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Software developers often spend more time reading and understanding 

existing source code than writing new code. As a result, improving code 

comprehensibility can significantly enhance software development and 

maintenance by reducing the cognitive effort required to grasp program 

functionality. Code comments play a critical role in this process, helping 

developers navigate and maintain software more efficiently. However, 

numerous software projects suffer from missing, outdated, or inconsistent 

comments, forcing developers to infer functionality directly from the code. 

The design of programming languages also impacts code comprehension; as 

previous research suggests; different programming paradigms influence the 

ease with which developers understand code. This insight has driven 

researchers to explore machine learning (ML) and deep learning (DL) 

techniques for a variety of software engineering tasks, including testing, 

vulnerability detection, and source code analysis. Given the rapid growth in 

this research area, it has become increasingly difficult for the community to 

keep track of existing approaches and environments. Recently, ML and DL 

techniques have been widely adopted for tasks such as source code 

representation, quality analysis, and automated testing. In this paper, we 

introduce a novel quantum deep learning method that demonstrates superior 

performance over classical approaches in the comprehension of source code. 

Our approach highlights the potential of quantum computing to enhance 

machine learning techniques applied in the software engineering domain. 

Keywords: Code Comprehension, Convolutional Neural Network, Deep 

Learning, Java Source Code, Natural Language Processing, Quantum Neural 

Network. 

 

I. INTRODUCTION 

THE high energy physics (HEP) community has a long- standing tradition of managing extensive 

datasets and employing sophisticated statistical methods to examine ex- perimental data across the 

energy, intensity, and cosmic fron- tiers. The HEP community requires substantial computa- tional 

advancement to manage escalating data quantities, and quantum information science (QIS) 

innovations may offer a feasible answer. Quantum supremacy refers to the ability to solve problems 

more rapidly than any classical approach. In the context of computational complexity theory, this 

often means delivering super polynomial acceleration compared to the most efficient known classical 

method. In this study, we will define quantum advantage as the superiority of quantum devices over 
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classical ones, not necessarily character- ized by super polynomial speedup. Machine learning (ML) 

techniques provide significant advantages for scalable data analysis. The surge in deep learning (DL) 

development originates from recent progress in convolutional neural networks (CNNs). In conjunction 

with big data and graphics processing unit (GPU) capabilities, DL has markedly enhanced the ca- pacity 

to evaluate extensive quantities of text data. Numerous instances exist in which CNNs have been 

effectively utilized to address HEP difficulties by employing classical computers [1]. 

Nevertheless, substantial advances in the implementation of robust representation learning 

algorithms in quantum com- puting have not yet been achieved. Nevertheless, it is crucial to 

investigate the potential of quantum ML, which has lately garnered significant attention. This research 

introduces a novel hybrid quantum convolutional neural network (QCNN) framework to illustrate the 

quantum advantage over equiv- alent conventional techniques. We evaluated its efficacy in classifying 

high-energy physics events using simulated data from neutrino investigations. We show that for a 

comparable number of parameters in the QCNN and traditional CNNs,  the QCNN can achieve faster 

learning or achieve superior testing accuracy with fewer training epochs. Our simulations indicate a 

potential empirical quantum advantage of QCNNs over CNNs with respect to the accuracy of the 

testing [1]. 

Our classical knowledge derives from our life experiences; however, these experiences do not 

encapsulate the funda- mental mechanisms of nature. Quantum mechanics, the fun- damental 

principles that govern our reality, account for all observable phenomena. The phenomena of quantum 

mechan- ics are incongruent with conventional reasoning. Quantum computing employs the 

principles of quantum mechanics to perform computational tasks; quantum information refers to the 

use of quantum phenomena to enhance information transfer, storage, and retrieval, including the 

development of sophisticated cryptographic techniques. The many permuta- tions associated with 

quantum processing enable quantum computers to double their memory capacity with the addition of 

each qubit, which is the source of quantum computing’s power. Quantum computers can solve 

problems unattainable by classical computers, exemplified by their capacity to fac- tor enormous 

numbers by the Shor algorithm. Moreover, in certain instances, the integration of classical and 

quantum computers might yield enhanced problem solving efficiency, with quantum algorithms 

demonstrating superiority over their classical counterparts [2]. 

Quantum ML involves using the potential of quantum computers to develop scalable machine 

learning models that surpass the performance of conventional models while being more cost-effective 

[3]. The principles of quantum computing (QC) investigate the challenges associated with data storage, 

processing, and analysis [4]. Quantum mechanical systems are established by transforming 

information, consistently des- ignated quantum information. Quantum information denotes data that 

represent the state of a quantum system [5]. The fun- damental concept of quantum information pertains 

to the state of any quantum system characterized by two distinguishable degrees of freedom; the logical 

values 0 and 1 are referred to as a Qubit. A quantum computer exhibits counterintuitive phenomena of 

quantum physics, such as superposition, entan- glement, and tunneling. Consequently, a quantum 

computer can quickly address issues that exceed the capabilities of classical devices [6]. 

Quantum computing is a rapidly advancing field that uti- lizes the principles of quantum mechanics 

to tackle com- plex problems that pose challenges to classical computing. Machine learning is a 

specialized area within artificial in- telligence that enables computers to identify patterns based on 

their experiences. Rapid increase in data volume presents challenges for traditional machine learning 

algorithms in han- dling big data, while quantum computing offers the potential for significantly faster 

processing capabilities. The integra- tion of quantum computing with machine learning has led to the 

emergence of a novel domain called quantum machine learning. Quantum machine learning 

algorithms leverage the rapid processing capabilities of quantum computing, demon- strating a 

significant speed advantage over classical methods. 
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Natural language processing (NLP) represents a signif- icant domain within artificial intelligence, 

facilitating the computer’s comprehension of human languages. Currently, efforts are underway to 

take advantage of the speed advan- tages of quantum machine learning in applications related to 

natural language processing [7]. Various techniques and their adaptations have been developed to 

address tasks in understanding source code, including code representation and other downstream 

applications. Although these approaches have achieved notable progress, significant challenges remain 

in structural code comprehension, which can be summarized as follows [8]: 

• Structural Modeling of Code: Traditional language mod- els typically process source code as sequential 

token in- puts, often overlooking the inherent structural informa- tion. Consequently, critical 

challenges emerge, such as how to effectively model and leverage structural features within code and 

how to select the most relevant structural information for specific downstream tasks. 

• Learning Generic Code Representations: Much of the existing research is dedicated to learning 

representations for individual programming languages, making it diffi- cult to develop models that 

capture language-agnostic code features. Addressing this issue involves discovering methods to learn 

programming language-independent code representations that overcome language-specific 

limitations. 

• Task-specific Code Adaptation: Adapting models for downstream tasks still presents considerable 

hurdles, including how to design and select appropriate architec- tures for tasks like code generation 

and program repair, how to preprocess datasets for specific task require- ments, and how to adapt 

models in settings such as few-shot learning, transfer learning, and cross-language applications. 

The remainder of this paper is organized as follows. Section II discusses the literature review of 

previous related work; Section III introduces the data used in this paper, Section IV shows the 

performance of CNN and QCNN on the experi- mental data used, and Section V is focused on results 

and discussion, Section VI comparative analysis of the results, and VII summarize our conclusion. 

II. LITERATURE REVIEW 

Our study will be compared with other research based on the three phases of similarities: the type of 

dataset, the dif- ferent algorithms used to solve the same problem and the QCNN algorithm. The first 

study [9] employed two orthog- onal methodologies for the task: information retrieval (IR) and 

neural-based techniques, using DeepCom [10] and a Cross-Encoder-based classifier [11] on the 

FunCom dataset. The evaluation was carried out on a large-scale data set of Java applications. The 

experimental results indicate that the method achieves a BLEU score of 25.45, outperforming the 

state-of-the-art information retrieval technique, the neural based approach and their amalgamation 

by 41%, 26%, and 7%, respectively. 

