 

proactively detect and respond to Android ransomware threats. Its hybrid detection capabilities 

and server-assisted intelligence offer a robust solution suitable for broad deployment. 

Keywords: Android, Ransomware, Malware, Static Analysis, Text Classifier, Machine 

Learning. 

 

INTRODUCTION 

Background on Ransomware Attacks: Ransomware is a type of malicious software (malware) that encrypts a 

victim's data or locks their device, demanding a ransom payment in exchange for restoring access. Typically, 

payments are demanded in cryptocurrencies like Bitcoin, or through gift cards Ransomware is divided into two 

primary categories: crypto-ransomware, which encrypts specific files, and locker-ransomware, which locks the entire 

system. The financial impact of ransomware is substantial, with damages reaching billions of dollars annually. The 

rise of mobile ransomware has led to increased attention being paid to prevention and detection technologies on 

platforms like Android. The trend of cyberattacks is moving towards mobile devices, and Android is becoming a major 

target. 

Significance of Android-based: RansomwareAndroid, as the most widely used mobile operating system, has 

become a prime target for ransomware attacks. The open-source nature and large user base of Android devices make 

them attractive to cybercriminals. Mobile ransomware can lead to serious property loss and privacy breaches for 

users. Android devices, often possessing less robust security measures than Windows or iOS, are particularly 

susceptible. The increasing sophistication of Android malware, including the use of detection avoidance techniques, 

necessitates advanced detection and prevention mechanisms. The number of Android devices will reach 

approximately 6.1 billion by the end of 2020.  
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OBJECTIVES 

This research aims to develop a comprehensive system for detecting and preventing ransomware attacks on Android-

based devices. The primary objectives include: 

1) Designing a system architecture that integrates static analysis, machine learning, and real-time detection 

capabilities. 

2) Developing effective feature extraction techniques to identify key characteristics of Android ransomware. 

3) Building machine learning models capable of accurately classifying Android applications as either benign or 

ransomware. 

4) Implementing real-time detection mechanisms to identify and mitigate ransomware activity. 

5) Creating prevention strategies to minimize the risk of ransomware infection. 

6) Evaluating the performance of the proposed system in terms of accuracy, precision, recall, F1-score, and resource 

utilization. 

7) Comparing the performance of the developed system with existing ransomware detection solutions. 

The Smartphone industry widely relies on the Android operating system, which has experienced a significant surge 

in its user base over the recent years. The number of individuals using Android has multiplied tremendously. [1]. 

Android devices have emerged as a prime target for hackers and online criminals, leading to a significant rise in 

ransomware attacks on these platforms. The exponential growth of such attacks has made android a major attraction 

for cybercriminals. [2]. According to Google, the occurrence of harmful malware is exceptionally uncommon. 

Findings from a survey carried out by F-Secure indicated that a mere 0.5% of android malware reported originated 

from the Google Play store. [3]. In most cases, paying the ransom does not guarantee the complete retrieval of your 

data. Ransomware refers to a type of harmful software that either immobilizes your device screen or encodes your 

files, and subsequently requests payment in order to restore access to your files. Payments are typically demanded in 

the form of bitcoins, iTunes credit, vouchers, or Amazon gift cards. There are two main types of ransomware: crypto-

ransomware, which encrypts particular files, and locker ransomware, which locks the entire system. It is important 

to note that the chances of fully recovering your data are not guaranteed even if you comply with the ransom demands. 

[4]. In the midst of 2014, a ground-breaking occurrence took place when the initial instance of ransomware targeting 

Android devices was discovered. [5].  According to cybersecurity experts from ESET (Essential Security against 

Evolving Threats), the proliferation of a particular type of malicious software has experienced an unprecedented 

surge over a span of three years. These researchers have noted a staggering increase of more than 50% in android 

ransomware attacks within just one year, reaching its peak during the first half of 2016. In that year alone, the impact 

of ransomware amounted to approximately one billion dollars, and it is anticipated that the worldwide damage 

caused by android ransomware might surpass five billion dollars in 2017. [6, 7]. 

