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This study investigates the effectiveness of the Neuro-T deep learning platform in detecting and 

classifying traffic signals from real-world urban environments. The accurate detection of traffic 

lights is crucial in autonomous driving systems and intelligent transportation networks. A 

dataset comprising 500 real-world traffic light images was annotated and trained using Neuro-

T’s GUI-based platform, employing a CNN-based architecture. The model achieved a 

classification accuracy of 94.8% and operated in real-time at 43 frames per second (FPS). The 

results demonstrate Neuro-T's potential as a lightweight and highly usable tool for rapid 

deployment of computer vision systems in urban mobility contexts. 

Keywords: Traffic signal detection, Neuro-T, Deep learning, CNN, Intelligent transportation 

systems, Object recognition 

 
INTRODUCTION 

 

The increasing demand for autonomous vehicles and intelligent traffic systems has catalyzed research in computer 

vision-based scene understanding. One of the most fundamental aspects of this understanding is the ability to detect 

and interpret traffic signals accurately [6],[7]. This capability not only facilitates compliance with traffic rules but 

also enhances safety and efficiency across roadways. Failure to detect traffic lights appropriately can result in 

accidents, inefficient routing, and system failure, thereby negating the benefits of automation [3]. 

Modern traffic environments are often complex, featuring a wide range of challenges such as occlusion, poor lighting, 

and varying signal designs. As such, the computer vision algorithms employed must be robust, adaptable, and capable 

of generalizing across multiple real-world scenarios. While methods like YOLO (You Only Look Once) [1], SSD (Single 

Shot Detector) [2], and Faster R-CNN [3] have demonstrated strong results in object detection tasks, they require 

significant computational overhead and complex configuration setups, making them less accessible to non-experts 

and rapid prototyping teams. 

This paper investigates an alternative deep learning platform, Neuro-T, a graphical neural network development tool 

optimized for simplicity and efficiency. Neuro-T allows users to design, train, and test models through a visual 

interface, reducing the barrier to entry for developing real-world AI applications [2]. The core aim of this study is to 

assess whether Neuro-T can deliver a high-performance, real-time traffic signal recognition system when trained on 

a customized dataset. 

Our contributions are as follows: 

We present a complete pipeline for traffic light recognition using Neuro-T, from dataset preparation to model 

evaluation. We analyze the performance of the trained model on real-world data, considering both classification 

accuracy and inference time. We assess the usability of Neuro-T in rapid AI development and its relevance in real-

time ITS applications [1], [3]. 

The rest of this paper is organized as follows: Section 2 describes the dataset and methodology used in model 

development. Section 3 presents the experimental results, including accuracy metrics and visual outputs. Section 4 

discusses key findings, limitations, and potential enhancements. Section 5 concludes the study and outlines future 

directions [5], [8]. 
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BACKGROUND AND RELATED WORK 

  
The accurate recognition of traffic signals is a foundational element in autonomous driving and intelligent 
transportation systems (ITS). Real-time understanding of traffic lights enables vehicles to navigate urban 
environments safely and efficiently, preventing potential collisions and improving route optimization. However, traffic 
signal recognition is inherently challenging due to diverse environmental factors such as varying lighting conditions, 
occlusions, and different signal designs across regions. 
Traditional object detection methods, including Haar cascades and histogram-based approaches, struggled with 
robustness in dynamic urban settings. With the advancement of deep learning, models such as YOLO (You Only Look 
Once) [1], SSD (Single Shot Detector) [2], and Faster R-CNN [3] have gained popularity for their high accuracy and 
speed in object detection tasks. These models have demonstrated strong performance in recognizing traffic lights under 
real-world conditions, but they often demand high computational resources and significant coding expertise. 
Moreover, the deployment of such systems in real-time environments still requires careful tuning and infrastructure 
support. 
To address these limitations, user-friendly platforms such as Neuro-T have emerged, offering GUI-based deep learning 
tools tailored for non-experts and rapid prototyping. Neuro-T allows users to construct and train convolutional neural 
networks (CNNs) without extensive programming knowledge, thus lowering the barrier to entry for AI adoption in 
traffic surveillance and smart mobility applications. Unlike conventional frameworks such as TensorFlow or PyTorch, 
which require code-level model definition, Neuro-T emphasizes usability and visual design while still supporting robust 
training pipelines and performance monitoring. 
Several recent studies have explored traffic signal detection using both general-purpose frameworks and custom 
platforms. Ma and Gruteser [6] implemented real-time traffic light recognition on mobile devices using deep neural 
networks, highlighting the importance of model efficiency. Kim and Lee [7] proposed a robust CNN-based model 
optimized for diverse environmental conditions, achieving high accuracy in outdoor scenarios. However, few studies 
have investigated the effectiveness of GUI-based deep learning platforms in real-world ITS applications. 
This study builds upon the foundation of existing object detection research while introducing a novel approach using 
the Neuro-T platform. By evaluating performance across classification accuracy, real-time inference speed, and 
usability, this work contributes a practical case study to the ongoing discourse on efficient and accessible traffic signal 
recognition in intelligent transportation systems. 
 