On the other hand, [10] also used the DeepCom dataset; the study used Hybrid-DeepCom and a 

variation of the attention-based Seq2Seq model to create comments for Java methods. The results 

assess the effect of each suggested modification in the proposed methodology. The sentence- level 

BLEU score increases from 27.88% to 34.57% utilizing the neural machine translation model, such as 

the Seq2Seq model. The enhancement indicates that framing the comment- generating issue as a 

machine translation effort significantly influences performance. The attention mechanism improves 

the Seq2Seq model by 3%. Hybrid-DeepCom can produce more insightful comments by including 

structural informa- tion. Compared to the model devoid of Abstract Syntax Tree (AST), namely 

Seq2Seq (Attention), the Hybrid-DeepCom BLEU score exhibits an increase of 11%. Compared to the 

AST-based model DeepCom, Hybrid-DeepCom exhibits an increase of 1.3%. The BLEU score rose to 

39.51% with the application of Beam Search during comment generation. The BLEU score increases to 

41. 86% using camel case splitting. Experimental findings suggest that the comment generation task 

closely resembles machine translation. The acquisition of lexical and structural information and the 

segmentation of camel cases enhance the generation of code comments. 



Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 836 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

[12] presents a novel neural network-based technique, SeCNN, to produce code comments for Java 

methods. SeCNN employs CNN to mitigate the long-dependency is- sue in source code manipulation 

and incorporates numerous innovative components to capture the semantic information of the source 

code. Specifically, they develop a CNN com- ponent based on source code to acquire lexical 

information and an AST-based component to obtain syntactical informa- tion. Subsequently, they 

employ LSTM integrated with an attention mechanism to decode and produce code comments. 

DeepCom performs extensive tests, revealing that SeCNN outperforms five leading strategies, with a 

BLUE score of 44-44.89%. Compared to analogous baselines, Hybrid- DeepCom and AST-attendgru, 

which similarly utilize source code and AST, SeCNN has superior efficiency performance, as evidenced 

by its significantly lower execution time. 

The investigation by [13] on the explainability of large language models in code summarization used 

SHAP (SHap- ley Additive exPlanations) with the FunCom dataset. In light of the vast research in 

natural language processing that sug- gests that aligning neural models with human visual pat- terns 

improves performance, we restrict our conclusion to the SHAP measure of feature attribution and 

human attention as evaluated in an eye-tracking experiment. Much research is being conducted to 

investigate the connection between human attention and the attribution of features in computer 

models. Their research demonstrated that SHAP did not match the visual attention of humans in the 

measurements or models investigated. The findings indicate that the use of SHAP for feature 

attribution does not enhance the ability to explain language models by establishing correlations 

between machine and human focal points. Feature attribution assessed by SHAP may not be the most 

effective method for interpreting a language model’s emphasis during code summarization, as it does 

not align with human attention patterns. As an alternative, it could be that machines approach the 

reasoning of code in a manner distinct from humans when assigned the task of summarizing source 

code. 

After finding studies assessing code comprehension from a human developer’s perspective, [14] 

constructed an aggre- gated data set that included information from ten research projects that 

included over 427 code samples and about 24,000 unique human evaluations. With the help of these 

data, an exhaustive meta-analysis was carried out to evaluate the relationship between Cognitive 

Complexity and several measures of source code understandability. Within the scope of their work, the 

authors validated a metric known as Cog- nitive Complexity. This metric was developed specifically to 

evaluate the understandability of code, and it has already gained widespread adoption due to its 

incorporation into established static code analysis tools. An exhaustive search of the relevant literature 

was performed to collect data sets from research investigating the understandability of code, resulting in 

almost 24,000 reviews of the understandability of 427 code samples. 

A meta-analysis allowed a statistical summarization of the correlation coefficients and 

quantification of the correla- tions between these measurements and the associated met- ric values. A 

positive correlation exists between cognitive complexity, the amount of time required for 

comprehension, and subjective judgments of understandability. There was a lack of consistency in the 

findings concerning the connection between the metric and the accuracy of comprehension tests and 

physiological indicators. Overall, this research illustrated that code comprehension can be measured in 

various ways, and how these approaches are related is not known. 

Question Type Classification Methods Comparison was one of the models evaluated by [15]. All 

models were trained and evaluated using the TREC 10 dataset; the CNN-based technique, utilizing 

kernel sizes ranging from 2 to 6 and a single fully connected layer, demonstrated the highest perfor- 

mance, achieving an accuracy of 90.7%. 

For the work in [16], classical CNN and NN models at- tained accuracy ratings of 0.999 and 0.9141, 

respectively. However, the quantum QNN and QCNN models exhibited accuracy scores ranging from 

0.5 to 0.6 and 0.52 to 0.61, respectively. The limited scale of the MNIST dataset, com- prising merely 

60,000 training images and 10,000 test images, which, following necessary preprocessing, is 



Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 837 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

diminished to 1,000-2,000 training and testing images, respectively, is likely a contributing factor to the 

inferior performance of QCNN algorithms in binary classification tasks relative to traditional CNN and 

NN. A potential reason for the suboptimal per- formance of QCNN algorithms is their relatively novel 

and intricate architecture, which may necessitate increased opti- mization efforts. 

Furthermore, the hardware constraints of quantum com puters, including their restricted qubit 

count and coherence durations, may contribute to their diminished efficacy on tiny datasets such as 

MNIST. Furthermore, the susceptibility of quantum computers to noise and mistakes is an additional 

aspect that may influence the accuracy and performance of QCNN algorithms, especially in the 

context of near-term quantum computers characterized by elevated error rates. Ultimately, the 

MNIST dataset may not provide a distinct quantum advantage over conventional algorithms, 

suggesting that the efficacy of QCNN algorithms may not much exceed that of traditional CNNs and 

NNs in this instance. 

Another application of QCNN is the classification of high- energy physics occurrences [17]. The 

suggested model is evaluated using a simulated Deep Underground Neutrino Experiment dataset. The 

suggested quantum architecture ex- hibits a superior learning speed compared to classical CNNs while 

maintaining a comparable number of parameters. The QCNN converges more rapidly and attains 

superior test ac- curacy relative to CNNs. The numerical simulations indicate that applying QCNN and 

other quantum machine learning models to high-energy physics and various scientific domains is a 

promising avenue. The results demonstrated accuracy rates for different binary classification metrics 

on the testing dataset: CNN achieved 80%, 82%, and 95%, while QCNN 

attained 92.5%, 97.5%, and 98.5%. 

In [18], one of the most promising quantum machine learning (QML) designs, QCNN, was adopted. 

The authors examined the classification of quantum phases of matter, a cutting-edge application. The 

architecture of the QCNN, with its equivariant and pooling layers, yields an ansatz with lim- ited 

expressivity. Fundamental attributes, such as intermedi- ate measurements, parameter sharing, and 

logarithmic depth, enhance bias while reducing variation. This indicates that QCNN is expected to 

have superior generalization capabili- ties compared to conventional hardware-efficient approaches. 

Most complexity measures are monotonically related to the expressivity of the function family, and 

uniform generaliza- tion bounds are monotonically related to a complexity mea- sure. Consequently, 

the argument that uniform generalization limitations for the QCNN family are trivially loose indicates 

that the same bounds applied to less constrained models must likewise be vacuous. 

In this regard, the findings for QCNNs extend to the complete domain of unrestricted QML. It was 

analytically demonstrated that polynomially sized quantum NNs may accommodate any arbitrary 

labeling of data sets. This ap- pears to counter the assertions that limited training data are 

demonstrably inadequate to ensure effective generalization in QML. Finally, analytical and numerical 

findings do not exclude the potential for effective generalization with lim- ited training data; 

nonetheless, they suggest that they cannot ensure this based on uniform generalization boundaries. 