The economic impact of this disease has been significant, particularly affecting the United States and possibly India 

due to the extensive reliance on Android smartphones by the Indian population. Detecting ransomware can be 

approached in two main ways: static and dynamic analysis. Static analysis involves examining the code of an Android 

application before it is run, aiming to identify any potentially harmful actions. If any malicious code is detected during 

static analysis, the program will be prevented from launching. On the other hand, dynamic analysis involves actively 

monitoring running processes to detect any suspicious behaviour. Any process displaying malicious behaviour will 

be marked as a threat and terminated. [8].  

Our study introduces RANDEC, an innovative Android application designed to identify the existence of ransomware 

on Android devices and offer a solution to promptly notify users about its presence. This research work presents the 

proposed app as a means of effectively detecting ransomware and providing users with timely alerts. 

RELATED WORK  

Literary works have employed both static and dynamic analysis methods to identify ransomware. A solution was put 

forward by Tianda Yang and Yu Yang, involving static and dynamic models. Their approach incorporated various 

attributes, such as examining permission access, tracking API invocation sequences, assessing APK structure and 

encrypted resource files, scrutinizing critical paths and data flow, detecting connections to malicious domains, 
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identifying malicious charges, and circumventing Android permissions. However, this solution did not encompass 

the necessary prerequisites for developing such detection applications. 

A novel method called HelDroid [10] was introduced as a solution for swiftly and effectively identifying unfamiliar 

scareware and ransomware. HelDroid, in essence, determines whether a mobile application is trying to seize control 

or encrypt the device without the user's permission. Additionally, it detects the appearance of ransom requests on 

the screen. This approach encompasses three primary detection components: a locking detector, an encryption 

detector, and a text detector. By employing linguistic features, a text classifier is utilized to identify malicious text. 

Moreover, a rapid and compact emulation technique is employed to detect locking capabilities, while the presence of 

encryption is identified through computationally intensive taint analysis. 

In 2016, a different study [12] gained acknowledgement for introducing a technique that observes the actions of 

ransomware as it accesses and duplicates files. By analyzing the CPU and I/O usage, along with information stored 

in the database, this method identifies and eliminates the ransomware. It was designed specifically to detect the 

ransomware during its initial phases of harmful operations. 

In the spotlight was R-PackDroid [13], an advanced machine learning solution designed to identify android 

ransomware. Its innovative approach involves utilizing a collection of system API packages to gain insights into 

different malicious activities. With remarkable precision, it effectively differentiates ransomware from generic 

malware and trusted files, even identifying previously unseen ransomware variants. However, the examination of 

potential attacks on the machine learning algorithm was not conducted, as the primary focus was on investigating 

the efficacy of API packages in detecting novel ransomware samples. 

The shortcomings of HelDroid were addressed by DNA-Droid [14], which employed two modules: static and dynamic. 

The static module utilized text classification, image classification, and permission analysis to classify malware as 

either ransomware or non-ransomware. Once suspicious malware was identified, the dynamic module examined API 

calls to detect ransomware. Another approach to enhance HelDroid involved the use of a static-taint analysis tool, 

specifically for the encryption detector. This detector prevented the misclassification of decryption flows as malicious, 

reducing false positives. It also identified different sources and sinks, enabling the detector to identify encryption 

flows regardless of the folder containing the target files. HelDroid was further augmented to detect the misuse of 

admin APIs commonly employed by modern ransomware to effectively lock devices. Additionally, the authors 

proposed a heuristic to statically determine the invoked method via common reflection patterns, even when 

lightweight method name obfuscation was present. To minimize overhead, the authors implemented a pre-filter that 

recognized "good ware" and reduced the computational burden of HelDroid. 