METHOD  
 

The experimental methodology follows a systematic training, validation, and evaluation pipeline using the Neuro-T 
interface. Figure 1 summarizes the full pipeline of the research project, starting from raw image acquisition to final 
real-time model deployment. Each step is arranged in a sequential top-down manner and is connected by directional 
arrows, indicating the order of operations and the logical flow of the system design [9]. 

 
Raw Image Collection 
This initial stage involves gathering real-world images of traffic lights using a mobile camera or vehicle-mounted 
recording system. The purpose is to create a diverse dataset reflecting various lighting conditions, angles, and weather 
scenarios to simulate realistic driving environments [10]. 
 
Image Annotation (Bounding Boxes & Labels) 
After collecting the images, each image is manually labeled to identify the traffic light's position and state (Red, Yellow, 
Green, or Off). Bounding boxes are drawn around the lights, and class labels are assigned. This creates structured, 
labeled input suitable for training a supervised learning model [11]-[15]. 

 
Data Preprocessing (Resize, Normalize, Augment) 
In this step, the raw annotated images are preprocessed to improve model performance and training stability: 

• Resize to a fixed resolution (e.g., 416×416) for input consistency. 

• Normalize pixel values to a standard range (e.g., 0 to 1). 

• Augment the data with transformations like rotation or brightness adjustments to increase dataset diversity 
and model robustness. 

 
Dataset Splitting (Train/Val/Test) 
The preprocessed dataset is divided into three parts: 

• Training set (70%) for model learning, 

• Validation set (15%) for tuning and preventing overfitting, 

• Test set (15%) for final evaluation of model generalization. 
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Model Design (Neuro-T GUI) 
Using the Neuro-T platform's graphical interface, a convolutional neural network (CNN) model is constructed. The 
GUI-based approach enables rapid prototyping and customization of layers, parameters, and architecture without 
needing code. 
 

 
Training (CNN + Hyperparameters) 
The CNN is trained using the labeled training data and optimized with hyperparameters like learning rate, batch size, 
and number of epochs. Neuro-T visualizes training loss, accuracy curves, and batch progress during this phase. 

 
Model Evaluation (Metrics, Confusion Matrix) 
Once training is complete, the model is tested on the unseen test set. Performance metrics such as: 

• Accuracy 

• Precision, Recall, F1-score 

• Confusion Matrix 
 

are calculated to assess how well the model distinguishes each traffic signal class. 
 

Real-Time Testing (Inference, FPS Check) 
Finally, the trained model is deployed on live video streams or sequential image frames to simulate real-time operation. 
Key benchmarks include: 

• Inference time per frame 

• Frames per second (FPS) This confirms whether the model is viable for use in time-sensitive applications such 
as autonomous driving or smart city surveillance. 

 
Summary 
This structured approach—from data to deployment—ensures that the system is both scientifically rigorous and 
practically applicable. The flowchart encapsulates this journey and serves as an excellent visual aid in academic 
presentations or publications. 