The factors contributing to the successful generalization remain unidentified.  

III. METHODOLOGY 

We proposed two models for the same dataset, CNN and QCNN, to evaluate the code comprehension 

task; each model gave high-accuracy classification results as described below. For the CNN model, the 

accuracy achieved was 96%, while QCNN gave an accuracy of 98%. The proposed strategy is organized 

into 4 phases: 

1) Data preprocessing, 

2) Tokenizer, 

3) CNN algorithm, 
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4) QCNN algorithm. 

A. DATA PREPROCESSING 

The code delineates a function called create_dataset that takes two file paths as arguments: one for code 

and another for NL comments. The function examines these files and prepares them for subsequent 

use. Subsequently, the data preprocess- ing phase accepts the file path within the function, which 

encompasses variables stored in paths to the input files: One file contains code, while the other provides 

the equivalent NL comments. The subsequent process in that data preprocessing phase involves 

defining the function creat_dataset, which accepts two parameters: a: the path to the code file and b: 

the path to the natural language file. Perusal The Code File follows in this step, which opens the 

supplied code file and reads its lines into a list named lines1, with each line in lines1 being handled as a: 

The newline character (\n) is removed after each line. Each line is enclosed with tokens that signify the 

beginning and end of each code snippet. 

Subsequent reading of the Natural Language File is as follows: Analogously to the preceding block, 

this code ac- cesses the NL comment file designated by b and imports its lines into a list named lines2. 

Each line undergoes identical processing, encapsulated with and tokens. Subsequently, the length of 

the data is verified. After processing both files, the program verifies whether the quantity of code 

snippets (lines in lines1) corresponds to the quantity of natural language comments (lines2). If the 

counts are incongruent, a warning message is generated. A Return Statement is established to return 

two lists: lines1, which contain the processed code snippets. And lines2: The natural language remarks 

analyzed. The creat_dataset utility efficiently prepares a dataset by read- ing code and natural language 

comment files. Enclose each line with tokens to enhance processing in subsequent tasks, such as 

building a sequence-to-sequence model. Verify the consistency of code snippets and comments before 

returning the processed lists. 

 

 FIGURE 1. Data preprocessing process 
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This is generally required by our machine learning tasks with respect to code summary and 

comment generation. This process concludes in FIGURE 1, which is the flow diagram. 

B. TOKENIZER 

This work uses TensorFlow’s tf.keras.preprocessing.text; it is a function that tokenizes text data by 

processing the text, constraining the vocabulary, generating a mapping table, and substituting 

unknown words. Initial segment Establish Con- stants: code_maxlen = 150; Maximum length for code 

snip- pets (150 tokens); nl_maxlen = 30 The maximum length for natural language comments is 30 

tokens, with a vocabulary limit of 30,000. The vocabulary’s maximum size is 30,000 words. 

  

FIGURE 2. Tokenizer process 

After that, the tokenization function is defined as def tokenize (lang, maxlen), where lang 

represents the textual material designated for tokenization (which may include code or natural 

language), and maxlen is the upper limit for the sequence lengths post-tokenization. The 

subsequent step in the process involves the creation of a tokenizer using 

tf.keras.preprocessing.text.Tokenizer by instantiating a tok- enizer with the following parameters: i) 

num_words set to vocab_maxlen +1. It restricts the size of the vocabulary to 30,001 words (inclusive 

of the OOV (out of vocabulary) token 

), ii) filters set to filters=”” . This implies no character filtering is possible (normal behavior would 

exclude punctuation and special characters); iii) oov_token is set to "unk", designat- ing a token for 

out-of-vocabulary words (words absent from the vocabulary). Subsequently, the tokenizer is fitted to 

the text data; this approach analyzes the input text (lang) and constructs the vocabulary according to 

word frequency. Each distinct word is assigned a specific index. The text input is transformed into 

sequences of integers, with each integer rep- resenting a word’s index in the lexicon. For instance, 

"hello" could be denoted as five if it is the fifth entry in the lexicon. 

Furthermore, the Pad and Truncate sequences are applied as follows: i) pad_sequences guarantee 



Journal of Information Systems Engineering and Management 
2025, 10(48s) 

e-ISSN: 2468-4376 

  

https://www.jisem-journal.com/ Research Article  

 

 840 
 

Copyright © 2024 by Author/s and Licensed by JISEM. This is an open access article distributed under the Creative Commons 

Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is 

properly cited. 

 

uniformity in se- quence length; ii) maxlen enforces the maximum length de- fined in the function 

call; iii) padding is set to ’post’. This appends padding to the end of the sequences; iv) truncating is 

set to ’post’. This removes excess sequences from the end when they exceed the maximum length. The 

conclud- ing function is the Return Statement, which yields a ten- sor. The tokenized sequences are 

padded and truncated us- ing tf.keras.preprocessing.sequence.pad_sequences. This en- sures that all 

sequences are of uniform length (code_maxlen for the code and nl_maxlen for the natural language). 

Padding is added at the end (post padding), and if a sequence exceeds the defined length, it is 

truncated. The tokenize function is intended to preprocess textual material for application in ML 

models as follows: 

1) Initialize a tokenizer that constrains the vocabulary and specifies an out-of-vocabulary token. 

2) Trains the tokenizer on the supplied text data to es- tablish a vocabulary. Transforms the text into 

integer sequences according to the vocabulary. 

3) Pads or truncate these sequences to achieve uniform length. 

This Is Important for Code Comprehension for the follow- ing reasons: 

• The code and the comments are both text, but with different patterns and structures. 

• Tokenization: 

-- Transforms them into machine-readable input. 

-- Ensures vocabulary is manageable. 

-- Handles unknown or rare words consistently. 

• After tokenization, the data are usually: 

-- Padded to a uniform length (important for batch- ing). 

-- Passed to deep learning models (like LSTMs, Transformers, or BERT-based models) to perform tasks 

such as summarizing code, identifying bugs, or generating documentation. 

This tokenizer process prepares the code and the NL text for deep learning by: 

• Creating a vocabulary, 

• Mapping text to sequences of integers, 

• Handling unknown words, 

• Outputting clean, uniform sequences. 

It is a critical preprocessing step before any model can start learning patterns in code comprehension 

tasks. 

It is a formatting text data for deep learning models, which necessitates fixed-size input. FIGURE 2 

graphically repre- sents this process as a flow diagram. In short, it does the following processing steps: 

1) Input Text Data: Raw code or natural language (NL) text is provided as input. 

2) Initialize Tokenizer: 

• Using tf.keras.preprocessing.text.Tokenizer. 

• Set a vocabulary limit (for example, 30,000 words). 

• Define an OOV token ("unk") to handle unseen words. 

3) Fit Tokenizer on Text 
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• The tokenizer learns the vocabulary by analyzing the input text. 

• Each unique word is assigned an index based on frequency. 

4) Tokenize Text Data: The input text is converted into sequences of integers. 

5) Check for OOV Tokens: The tokenizer checks if there are any out-of-vocabulary (OOV) words. 

6) Handle OOV tokens (if present): Replace them with the OOV token (unk) to maintain consistency. 

7) Output Tokenized Sequence: The final result is a nu- merical representation of the input text ready for 

the model. 

C. CNN ALOGORITHM 

The Convolutional Neural Network (CNN) is a type of feed- forward neural network capable of 

automatically extracting features from input data through convolutional operations. Unlike traditional 

feature extraction techniques, CNNs elim- inate the need for manual feature engineering. The design of 

CNNs is inspired by human visual perception: artificial neu- rons mimic biological neurons, 

convolutional kernels act as specialized receptors that detect distinct features, and activa- tion 

functions replicate the biological mechanism where only signals that exceed a threshold are propagated 

to subsequent neurons [21]. 