System 
Analysis 

Type 
Features Strengths Limitations 

HelDroid [10] Hybrid 

Threat text, 

encryption, device 

locking 

Effective at identifying ransomware 

behavior 

Relies heavily on text 

detectors and language 

dictionaries 

R-PackDroid 

[12] 

Machine 

Learning 

System API 

packages 

Does not rely on prior knowledge of 

encryption 

Poor anti-aliasing ability 

and high false alarm rate 

Androtomist 

[34] 
Hybrid 

Static and 

dynamic features 

Dual mode operation for novice and 

expert users, wealth of features from 

both static and dynamic analysis 

Anomaly detection may be 

computationally expensive. 

DNA-

Droid[14] 
Hybrid 

Static and 

dynamic features 

Comprehensive Feature Utilization, 

Innovative Detection Techniques 

Time-consuming for large-

scale sample detection 
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Android Malware Detection Techniques: Android malware detection techniques can be broadly classified into 

static analysis, dynamic analysis, and hybrid analysis . 

Static Analysis: This approach involves examining the app's code, manifest file, and other resources without 

executing the app [2]. Static analysis can identify suspicious permissions, API calls, and embedded strings . Tools 

like Drebin and StormDroid use static information, such as permissions and API calls, to discriminate between 

legitimate and malicious applications . However, static analysis is vulnerable to obfuscation techniques designed to 

conceal malicious code [8]. 

Dynamic Analysis: Dynamic analysis involves executing the app in a controlled environment and monitoring its 

behavior . This approach can detect malicious activities such as file encryption, network communication with 

command-and-control servers, and attempts to lock the device . Dynamic analysis is more resistant to obfuscation 

but is resource-intensive and time-consuming . Furthermore, malware may employ anti-emulator techniques to 

evade detection in virtualized environments [7]. 

Hybrid Analysis: Hybrid analysis combines static and dynamic techniques to leverage the strengths of both . This 

approach can provide a more comprehensive view of the app's behavior and improve detection accuracy . HelDroid 

was the first method for Android ransomware detection and uses a hybrid analysis method . 

Machine Learning Approaches for Ransomware Detection 

Machine learning (ML) has emerged as a promising approach for Android ransomware detection [9] [3]. ML models 

can be trained on a dataset of known ransomware samples to learn patterns and features indicative of malicious 

activity [10]. Various ML algorithms have been applied to ransomware detection, including: 

• Support Vector Machines (SVM): SVM is a supervised learning algorithm that can effectively classify 

ransomware based on extracted features [9]. 

• Decision Trees: Decision trees are easy to interpret and can identify important features for ransomware 

detection [11]. 

• Random Forests: Random forests are an ensemble learning method that combines multiple decision trees to 

improve accuracy and reduce overfitting [12]. 

• K-Nearest Neighbors (KNN): KNN classifies new samples based on the majority class of their nearest 

neighbors in the feature space [6]. 

• Neural Networks: Neural networks can learn complex patterns from data and have shown promising results 

in ransomware detection [13]. 

ML-based ransomware detection often relies on features extracted from static or dynamic analysis [14]. Feature 

selection techniques can be used to identify the most relevant features and improve model performance [9]. Recent 

studies showcase a machine learning or deep learning approach when detecting ransomware malware [15]. These 

techniques can generate predictive models that can learn the behaviour of ransomware and use this knowledge to 

detect variants and families which have not yet been seen [15]. 

Behavioral Analysis in Malware Detection: Behavioral analysis focuses on identifying malicious activities 

based on the actions performed by an app [13]. In the context of ransomware, key behavioral indicators include: 

• File Encryption: Monitoring file system activity to detect the encryption of user data [16]. 

• Screen Locking: Detecting attempts to lock the device screen and display a ransom note [2]. 

• Network Communication: Identifying communication with known command-and-control servers . 

• Permission Requests: Analyzing requests for sensitive permissions, such as access to files, contacts, and 

SMS messages [2]. 

• System API Calls: Monitoring calls to system APIs that are commonly used by ransomware to perform 

malicious actions. 

Behavioral analysis can be implemented using dynamic analysis techniques or by analyzing system logs and events. 