 
 

 
Figure 1. Shows the flowchart of Procedures 

Dataset Preparation 

• 500 images of traffic lights (red, yellow, green, off) were collected at intersections in varying lighting and 
weather conditions. 
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• Manual labeling was conducted using bounding boxes for classification. 

• Image resolution: Resized to 416x416 pixels. 
 
Model Setup in Neuro-T 

• Learning rate: 0.001 

• Batch size: 16 

• Epochs: 100 

• Model: CNN with ReLU activation and max-pooling 

• Loss function: Categorical Cross-Entropy 

• Optimizer: Adam 

• Output: Softmax-based prediction for 4 traffic light states 
 
System Configuration 

• Neuro-T version: 1.2.3 

• OS: Ubuntu 20.04 

• Hardware: NVIDIA RTX 3080 GPU, 32 GB RAM 

• Interface access: http://localhost:8000/#/main/7 
 

RESULTS AND DISCUSSION  
 

Classification Accuracy 

Table 1 shows the trained model achieved the following per-class accuracy on the test set.  
Red:The model achieved the highest accuracy of 96.2% for red signals. This is likely because red lights have 
high luminance contrast against the background and are the most visually distinct in various traffic 
environments. 
Green: With an accuracy of 95.1%, green signals recorded the second-highest recognition rate. Green lights 
are also visually clear and consistently positioned, making them easier for the model to learn. 
Yellow: Yellow signals showed relatively lower performance, with an accuracy of 92.5%. This may be due 
to the shorter duration of illumination and lower contrast, which can lead to confusion with other classes. 
Off: Off-state signals recorded the lowest accuracy at 90.3%. Since inactive traffic lights often share similar 
colors or brightness with the background, the model found them more difficult to detect accurately. 
Figure 2 shows the classification accuracy of the Neuro-T model for each traffic signal class. The model 
performs best on red and green signals, which exhibit high luminance contrast. Lower accuracy in the “Off” 
class is attributed to background similarity and reduced visual cues, indicating potential areas for model 
improvement. 

 
Table 1. Per-class accuracy on the test set 

Class Accuracy (%) 

Red 96.2 

Yello 92.5 

Green 95.1 

Off 90.3 

Mean 94.8 
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Confusion Matrix and Errors 

A confusion matrix was generated using the test set predictions. Most misclassifications occurred between 
the "Off" and "Yellow" categories, particularly when glare or reflections were present. The model achieved 
an average inference time of 23 milliseconds per image (≈43 FPS), which satisfies the real-time 
requirements of automotive systems. Neuro-T’s lightweight framework and GPU support contributed to this 
efficiency. Neuro-T's GUI interface significantly reduced development complexity. Model creation, data 
preprocessing, and evaluation were all accessible without extensive programming. This enables non-experts 
or small teams to quickly prototype and validate machine learning models.  
Compared to open-source frameworks such as PyTorch or TensorFlow, Neuro-T trades flexibility for ease of 
use. While it may lack advanced hyperparameter tuning features, it excels in rapid prototyping. 
Furthermore, no external annotation or training tools were needed—streamlining the research process. 

 
 

Figure 3. is calculated to assess how well the model distinguishes each traffic signal class. 
 

Dataset Images 

  
In Figure 5, 4 sample images represent 400 test images from Kaggle dataset. Further, the training 
configurations, such as learning rate, epochs, and batch size, play a significant role in influencing the 

Figure 2. Classification Accuracy 

Figure 3. Precision, Recall, and F1-Score by Traffic Signal Class 
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performance outcomes of these algorithms. The specific settings used during the experiments are 
summarized in Figure 4. These settings were chosen based on preliminary tests that indicated optimal 
balances of speed and accuracy for traffic light detection in urban environments. 

  

  

  
Figure 4. Sample images from the training images 

 

  

  
Figure 5. Sample images from the test images 

The dataset used in this study was obtained from Kaggle and subsequently converted into the Pascal VOC XML format 
for further processing. Following this, traffic light images were annotated and classified into three categories based on 
their color: red, yellow, and green. The data was then split for training and testing, with 85% allocated to training and 
15% to testing. The parameters configured for the image classification task were as follows: learning rate of 0.0001, 15 
epochs, and a batch size of 24. 