Loss functions and optimization algorithms are employed to guide the CNN learning process toward 

the desired out- comes. Compared to fully connected (FC) networks, CNNs offer several key 

advantages: (1) Local connectivity, each neuron connects only to a limited number of neurons in the 

previous layer, reducing the number of parameters and ac- celerating convergence; (2) Weight sharing 

multiple connec- tions share the same weights, further minimizing the model’s complexity; (3) 

Dimensionality reduction via down sampling  pooling layers exploit local correlations within data to 

down- sample inputs, retaining essential information while discard- ing redundant features. This not 

only decreases data volume, but also reduces the number of trainable parameters. Together, these 

properties make CNNs one of the most influential and widely adopted architectures in deep learning 

[22]. The pro- posed architecture for the CNN model FIGURE 3 used in this work is as follows: 

1) Inputs: 

• Code Input (encoder_input): 

The inputs are represented by: i) Code Input (en- coder_input): A sequence of code tokens submitted 

to the encoder. This is structured as (code_maxlen, 1), signifying a sequence of length code_maxlen 

with a single channel, perhaps representing one-dimensional tokenized code; and ii) Natural 

Language Input (de- coder_input): A series of natural language tokens (com- ments) supplied as input 

to the decoder. It is configured as (nl_maxlen,). 
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FIGURE 3. CNN model architecture 

 

• Natural Language Input (decoder_input): input to the de- coder as a series of natural language tokens 

(comments). 

<nl_maxlen,> is its configuration. 

2) Encoder (CNN): 

• The coding sequence is analyzed using a 1D CNN: 

-- Conv1D Layer 1: Uses 64 filters with a kernel width of 3 tokens and uses ReLU activation and padding to 

keep the input dimensions. 

-- MaxPooling Layer 1: The sequence length is re- duced. 

-- Conv1D Layer 2: 128 filters of an analogous kernel size are utilized. 

-- MaxPooling Layer 2: It further reduces the se- quence length by fifty percent. 

-- Conv1D Layer 3: Employs 256 filters. 

-- MaxPooling Layer 3: Froker further compresses the sequence, keeping the 3D tensor configuration 

intact. It has an output of the encoder as a 3D tensor with the shape (batch_size, reduced_steps, 256), re- 

duced_steps signify the sequence length after three pooling operations. With a single channel, perhaps 

representing one-dimensional tokenized code. 

• The output of the encoder is a 3D tensor with dimensions (batch_size, reduced_steps, 256), where 

reduced_steps represent the sequence length following three pooling operations. 
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3) Decoder(LSTM): 

The natural language input (a series of tokenized remarks) is processed through: 

• Embedding Layer: Does embedding lookup, or ’embed- ding,’ of the input tokens into dense (vector) 

embeddings of dimension embedding_dim. 

• LSTM layer: Instead of just an end state as output, the algorithm sequentially processes the embedded 

tokens and outputs the complete series of hidden states. 

4) Attention Mechanism: 

In the output of the LSTM decoder lies the encode code sequence. During the generation of each 

output token, the attention mechanism calculates a weighted sum of the output of the encoder to 

effectively highlight the most relevant parts of the input sequence. 

5) Output Layer: 

A Dense layer with vocab size units and softmax activation is used to transmit the output using 

vocab_size units, forecasting a probability distribution over the vocabulary for each token in the output 

sequence. 

D. QCNN ALGORITHM 

Quantum computing investigates quantum mechanics, a dis- cipline of physics that elucidates the 

behavior of matter and energy on the microscale [23]. The architecture proposed for the QCNN model 

in FIGURE 4 used in this work is as follows: 

 

  

 

FIGURE 4. QCNN model architecture 

1) Inputs Layer: 

• Encoder Input: For the source code, Shape (code_maxlen, 1). 

• Decoder Input: Natural language output of shape (nl_maxlen,) 

2) Encoder (CNN): 

• Conv1D Layer: Kernel Size 3, ReLU Activation and 64 filters with L2 regularization. 

• MaxPooling1D Layer: Pool size 2. 

• Dropout layer: 30% dropout to prevent overfitting. 

• Conv1D Layer: Kernal size 3, ReLU activation, L2 reg- ularization, output 128 filters. 

• MaxPooling1D Layer: Pool size 2. 
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• Dropout Layer: In this experiment, we also added a dropout layer with dropout rate of 0.3 to the 

QCNN as we observed dropout 30%. We see that the dropout operation greatly reduces the problem of 

overfitting in this case. 

• Conv1D Layer: A ReLU activation layer is used, with L2 regularization and 256 filters with a kernel size 

of 3. 

• MaxPooling1D Layer: Pool size 2 

• Flatten Layer: Flattens and outputs so that it can go into the decoder. 

• RepeatVector Layer: It has to repeat the encoder output to fill the decoder sequence length. 

3) Latent Representation: 

Dense Layer: Outputs a latent vector of size latent_dim (4). 

 Quantum Layer: 

Integrates the quantum circuit output, which processes the latent representation. 

4) Decoder (CNN): 

• Embedding Layer: This takes a token of any index and maps it to a dense vector of dimensionality 

embed- ding_dim. 

• Reshape layer: Metrics adjusted for CNN processing. 

• Conv1D Layer: It is 256 filters, kernel 3, ReLU activa- tion. 

• Conv1D Layer: Filters 128, kernel size 3, ReLU activa- tion. 

• Concatenate Layer: The output of a quantum layer is merged with the output of the decoder. 

• Conv1D Layer: A balanced feature extractor of 64 fil- ters, kernel size 3, ReLU activation. 

5) Output Layer: 

Dense Layer: Softmax activation is used to produce predic- tions for vocabulary size. 

6) Quantum Circuit Simulation 

The figure above FIGURE 4 is a simulation of a quantum circuit used in this experiment; below is an 

explanation of this simulation. 

1) Qubits 

We have 4 quantum qubits labeled q0 through q3, and one classical register (meas) with 4 bits to store 

the measurement results. 

2) Gates Applied 
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FIGURE 5. CNN Model Loss and Accuracy 

 

 

FIGURE 6. QCNN Model Loss and Accuracy 

• Hadamard Gates (H) 

Each qubit starts with a Hadamard gate, which puts them into a superposition [24]: 

H |0⟩ = 21 (|0⟩ + |1⟩) (1) 

This prepares each qubit to interfere with others in the Quantum Forier Transfer (QFT) process. 

• Rotation Gates (Rx) 

Each qubit is acted upon by a rotation around the X-axis, RX(0), where 0 is the angle given on each 

value [24]: 

-- q0: Rx(0.969) 

-- q1: Rx(0.909) 

-- q2: Rx(0.282) 
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-- q3: Rx(0.358) 

 Controlled Operations 

There are two controlled-addition (or controlled- Rx) gates: 

-- One between q0 (control) and q2 (target) 

-- The other is between q1 (control) and q3 (tar- get) 

This run on local machine using Accelerated Emu- lation Resources (AER) Simulator. We can also run 

this model on Rea IBM Quantum Computer, which has one free account and the other paid account 

[25]. 

7) Limitations of current quantum hardware 

IBM has developed a range of quantum processors, each with varying qubit counts and coherence times 

[26], we used the Eagle Processor in our evaluation. TABLE 1 represent an 

overview of some notable IBM quantum processors: 

Decoherence Times (T1 and T2): 

Specifically T1 (relaxation time) and T2 (dephasing time), are critical metrics that indicate how long a 

qubit can maintain its quantum state. For IBM’s superconducting qubits, these times typically range 

between 50 to 100 microseconds, though exact values can vary depending on the specific processor and 

qubit. IBM has implemented techniques such as TLS (Two- Level System) mitigation to improve 

coherence times across its processors [27]. 