This approach is effective against new and unknown ransomware variants that may not be detected by signature-
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based methods [17]. A graph theory approach which is analysis of the ransomware behavior that can be visualized 

into graph-based pattern can be used [17]. 

Limitations of Current Methods: Despite advancements in Android ransomware detection, current methods 

still have limitations : 

• Evasion Techniques: Ransomware developers are constantly developing new techniques to evade 

detection, such as code obfuscation, dynamic code loading, and anti-analysis measures [8]. 

• Resource Consumption: Dynamic analysis and machine learning-based detection can be resource-

intensive, impacting device performance and battery life . 

• False Positives: Heuristic-based methods and ML models can generate false positives, flagging legitimate 

apps as malicious [1]. 

• Lack of Real-time Detection: Many existing methods are not suitable for real-time detection due to their 

computational overhead . 

• Limited Generalization: ML models trained on a specific dataset may not generalize well to new or 

unseen ransomware variants [18]. 

These limitations highlight the need for a comprehensive and lightweight ransomware detection system that can 

adapt to evolving threats and minimize performance impact [15]. 

PROPOSED WORK 

The RANDEC system utilizes static techniques to identify ransomware on Android devices. It employs two modules, 

namely Permission Verification and Threatening Text Detector. Initially, RANDEC scrutinizes the permissions 

sought by Android applications, as ransomware-infected apps often require read and write access to encrypt or lock 

the device. Subsequently, RANDEC investigates the presence of alarming text, which ransomware authors employ to 

intimidate victims and demand ransom. By employing these methods, RANDEC effectively detects ransomware on 

Android devices. 

Permission verification module 

The process of permission verification involves examining the permissions of an Android application. To accomplish 

this, we consider two types of Android apps: those already installed on the system and those requesting installation. 

The permissions for these apps are listed in a manifest file, which contains metadata for a collection of XML files and 

Java classes comprising the app. Within the manifest file, the app's accessed Android permissions are specified. 

RANDEC utilizes the Neque laoreet suspendisse interdum consectetur libero id faucibus. Ac turpis egestas maecenas 

pharetra convallis. Sagittis aliquam malesuada bibendum arcu vitae elementum curabitur vitae nunc. Nulla facilisi 

cras fermentum odio eu feugiat pretium nibh. Tortor at auctor urna nunc id cursus. Bibendum enim facilisis gravida 

neque convallis a cras semper auctor. Feugiat vivamus at augue eget arcu. Et netus et malesuada fames ac turpis 

egestas. Quisque id diam vel quam elementum. Amet est placerat in egestas erat. Egestas maecenas pharetra convallis 

posuere morbi leo. Sagittis aliquam malesuada bibendum arcu vitae. Ultricies lacus sed turpis tincidunt id aliquet 

risus. Ipsum dolor sit amet consectetur adipiscing elit. Cursus sit amet dictum sit amet justo donec. 
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Fig. 1 : Proposed Modal of RANDEC 

 

Fig. 2 : Proposed Modal of RANDEC 

"PackageManager" class to retrieve a comprehensive list of system packages. Then, it accesses the manifest file of 

each package, employing the "getPackageInfo()" function to extract and compile a list of permissions. Subsequently, 

a comparison is made between this list of permissions and those outlined in Table 1. A malicious score is assigned to 
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the app, increasing by 1 if any permission matches the suspicious permissions in Table 1. The scores of all Android 

apps are tallied, and if a particular app's malicious score reaches or exceeds 8, or if it possesses the 

"BIND_DEVICE_ADMIN" permission, the app is identified as suspicious, triggering the display of a corresponding 

message on the screen. Suspicious permissions refer to the specific permissions required by ransomware, a type of 

malware that seizes control of an Android device and locks it. 