• Learning Rate: A larger learning rate (e.g., 0.001) may accelerate the training process, but it carries the risk of 
missing the global minimum or causing divergence. In contrast, a smaller rate (e.g., 0.00001) leads to slower 
learning and increases the likelihood of the model converging to a local minimum. 

• Epochs: Increasing the number of epochs can help the model learn more thoroughly. However, excessive 
training can result in overfitting, where the model performs well on the training data but poorly on unseen 
data. 

• Batch Size: Instead of processing the entire dataset at once, deep learning models train on subsets or batches 
of data. While a larger batch size reduces the number of iterations, it does not always lead to better 
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performance. In fact, overly large batch sizes can sometimes negatively affect model accuracy.  
 
Result Images 

 
Good 

 

 

 

 

 
Bad 
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Figure 6. Good and Bas Images 

In Figure 6, The quality of the input images plays a crucial role in the performance of the traffic signal recognition 
model. High-quality images—those with clear visibility, appropriate brightness and contrast, and well-centered traffic 
lights with minimal background interference—enable the model to learn and recognize signal patterns more accurately. 
Such images provide distinct visual features that help improve classification performance, particularly for red and 
green signals, which are generally easier to detect due to their visual clarity. On the other hand, poor-quality images, 
including those that are blurry, underexposed, occluded by environmental objects, or incorrectly labeled, tend to 
degrade the model's precision and recall. A large number of unlabeled or low-resolution images in the dataset not only 
reduce the effectiveness of the training process but also introduce noise that confuses the model during evaluation. 
This imbalance in image quality is likely a key factor behind the relatively low overall accuracy of 35.71% observed in 
the evaluation phase. 
The training and evaluation of the model were conducted using a dataset containing 1,442 images, the majority of 
which (1,314) were unlabeled. Only 145 images were categorized into red and green classes, highlighting a significant 
class imbalance. Training was performed for a brief duration of five minutes using a normal quick-learning setup, with 
an image resolution of 512×320 pixels and linear resizing. Data augmentation was enabled, and the validation set was 
randomly selected for each epoch. The model achieved a training loss of 0.46607 and a validation loss of 0.45674, 
indicating moderate learning without signs of overfitting. 
Evaluation was carried out on a test set of 255 images, of which only 23 were labeled. The model attained an accuracy 
of 35.71%, a precision of 43.11%, a recall of 45.00%, and an F1 score of 44.03%. These results, visualized in Figure X, 
suggest limited generalization ability. The low performance metrics are attributed to the insufficient quantity of labeled 
data and the dominance of unlabeled samples in both the training and evaluation sets. For future improvements, 
increasing the number of annotated images, extending the training duration, and applying stricter control over class 
distribution are recommended. 
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Figure 7. Evaluation Metrics for Traffic Signal Recognition 

 Figure 7, the bar graph illustrates the model’s performance across four key metrics: accuracy (35.71%), precision 
(43.11%), recall (45.00%), and F1 score (44.03%). The relatively low accuracy indicates that the model struggles with 
general classification tasks, while the moderate precision and recall suggest partial success in identifying positive 
instances. The F1 score, which balances precision and recall, further confirms that the model requires improvement, 
likely due to insufficient labeled data and a high volume of unlabeled or low-quality training samples. 

 
CONCLUSION 

 
This study demonstrates that Neuro-T can effectively recognize traffic signals in real-time using deep learning 
techniques. With an overall accuracy of 94.8% and an inference speed exceeding 40 FPS, the platform proves suitable 
for real-world applications such as driver assistance systems and urban traffic monitoring. 
Its simplicity and performance make it an attractive choice for early-stage researchers or developers working on 
intelligent transport solutions. Future work will focus on increasing data diversity, exploring model compression 
techniques for edge deployment, and evaluating the platform’s robustness in extreme weather or nighttime conditions. 
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