Consequently, numerous quantum programming languages have been introduced to facilitate the 

specification of quan- tum algorithms. Quantum algorithms often include the con- version of quantum 

circuits into code, namely a series of textual programming statements [28]. The encoder analyzes the 

input code using a wide range of convolutional layers to extract information. A latent representation is 

produced and transmitted across a quantum layer. The decoder, initialized with the natural language 

input, reconstructs the output se- quence utilizing its convolutional layers. The ultimate output is 

generated through a thick layer that forecasts the subse- quent token in the sequence. 

E. DESIGN DECISION METRICS 

Each convolutional filter slides across 3 tokens at a time in the input sequence. 

Why kernel size = 3 effective? 

1) Local Context Capture: 

Kernel size 3 captures trigram-level features — groups of 3 adjacent tokens or signal values. This is 

especially useful in natural language (e.g., capturing "not good", "very fast") and time series where 

local dependencies matter. 

2) Shallow but Powerful: 

Smaller kernels allow deeper networks, stacking multi- ple layers to capture hierarchical features (like 

edges → textures → shapes in images; or phrases → sentences in NLP). 

3) Balance Between Simplicity and Expressiveness: Larger kernels can overfit or become too 

parameter- heavy. Size 3 is a sweet spot: small enough to gener- alize, large enough to capture 

meaningful patterns. 

4) Empirically Proven: 

Various architectures (e.g., VGG in image models, or character-level CNNs for text) use kernel size = 3 

be- cause it consistently performs well [27]. 
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What L2 Regularization Does? 

Penalizes large weights by adding a term to the loss [29]: 

 Prevents Overfitting: 

• Especially critical in the model since CNNs can easily memorize patterns. 

• L2 promotes weight decay, forcing the model to generalize better to unseen data. 

2) Smoothens Learning: 

Encourages smaller, smoother weights, which helps in stabilizing training and avoiding overly complex 

solu- tions. 

3) Acts as a Regularizer in Dropout+CNN/QCNN combo: we are using Dropout(0.3) — pairing it with L2 

helps regularize both neuron activation (dropout) and weight magnitude (L2). 

4) Improves Generalization in Low-Data Regimes: 

If we are working with a relatively small dataset (com- mon in quantum-NLP hybrids), L2 is a simple 

way to keep the model grounded. 

Filter Size 

The filter sizes we are referring to: 64, 128, and 256 are part of a progressively increasing convolutional 

architecture, which is a common and powerful design pattern in deep learning, especially for sequence 

and image processing. 

Each number (64, 128, 256) is the number of filters (a.k.a. kernels or feature detectors) applied at that 

layer. Each filter is a learnable weight matrix that slides across the input to detect a specific pattern. 

Why Increasing Filter Sizes: 

1) Hierarchical Feature Extraction: 

• Early layers with 64 filters capture simple, low- level features (e.g., edges, basic word patterns). 

• Deeper layers with 128 or 256 filters learn more complex and abstract patterns, formed by combin- ing 

simpler features. 

• This progression mimics human perception: sim- ple complex. 

2) Wider Layers Compensate for Reduced Size: 

As we apply MaxPooling, the spatial (or temporal) dimension shrinks, increasing the depth (filters) to 

pre- serve and enhance the representational capacity of the model. 

3) Better Generalization in Deep Networks: More filters in deeper layers means: 

• More expressive power 

• Richer representations 

• Ability to learn diverse features 

This enables the model to capture subtleties in input sequences useful for tasks such as code 

summarization or text generation. 

Loss = Original Loss + λ ∑ wi
2 
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(2) 

 Why These Specific Numbers (64 → 128 → 256)? 

This follows a power-of-2 progression (see Table 2): 

This discourages the model from relying too heavily on any one feature or neuron. 

Why L2 is Important? 

Easy to parallelize on GPUs 

• Fits well into memory blocks 

• Widely used in standard CNNs like VGG, ResNet, and Transformers 

TABLE 1. IBM quantum processors types 

•  

 

 

 

 

 

 

 

 

 

 

 

It’s not a rule, but it’s a strong empirical convention. 

 

TABLE 2. Filter size used in the experiment design 

 

 

 

 

 

 

 

Dropout rate: 

The model uses a dropout rate of 0.3 (30%) to avoid overfit- ting. This value can be adjusted based on 

the complexity of the data set and the tendency of the model to overfit - high dropout for more 

complex models or severe overfitting, and lower dropout for simpler data sets or under fitting 

scenarios. 

Process

or 

Qubits Notable Features 

Heron R2 156 Heavy-hexagonal lattice; improved coherence via 

TLS mitigation 

Heron R1 133 First-generation Heron processor with enhanced 

stability 

Osprey 433 Nearly quadruple the size of Eagle; designed for 

scalability 

Eagle 127 Introduced advanced control systems for 

improved performance 

Falcon 27-65 Early generation processors with foundational 

architectures 

Filter 

Size 

Purpose 

64 Captures basic patterns (low-level 

features) 

128 Captures intermediate patterns (phrases) 

256 Captures high-level patterns (semantics, 

code blocks) 
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With quantum layers, gradients may be fragile → smaller learning rates are better. and if there is an 

overfitting; it can be 

hadeled by increasing dropout or using early stopping. where if underfitting the objects, it can be 

handeled by increasing units, filters, or embedding dimension. 

QCNN training process: 

We are using 

• Optimizer: Adam 

• Learning Rate: 0.0001 

Why Adam? 

Adam (Adaptive Moment Estimation) combines the best of: 

-- Momentum (smooths gradients) 

-- RMSprop (scales learning rate adaptively) 

-- It is particularly well-suited for handling sparse gradients and noisy datasets, which are common 

characteristics in NLP and code comprehension tasks. 

-- Requires minimal tuning and converges fast. 

• Loss: Sparse Categorical Crossentropy 

Due to output layer is layers.Dense(vocabsize, activa- tion=softmax) which predicts a probability 

distribution over vocabulary. Labels (target sequences) are assumed to be Integer-encoded (not one-

hot) hence sparse ver- sion is used; This loss [29]: 

Loss = − log (P(ytrue | x)) (3) 

Penalizes the model based on how close the predicted distribution is to the true label. 

Hyperparameters: How Are They Chosen or Tuned? TABLE 3 conclude our hyperpaprameter 

used in our investi- gation: 

Grid search / Random search - Test multiple combina- tions. 

1) Bayesian Optimization - Smarter exploration of hyper- parameter space (e.g., via Optuna or Keras 

Tuner). 

2) Manual tuning + intuition - especially in quantum-NLP models, where pre-trained results are rare. 

Manual settings; could benefit from tuning tools such as Keras Tuner or Optuna [30]. 

Quantum computer programming often involves the estab- lishment of a quantum circuit, 

exemplified in FIGURE 4, to represent the operations executed on each qubit within the quantum 

computer. This graphical style is effective for tiny instances and prototype development; however, it 

becomes impractical when the circuit expands in size [31]. Conse- quently, numerous quantum 

programming languages have been introduced to facilitate the specification of quantum algorithms. 

Quantum algorithms often include the conversion of quantum circuits into code, namely a series of 

textual programming statements [32]. The encoder analyzes the input code using many convolutional 

layers to extract information. A latent representation is produced and transmitted across a quantum 

layer. The decoder, initialized with the natural language input, reconstructs the output sequence 

utilizing its convolutional layers. The ultimate output is generated through a thick layer that forecasts 

the subsequent token in the sequence [28]. 
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IV. RESULTS AND DISCUSSION 

The proposed system is developed to effectively predict the comprehension task of the source code. To 

analyze the perfor- mance of the proposed model, the source code was tested to identify possible 

comprehension tasks. To effectively assess the validity and performance of our system, the system was 

trained using the trained samples file. The proposed system outperformed accuracy and loss. TABLE 5 

shows the training and test accuracy of the proposed system. 