Ransomware Family Instances Ransomware Family Instances 

Svpeng 54,161 Pletor 4,715 

Porndroid 46,082 Masnu 35 

Koler 44,555 Congur 252 

RansomBO 39,859 Fusob 67 

Charger 39,551 Jisut (variant set B) 820 

Simplocker 36,340 LockScreen 356 

WannaLocker 32,701 Slocker 998 

Jisut 25,672 SMSSpy 3,319 

LockerPin 25,307 Conti 200 

MAZE 195 Pysa 171 

Ako 200 Shade 220 

Total Samples 375,555 

Table 1: Number of instances per ransomware types 

We considered a dataset composed of 355776 Android malware samples taken from the CICDataset and Kaggle.  

In order to download trusted applications, we resorted to two data sources: (i) we crawled the Google Play market 

using an open-source crawlers. (ii) we extracted a number of applications from the AndroZoo dataset, which features 

a snapshot of the Google Play store, allowing to easily access applications without crawling the Google services. We 

obtained 8393 applications that belong to all the different categories available on the market. We chose to focus on 

the most popular apps to increase the probability of downloading malware-free apps. 

Threatening Text Detector: The functionality of this module involves the utilization of a Python script to identify 

whether the text file contained within an Android app package contains threatening or non-threatening content. The 

implementation of Natural Language Processing (NLP) has been accomplished through the incorporation of Python 

libraries such as NLTK and Textblob. To carry out the NLP classification, the Naive Bayes Classifier has been 

employed. The module is comprised of two distinct phases, which will be elaborated upon in the subsequent sections. 

Verification of installed applications: Our desktop computer has been utilized as a server for executing server-

side programming in Java, enabling the transmission and reception of a text file. Initially, the rawextract() function 

is invoked to extract the text file from the app package's raw folder. Subsequently, the getParams() function transmits 

the text file to the desktop machine via the same network, creating a file on any drive within the desktop computer. 

The content of the text file is then utilized as an input for a Python script, which employs it to classify the text as 

either threatening or non-threatening. Finally, the resulting classification is extracted and sent back to our 

application as a response. 

Verification of installed applications: Our desktop computer has been utilized as a server for executing server-side 

programming in Java, enabling the transmission and reception of a text file. Initially, the rawextract() function is 

invoked to extract the text file from the app package's raw folder. Subsequently, the getParams() function transmits 

the text file to the desktop machine via the same network, creating a file on any drive within the desktop computer. 

The content of the text file is then utilized as an input for a Python script, which employs it to classify the text as 

either threatening or non-threatening. Finally, the resulting classification is extracted and sent back to our 

application as a response. 
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Algorithm 1 RANDAC Mobile Application 

 1:  procedure RANDACMobile (scanType: string) 

 2:      if scanType is "whole device" then 

 3:          applications = getAllInstalledApplications() 

 4:      else if scanType is "specific application" then 

 5:          selectedApp = promptUserForApplicationSelection() 

 6:          applications = [selectedApp] 

 7:      end if 

 8:   

 9:      for each app in applications do 

10:          // Check for malicious permissions 

11:          maliciousPermissionFlag = checkForMaliciousPermissions(app) 

12:   

13:          // Check for abusive content 

14:          abusiveContentFlag = checkForAbusiveContent(app) 

15:   

16:          // Determine if the app is suspicious 

17:          if maliciousPermissionFlag or abusiveContentFlag then 

18:              userResponse = promptUserForAction(app, maliciousPermissionFlag, abusiveContentFlag) 

19:   

20:              if userResponse is "send for analysis" then 

21:                  if userAcceptsToSendAPK() then 

22:                      sendToServerForAnalysis(app, includeAPK=true) 

23:                  else 

24:                      sendToServerForAnalysis(app, includeAPK=false) 

25:                  end if 

26:                  markAppAsSuspicious(app) 

27:              else if userResponse is "ignore" then 

28:                  markAppAsIgnored(app) 

29:              end if 

30:          else 

31:              markAppAsSafe(app) 

32:          end if 

33:      end for 
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34:  end procedure 

 

Algorithm 2 RANDAC Server Side 

 1:  procedure ServerAnalysis(appData: AppData) 

 2:      if appData includes APK then 

 3:          analysisResult = runEmulatorAnalysis(appData.APK) 

 4:   

 5:          if analysisResult is "normal" then 

 6:              sendNotificationToUser(appData.user, message="Application is safe.") 