By implementing QCNN on a superconducting quantum processor, we have demonstrated its 

capability to recognize quantum phases efficiently. With further advances in qubit number and 

circuit depth, we expect QCNNs to become an essential diagnostic tool for characterizing output 

states of comprehension tasks, which are increasingly challenging to analyze with classical computing. 

Such applications will benefit from the predicted increased sampling complexity at phase boundaries, 

in which the QCNN enhances the dis- tinguishing power for assigning states to different quantum 

phases. 

TABLE 3. Summary of Hyperparameters Used and Rationale 

Hyperparam

eter 

Value in Your 

Code 

How/Why Chosen 

Learning Rate 0.0001 Lower than default (0.001) — Optimal for stability, 

especially in hybrid 

models 

Dropout 0.3 Common choice (between 0.2–0.5); helps regularize 

and reduce overfit- 

ting 

L2 

Regularization 

0.001 Prevents large weights; commonly tested in range 1e-5 

to 1e-2 

Latent 

Dimension 

4 Matches number of qubits; tightly coupled to 

quantum encoding 

Kernel Size 3 Standard for capturing local patterns 

Batch Size Due to GPU 

Memory 

Typically tuned between 32–128, depending on 

GPU memory and 

dataset size 
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TABLE 4. The comparison of model architectures between QCNN and CNN used in this 

paper 

 

TABLE 5. performance comparison between the QCNN and the CNN on unlabeled java 

source code 

 

 

 

 

An exciting direction to be explored in future work includes the trainability of parameterized QCNNs. 

This also becomes relevant when using QCNNs to learn optimal strategies for quantum error 

correction. The test accuracy in QCNN (98%) and CNN (95%) is comparable with several parameters. 

On the other hand, the QCNN converges to its optimal accuracy with the same number of 

epochs.TABLE 4 illustrates the dif- ferences between the two models in comparing phases of the 

number of channels, filter size, parameters and total number of parameters. The provided graphs in 

FIGURE 5 illustrate the training progress of a CNN model over several epochs, focusing on two key 

metrics: loss and accuracy. The left-side graph plots the Loss vs. Validation Loss over the x-axis and y-

axis; the x-axis represents epochs indicating the number of training iterations, while the y-axis 

represents Loss values that measure how well the model performed; as it goes lower, it indicates higher 

performance. The blue line represents the training loss; this value typically decreases as the model 

learns from the training data. On the other hand, the orange line represents the validation loss that 

measures the model performance in the unseen data, this should decrease as train- ing progress. If both 

curves decrease, it means that the model is learning effectively. If the validation loss starts to increase 

while the training loss continues to decrease, this may indicate overfitting, where the model performs 

well on the training data but poorly on unseen data. On the other hand, the right graph illustrates the 

accuracy vs. validation accuracy; the x- axis represents epochs as above, and the y-axis represents the 

proportion of correctly predicted instances; the higher values mean higher performance. Accuracy is 

the blue line on the curve that shows the training accuracy that typically increases as the model learns. 

Val accuracy is the orange line plot in the curve that shows the validation accuracy, indicating how well 

the model performs in the unseen data. Increasing accuracy in both the training and validation sets 

epitomizes that the model is generalizing well. 

Overfitting may occur when the validation is low and the accuracy is high. In short, model 

performance; training loss decreases while the training accuracy increases, indicating that the model 

Algorithm Training 
Accuracy 

Testing Ac- 
curacy 

Training 
Loss 

Testing Loss 

QCNN 0.9828 0.9644 0.1226 0.2572 

CNN 0.9579 0.9418 0.2782 0.4337 
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is learning. Generalization of the validation loss and accuracy provide insight into how well the model 

generalizes to new data. Overfitting Signs may occur if val- idation loss increases or validation 

accuracy plateaus while training metrics improve; it signals that the model may be overfitting. The 

training stability says that if the curves are smooth, it indicates stable training. Sharp fluctuations 

may suggest issues such as learning rate problems. And this is the reason behind that high accuracy; 

that the model was well trained to anticipate any diverse input. These graphs are crucial for diagnosing 

the training process and determining if adjustments are needed, such as tuning hyper-parameters or 

employing regularization techniques. 

FIGURE 6 illustrate the training process of a QCNN model over several epochs, focusing on two key 

metrics: loss and accuracy. The left graph x-axis represents the epochs (number of training iterations), 

while the y-axis represents the loss values; lower values mean superior performance. The blue line 

represents the training loss, which decreases over epochs, indicating that the model is learning and 

fitting the training data. And for the orange line, the Val loss represents the validation loss, which 

evaluates the model performance in the unseen data. This line also decreases, concluding that the 

model is generalizing well. Both loss curves decreasing indicate effective learning; if the validation loss 

starts in- creasing while the training loss continues to decrease, it may occur overfitting, where the 

model performs well on training data but poorly on new data. The right graph represents the accuracy 

vs. validation accuracy; the x-axis is the number of epochs, and the y-axis is the accuracy values; higher 

values, higher accuracy. The blue line shows the training accuracy that increases over epochs, 

reflecting improved performance in the training data. The orange line demonstrates the valida- tion 

accuracy; that is also increasing, indicating that the model is effectively generalizing to new data. We can 

say that the model is learning well when both the training and validation sets increase. But if the 

training accuracy is high and the validation accuracy is low, this indicates that an overfitting is 

occurring. 

In short, Learning Progress of the model decreases loss and increases accuracy indicate that the model 

is effectively learn- ing from the training data. Generalization Capability of that; validation metrics 

provide insight into the model’s ability to generalize to unseen data. Overfitting Signs of a divergence 

between training and validation metrics (e.g., high training accuracy with low validation accuracy) 

signal the need for adjustments, such as regularization. Stability: Smooth curves suggest stable training, 

while erratic fluctuations may indicate potential issues. These graphs are essential for diagnosing the 

training process and determining if further tuning or modi- fications are needed in the model. The 

main reason why it obtains 98% accuracy is because: 

• The Data is one dimensional 

• We use 4 Qubits i.e. 

24 = 16 (4) 

When number of qubits increases the model perfor- mances increasing [33]. 

The histogram in FIGURE 7 illustrates the distribution of the BLEU scores obtained by evaluating 

the CNN model in the code comprehension task. BLEU scores (Bilingual Evaluation Understudy), 

ranging from 0 to 1, measure the similarity between the model-generated outputs and the ref- erence 

code/comment sequences [34]. A significant spike is observed at the BLEU score of 1.0, with over 5000 

instances. This suggests that a substantial portion of the model’s pre- dictions are exact matches with 

the reference output. This behavior implies that the model has memorized or perfectly learned a large 

subset of the training/test distribution, which can occur when input patterns are highly repetitive or 

the output vocabulary is constrained. 

Apart from the peak, the rest of the BLEU scores are more evenly distributed between 0.1 and 0.9, 

indicating that while many predictions are close to the ground truth, there is a wide variation in quality. 

The presence of BLEU scores across the spectrum suggests that the model makes partial and incorrect 
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predictions depending on the complexity or variability of the inputs. 

The midrange scores (0.3–0.5) have relatively lower fre- quencies, implying that the model tends to 

predict with high confidence and precision or significantly deviate from the reference output - a 

polarization that could arise from im- balanced training data or insufficient generalization in certain 

cases. 

The distribution reflects both the strengths and limitations of the CNN model. On the one hand, its 

ability to attain high BLEU scores for many samples demonstrates its effectiveness in capturing syntactic 

and lexical patterns. However, the wide variance in BLEU scores highlights potential challenges in 

generalizing to more diverse or unseen code structures. These findings suggest that, while the CNN 

architecture performs well in pattern-rich contexts, its capacity for deeper semantic understanding or 

abstraction remains limited. 

FIGURE 8 illustrates the BLEU score distribution for the Quantum Convolutional Neural Network 

(QCNN) applied to the code comprehension task. This histogram reflects the translation quality of the 

model by measuring the similarity between the generated outputs and the reference texts. 

The distribution reveals a significant spike in the BLEU score of 1.0, indicating that the QCNN 

model was able to generate perfectly matching outputs for a substantial num- ber of samples. This 

performance suggests a high degree of memorization or successful pattern extraction from the 

training data, particularly in cases where code-comment pairs are syntactically or semantically 

repetitive. 

Compared to the classical CNN distribution, the QCNN model demonstrates an even higher 

concentration at the up- per end of the BLEU score range, with a notably higher frequency of exact 

matches (approximately 7,600 samples). This suggests an enhanced capacity for capturing lexical and 

structural regularities in source code sequences, which may be attributed to the hybrid quantum-

classical nature of the model, potentially enabling it to explore richer feature rep- resentations. 

Outside the peak, the BLEU scores are distributed over a range of 0.1 to 0.9, with a gradual incline 

starting around 0.4 and reaching peak in the 0.7 to 0.9 interval. This indicates that even in cases 

where the QCNN does not produce perfect matches, it still generates highly similar outputs, showcasing 

its robustness in generalizing across diverse code patterns. 

 

FIGURE 7. CNN BLEU scores metric 

FIGURE 8. QCNN BLEU scores metric 
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FIGURE 9. CNN confusion matrix                                     FIGURE 10. QCNN confusion matrix 

 

Overall, the BLEU score distribution supports the hypothe- sis that QCNNs can outperform 

traditional models in captur- ing the underlying semantics in code comprehension tasks, particularly 

when exact sequence generation is required. However, the presence of non-trivial mass at lower BLEU 

scores suggests room for improvement in handling edge cases or less common constructs. A 

comparative analysis of the BLEU score distributions of the CNN and QCNN models reveals key 

differences in their performance on the code comprehension task. Although both models exhibit a 

con- centration of high BLEU scores, the QCNN model demon- strates a markedly sharper and higher 

peak at the BLEU score of 1.0, indicating a larger proportion of exact matches between the predicted 

and reference sequences. Specifically, QCNN achieves more than 7,500 exact matches compared to 

approximately 5,300 from CNN, reflecting a substantial improvement in sequence generation 

accuracy.Moreover, the overall spread of the BLEU scores suggests that the QCNN consistently 

produces higher-quality outputs throughout the dataset. The QCNN shows a smoother and more 

pronounced distribution in the mid-to-high BLEU score ranges (0.6 to 0.9), whereas the CNN’s 

distribution is more dispersed and contains a larger number of low-scoring outputs (below 0.4). This 

pattern implies that the QCNN is not only more capable of capturing exact matches but is also more 

robust in generalizing to a wider variety of code examples. 

These observations indicate that integrating quantum com- puting principles into neural network 

architectures can en- hance model expressivity and learning capacity. The QCNN’s superior 

performance suggests that it is better equipped to understand and generate semantically 

meaningful code- comment mappings, highlighting its potential as a promising approach in the 

domain of code comprehension. 

The diagonal elements shown at FIGURE 9 represent the correct predictions. This indicates that 

the model performs very well in predicting the correct class for each instance; most predictions are 

correctly classified. There are misclassi fication with a very few non-zero values off the diagonal.The 

only noticeable misclassification is Class 3 misclassified as Class 5 (only 1 instance) This is a sign of a 

very high accu- racy and excellent class separation — the CNN model rarely confuses one class for 

another. While class 3 has almost 20 k samples, class 10 has just 2.5 k. So, the data set is somewhat 

imbalanced, but the model still performs well even for smaller classes. Minimal confusion across classes 

suggests that the model generalizes well to unseen data for this task. This level of accuracy and 

separation implies that the CNN is highly effective at identifying structural or semantic code patterns 

relevant to comprehension tasks; which demonstrate that the model is suitability for program 

comprehension task. 

The confusion matrix of the (QCNN) model implemented in FIGURE 10 reveals exceptional 

classification perfor- mance across the top eight most frequent classes in the pro- gram 

comprehension dataset. The matrix exhibits a perfectly diagonal structure, indicating that all input 
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samples were correctly classified into their respective categories without any misclassification. 

Each class, from labels 3 to 10, shows a high number of accurate predictions, without observed 

confusion between adjacent or distant classes. This complete absence of off- diagonal values reflects 

the strong ability of the QCNN model to learn and generalize class-specific features, even in poten- tially 

overlapping semantic contexts commonly found in code analysis tasks. 

The performance is consistent across classes with varying sample sizes, from the highest (class 3 with 

19,966 instances) to the lowest (class 10 with 2,497 instances), suggesting that the QCNN model is not 

only robust to class imbalance but also highly effective at capturing intricate patterns within each class 

distribution. 

This outstanding performance highlights the suitability of QCNN for structured tasks such as 

program comprehension. The hybrid nature of the model, which combines classical convolutional 

layers with quantum layers, appears to enhance feature representation and discrimination. These 

results rein- force the potential of quantum-enhanced models to advance state-of-the-art solutions in 

software engineering applications [35]. 

The confusion matrix for the classical Convolutional Neu- ral Network (CNN) model applied to the 

program comprehen- sion task demonstrates strong classification performance in the top eight most 

common classes. The diagonal dominance of the matrix indicates that the model is able to correctly 

identify the majority of instances within each class. However, unlike the Quantum Convolutional Neural 

Network (QCNN), minor deviations are visible in some classes. For example, class 3 has the highest 

number of correct predictions (19,990), followed by class 4 (16,193) and class 5 (15,748), reflecting the 

model’s ability to learn from classes with larger sample sizes. However, there is a small 

misclassification in class 3, where a single sample was incorrectly classified, as evidenced by a nonzero 

off-diagonal entry. Although this misclassifi- cation is minimal, it highlights that CNN is not 

perfectly accurate and that its performance can degrade slightly with increasing class similarity or data 

complexity. 

Smaller classes such as class 10 (2,497 samples) and class 9 (2,852 samples) also show no 

misclassifications, which may suggest that the model generalizes well despite class imbalance. 

However, the overall intensity and sharpness of the diagonal bands are slightly lower compared to the 

QCNN model, indicating relatively less certainty or confidence in the predictions. 

In summary, while the CNN model performs admirably on the program comprehension dataset, the 

confusion matrix analysis suggests there is room for improvement in han- dling fine-grained 

distinctions between classes. These results further support the integration of quantum layers, as in the 

QCNN model, to increase the classification precision and robustness of the model in complex software 

engineering tasks. 

 

V. COMPARATIVE ANALYSIS 

At this section we compare our CNN/QCNN results with related studies on source code 

comprehension (especially the ones based on models such as Transformer-based Code- BERT, 

GraphCodeBERT and T5). Compared to conventional models in the understanding of source code, such 

as LSTM- based architectures and Transformer variants (e.g. Code- BERT, GraphCodeBERT), the 

results from the CNN and QCNN models reveal both overlapping strengths and dis- tinct differences. 

Transformer-based models typically achieve higher BLEU scores, often in the 0.5–0.8 range for code 

summarization tasks (e.g., CodeXGLUE benchmarks report BLEU scores around 58–62%) [36]. 

In comparison, the CNN model exhibited moderate perfor- mance (BLEU peak around 0.3-0.5), 

indicating limitations in the capture of complex semantic relationships. 

The QCNN model improved this significantly, skewing the results towards a range of 0.5 to 0.7 BLEU, 
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making it closer to the performance of the Transformer, although still slightly behind the models with 

the best performance. 