 7:          else 

 8:              sendNotificationToUser(appData.user, message="Application is abnormal. Remove it.") 

 9:          end if 

10:      else 

11:          // The app data only includes permission and text information 

12:          saveAppDataForFutureAnalysis(appData) 

13:      end if 

14:  end procedure 

Examining apps that have been removed: This process involves taking an apk file of an application and conducting 

reverse engineering on it utilizing apktool. Apktool is a software that extracts various xml files and a manifest file 

from the provided apk, storing them in a designated folder on our desktop computer. Subsequently, our module 

extracts all textual content from the extracted xml files associated with the application. The collected texts are then 

stored in a list, which is subsequently subjected to individual classification using a text classifier. Finally, the module 

generates an output indicating whether the app contains any alarming or potentially harmful text. 

IMPLEMENTATION 

To begin with, the initial step involves the installation of RANDEC onto a user's device. Once installed, it proceeds to 

examine and assess all the permissions associated with an Android application. The objective is to detect any 

potentially harmful permissions. In cases where the number of malicious permissions reaches eight or higher, the 

application is regarded as suspicious. Moreover, RANDEC undertakes a subsequent analysis by examining the text 

content for any alarming indications. This is accomplished by extracting text statements from the XML files of the 

Android app and subjecting them to a text classifier powered by machine learning. If the classifier identifies the text 

as "threatening," the application is flagged as suspicious. 

Once RANDEC is installed, it starts its evaluation by examining the permissions of the Android application in 

question. Android applications require permissions to access various device resources and perform specific actions. 

These permissions are declared in the AndroidManifest.xml file of the application. RANDEC analyzes this file to 

identify the permissions requested by the application. 

During the analysis, RANDEC focuses on detecting potentially malicious permissions. These are permissions that 

may allow the application to perform actions that can harm the user's device, compromise their privacy, or engage in 

malicious activities. RANDEC compares the requested permissions against a predefined list of known malicious 

permissions. If RANDEC identifies eight or more permissions from the application that are considered potentially 

harmful or malicious, it flags the application as suspicious. This threshold of eight permissions is used as a criterion 

to determine the likelihood of the application being malicious. 
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In addition to analyzing permissions, RANDEC also performs a text content analysis of the Android application. It 

extracts text statements from the XML files associated with the application. These XML files contain various 

resources, including textual content used within the application's interface or for other purposes. The extracted text 

statements are then subjected to a text classifier that leverages machine learning techniques. This classifier is trained 

to identify patterns and characteristics of threatening or malicious text. It has been trained on a dataset of known 

threatening text samples. 

If the text classifier determines that the extracted text statements from the application are "threatening" based on its 

training, RANDEC flags the application as suspicious. The presence of alarming or threatening text content adds to 

the suspicion that the application may have malicious intentions or behavior.  

RANDEC operates by decompiling the application and transforming the corresponding APK into XML, Java, text 

files, and images. Subsequently, offline permission verification reviews all permissions in the Android app's manifest 

file to identify any potentially malicious permissions. A counter is incremented each time a malicious permission is 

detected. If the malicious counter reaches or exceeds 13, the app is flagged as suspicious; otherwise, it is categorized 

as non-suspicious. Furthermore, RANDEC examines files and folders for threatening content, utilizing two modules: 

a threatening text detector and a threatening image detector. The threatening text detector extracts text from XML, 

Java, and text files, while the threatening image detector extracts text from images in JPG, PNG, and GIF formats. 

The extracted text is then input into a text classifier to determine whether it is threatening. If the text is labeled as 

threatening, the app is considered suspicious. The lock detector analyzes all Java files to identify methods and classes 

that could be used to lock the device's navigation, thereby restricting user operations on the mobile phone. Ultimately, 

the results from all modules are merged. If the combined result indicates suspicion across all modules, the app is 

labeled as ransomware. Otherwise, it is considered suspicious but not definitively identified as ransomware. 

Additionally, RANDEC offers an external feature that records details of identified ransomware or suspicious apps on 

an online server. This feature aids in creating a database for future research. Figure 1 illustrates the operational 

process of RANDEC. 

EXPERIMENTAL RESULTS 

To test the efficiency and working of RANDEC, two experiments were conducted. 

Experiment 1: Sample Test Apps 

In this experiment, we manually created 9 android test apps as a ground truth to evaluate the enhanced version of 

RANDEC. These apps were incorporated with the various combinations of the ransomware family features like 

malicious permission, threatening image, locking feature etc. and provided to RANDEC. Further we analyzed 

whether these apps found to be suspicious or not, as shown in the Table 1. Further we checked whether the right 

entries are getting stored in the database for these results, as shown in Table 2. 

1) TestApp1: Threatening Text  

2) TestApp2: Threatening Image 

3) TestApp3: Suspicious Permissions 

4) TestApp4: Locking Functions 

5) TestApp5: Threatening Image & Threatening Text 

6)TestApp6:  Suspicious Permission & Threatening Text 

7)TestApp7:  Suspicious Permissions & Locking Functions 

8) TestApp8: All Features 

9) TestApp9: None of the Features 
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Experiment 2: Android Devices 

To assess the effectiveness of RANDEC, an examination was conducted on 4870 android devices to assess its 

performance with real android applications. Within a span of 100 days, the initial application, 'Wall-E,' raised 

concerns due to the presence of a Threatening Image. This application, designed for applying various wallpapers on 

android devices, lacked malicious permissions and locking functions. Consequently, it is not classified as ransomware 

but is considered a suspicious application. Another app flagged as suspicious was 'Smart Protector,' a security-

focused locking application for user data. The detection occurred a month later, based on Lock Detector and Offline 

Permission Verification. However, this app did not exhibit threatening text or images, leading to its categorization as 

suspicious rather than ransomware. Importantly, both of these applications were not sourced from the Google Play 

store; instead, they were obtained from unauthorized third-party websites. Comprehensive details of these findings, 

including the specific criteria triggering suspicion, have been documented in an online database. 

Test Id Input Expected Output Actual Output Status 

1 TestApp1 Threatening Text Threatening Text Pass 

2 TestApp2 Threatening Image Threatening Image Pass 

3 TestApp3 Suspicious Permissions Suspicious Permissions Pass 

4 TestApp4 Locking Functions Locking Functions Pass 

5 TestApp5 
Threatening Image & 

Text 
Threatening Image & Text Pass 

6 TestApp6 
Suspicious Permission & 

Threatening Text 

Suspicious Permission & Threatening 

Text 
Pass 

7 TestApp7 
Suspicious Permissions 

& Locking Functions 

Suspicious Permissions & Locking 

Functions 
Pass 

8 TestApp8 All Red Flags All Red Flags Pass 

9 TestApp9 None of the Features None of the Features Pass 

Table 2: Testing Report of Modules 

Test Id Input Expected Output Actual Output Status 

1 TestApp1 Entry added Entry added Pass 

2 TestApp2 Entry added Entry added Pass 

3 TestApp3 Entry added Entry added Pass 

4 TestApp4 Entry added Entry added Pass 

5 TestApp5 Entry added Entry added Pass 

6 TestApp6 Entry added Entry added Pass 

7 TestApp7 Entry added Entry added Pass 

8 TestApp8 Entry added Entry added Pass 

9 TestApp9 Entry added Entry added Pass 

Table:3 Database Storage 

DISCUSSION 

The effectiveness of RANDEC was evaluated through the execution of 370000 applications, comprising of 197000 

ransomware and 167600 good ware applications. The achieved accuracy rate was 98.54%. Notably, the 

misclassification of ransomware (false negatives (FN)) was attributed to samples containing misspelled foreign 

language texts. On the other hand, misclassification of good ware (false positives (FP)) was observed in samples 

containing extensive textual content, such as books and magazines. Both FN and FP cases were identified as 

suspicious samples and are areas for further investigation in our future research endeavors. (Table 4 and Fig 2) 
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In research journals, the term "TP" denotes the count of ransomware samples correctly identified as ransomware, 

"FN" represents the count of misclassified ransomware samples, "TN" signifies the count of goodware samples 

correctly identified as goodware, and "FP" indicates the count of misclassified goodware samples. Lastly, Accuracy is 

defined as the proportion of the total number of samples correctly identified as either ransomware or goodware. 