The CNN model struggled here (shallow architecture, less context-sensitive feature extraction), 

whereas the QCNN showed enhanced semantic sensitivity, possibly attributed to quantum properties 

like entanglement supporting complex feature interactions. 

GraphCodeBERT and CodeT5 [37] [38] have shown strong generalization between programming 

languages and unseen code structures. 

Similarly, QCNN had fewer outputs in the low BLEU range (<0.3), suggesting better generalization 

compared to CNNs, but it still showed some limitations likely due to the current early stage of 

development of quantum models. 

Classical CNNs and LSTMs remain much more efficient and easier to train compared to quantum-

enhanced models or large transformers, which require enormous computational resources. 

The QCNN, while promising, introduces greater compu- tational complexity and dependence on 

quantum simulators, limiting its practicality compared to conventional deep learn- ing approaches 

unless dedicated quantum hardware becomes more accessible. 

TABLE 6. Strengths and Weaknesses of each model 

 

Model Strengths Weaknesses 

CNN 1) Efficient and scalable: Well-suited for large-

scale datasets and can be trained quickly on 

classical hard- ware. 

2) Interpretable architecture: Easier to 

understand and de- bug, which is beneficial for 

research and production use. 

3) Stable performance: Smooth distribution 

suggests con- sistent behavior across test 

samples. 

4) Reasonable coverage: Captures varied 

structural pat- terns in code. 

1) Lack of high-precision outputs: BLEU scores 

rarely exceed 0.6. 

2) Long-tail distribution toward low BLEU scores 

(<0.3). 

3) Limited semantic depth in complex examples. 

QCNN 1) Improved output quality: BLEU distribution 

skewed toward 0.5–0.7. 

2) Better semantic representation: Quantum 

features help capture complex structures. 

3) Fewer weak predictions: Less frequent BLEU 

<0.3 scores. 

1) Computational complexity: Quantum 

simulation re- quires significant resources. 

2) Narrow output diversity: Possible risk of 

overfitting. 

3) Early-stage technology: Quantum debugging 

still im- mature. 
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Models like CodeBERT [39] have undergone extensive optimization, pre-training, and fine-tuning 

across multiple tasks and languages. We also compared our results with the DeepCom model 

introduced by [40]; DeepCom, which leverages a structure-based traversal (SBT) of abstract syntax 

trees (AST) and an LSTM-based encoder-decoder architec- ture with attention mechanisms, achieved a 

BLEU-4 score of 38.17% on Java code-comment generation tasks. In contrast, our CNN model showed 

a BLEU score distribution concen- trated between 0.3 and 0.5, indicating moderate performance in 

generating syntactically similar summaries. The QCNN model demonstrated notable improvements, 

with most BLEU scores falling in the 0.5–0.7 range, reflecting a higher degree of semantic alignment 

with reference summaries. Although DeepCom explicitly incorporates the structural information of 

the code, thus capturing richer semantic features, our models, particularly QCNN, achieved comparable 

or superior token-level precision without direct integration of the AST. 

Furthermore, QCNN benefited from quantum-enhanced feature representation, enabling better 

generalization across various code examples. Nevertheless, unlike DeepCom’s LSTM-based approach, 

CNN and QCNN models are in- herently faster to train due to their parallelizable architec- tures. 

These results suggest that while structural modeling, as employed in DeepCom, remains crucial for 

deep code understanding, quantum-enhanced convolutional models of- fer a promising alternative, 

particularly when efficiency and scalability are prioritized. In contrast, quantum models such as 

QCNNs are still in the nascent stages, with less refined training techniques and toolkits, which 

currently hinders their competitiveness at scale [23]. 

Our results indicate that QCNNs offer a promising direc- tion, especially for tasks requiring deeper 

semantic under- standing, potentially narrowing the gap with Transformer- based approaches. 

However, the technology’s maturity and resource demands still make classical models more favorable 

for immediate large-scale deployment in source code com- prehension tasks. Future research 

optimizing QCNN architec- tures and leveraging hybrid quantum-classical systems could further bridge 

this performance and efficiency gap. TABLE 6 Shows the strengths and weaknesses of each model. 

VI. CONCLUSION 

This study proposes an innovative system to detect Java source code comprehension tasks, aiming to 

address limita- tions found in previous DL techniques. Our proposed system uses CNN and QCNN 

algorithms to predict the classification accuracy of the source code comprehension task using the 

DeepCom dataset to successfully audit the source code for any miscomprehension. The data set is pre-

processed consid- ering the importance of data balancing, removal of duplicate code, missing values, 

handling outliers, vectorization, and normalization for robustness, efficiency, and computational 

speed. 

Moreover, QCNN with self-attentive pooling is used as a classifier. To validate the efficiency of our 

system, we compared its performance against not only prevalent deep learning approaches such as 

CNN and the QCNN algorithm itself, and not only the DeepCom dataset but also other avail- able 

datasets such as the FunCom dataset, TREC 10 dataset, Software Assurance Reference Dataset 

(SARD), and sur- vey/questionnaire study, which, as the name implies, gathers data through surveys or 

questionnaires, and MINISIT dataset as discussed previously in the literature review section. The 

results of our experiments demonstrate the superior perfor- mance of our proposed system in various 

metrics, signifying a promising advancement in the field of code comprehension tasks. 

The proposed code comprehension process, with its ef- ficient feature extraction and quantum 

mechanism, includ- ing self-attentive pooling, successfully addresses source code omprehension 

detection issues in Java source code. Al- though the system is tailored for the structural complexities of 

Java source code, extending the proposed mechanism to other programming languages is a crucial 

future direction to assess its effectiveness across diverse codebases. Furthermore, ex- ploring the 

applicability of the proposed system in resolv- ing NLP tasks holds promise for mitigating time, cost, 

and memory bottleneck issues in broader contexts. Vulnerability detection in Java source code using a 
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quantum convolutional neural network with self-attentive pooling, deep sequence, and graph-based 

hybrid feature extraction. Furthermore, to prove the system’s validity, we aim to propose a system with 

other benchmark datasets and QDL algorithms, test it as exclusive, and merge it with our previous 

model to evaluate the accuracy of different implementation techniques. 

Classical and quantum computers both need mechanisms to correct errors that arise during 

computation. Although full quantum error correction is not yet available, noisy intermediate-scale 

quantum (NISQ) devices, with slightly more than 50 qubits, have been developed. These systems are 

approaching the ability to solve problems that are infeasible for classical computers. However, without 

error correction, NISQ devices can only produce reliable results after a lim- ited number of operations, 

requiring shallow quantum cir- cuits.(Classical algorithms for quantum mean values) Here comes the 

main inquiry; Do quantum algorithms outweigh classical? Quantum algorithms have the potential to 

surpass their classical counterparts by leveraging distinctive quantum mechanical principles such as 

superposition, entanglement, and interference. These characteristics enable quantum sys- tems to 

process information in fundamentally novel ways, often enabling more rapid problem solving for 

specific com- putational tasks. Main reasons for quantum superiority [41]: 

1) Superposition: Unlike classical bits, quantum bits (qubits) can represent multiple states 

simultaneously, allowing the parallel exploration of numerous compu- tational paths. 

2) Entanglement: Correlated states among entangled qubits enable the encoding and manipulation of 

com- plex information structures with enhanced computa- tional efficiency. 

3) Interference: Quantum algorithms harness constructive and destructive interference to emphasize 

correct out- comes while suppressing incorrect ones, thus increas- ing the accuracy of the solution. 

4) Parallelism: Quantum systems can process multiple inputs in parallel, leading to significant 

acceleration in solving certain classes of problems. 

Quantum computers have the potential to tackle NP-complete problems, a milestone often termed 

quantum supremacy. This concept refers to the moment when a programmable quantum device is 

capable of solving problems that would be infeasible for any classical computer to address within a 

reasonable timeframe [42]. 
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