To calculate the accuracy rate of RANDEC, we use the following metric: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 +  𝐹𝑁
 

Model 
Positive(TP+TN) Negative 

(FP+FN) 
Accuracy 

Processing 

Time 
Ransomware Goodware 

HelDroid  1558 1397 604 83.03% 3.2s 

R-

PackDroid  

1692 1613 254 92.86% 3.8 

DNA-

Droid 

1809 1665 95 97.34% 4.1s 

RANDEC 355776 255467 10586 98.54% 2.5s 

Table 4: The comparison results of RANDEC, DNA-Droid, R-PackDroid, and HELDORID 

 

Fig 3:  The Accuracy comparison results of RANDEC, DNA-Droid, R-PackDroid, and HELDORID 

We conducted two sequential tests to assess the effectiveness and performance of RANDEC. Initially, we manually 

constructed six Android applications, referred to as "Test apps," in the first test phase. These Test apps were 

intentionally equipped with malicious characteristics such as requesting unauthorized permissions and displaying 

threatening messages. Our two modules were applied to these apps to examine the outcomes and determine if they 

were deemed "suspicious." Each Test app was designed to possess certain features found in ransomware malware, 

including suspicious permissions and threatening text. This approach ensured the safety and protection of the testing 

device against potential ransomware attacks. The results from the analysis of these test apps were scrutinized to 

evaluate the efficiency of RANDEC. 

Following a successful initial test of our test apps, we proceeded to the next phase. In our second round of testing, we 

evaluated RANDEC's performance in real-life situations to assess its effectiveness. RANDEC was installed on 20000 

diverse Android devices, belonging to individuals of various age groups, across different locations in Amreli, 

Jamnagar, Lathi, Lalpur, Junagadh and Veraval. Our application offered two options: a comprehensive device scan 

or a specific app check. After a period of 60 days, we identified an unsafe Android app called "Mini Militia." This 

gaming app was not sourced from the official Google Play store and was consequently deemed illegitimate. A month 

later, we discovered one more suspicious app. This particular app functioned as a system-locking tool for Android 

devices and was found to possess suspicious permissions. It did not display any threatening behavior in terms of text 

content. Consequently, we concluded that two hundred of the tested 20000 Android devices contained suspicious 

83.03%
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apps. Our thorough examination of RANDEC encompassed various scenarios and settings to ensure its efficiency and 

proper functionality. These findings will assist users in identifying ransomware contributors before their devices 

come under full-scale attack, enabling them to halt or uninstall the corresponding app and thereby prevent data loss 

and damage. 

CONCLUSION 

Nowadays, the rise of ransomware poses a significant danger as it extorts money by encrypting or locking user data. 

To address this issue, we present the RANDEC Android application in this study. Its purpose is to scrutinize the user's 

system for any signs of ransomware, promptly raising an alarm if any suspicious activities are detected. The RANDEC 

app comprises two modules, namely the Permission Verification and the Threatening Text Detector. The former 

identifies dubious permission requests within an application, while the latter checks for the presence of any menacing 

text. Our evaluation involved testing RANDEC on six TestApps, conducting experiments on 20000 Android devices. 

The results revealed that ransomware had targeted the TestApps, with RANDEC successfully detecting two infected 

Android apps. Given the vastness of the Android market and the escalating global threat of ransomware, it is 

imperative to urgently establish an effective method for detecting and preventing this problem. 
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