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Due to its diverse geography and climate, India is highly susceptible to natural disasters like 

floods and cyclones, with an 8,000-kilometer coastline exposed to 10% of the world's tropical 

storms, five to six form annually, with the Bay of Bengal being particularly affected due to its 

higher frequency. This study aims to conduct a detailed flood frequency analysis and risk 

mapping for the 2014 Srinagar flood, utilizing statistical techniques and GIS-based tools to 

evaluate the return periods and recurrence frequencies. The study incorporates data from three 

gauging stations, Asham, Sangam, and Ram Munsi Bagh, regarding discharge rates in cubic 

meters per second (cms). Statistical models were applied, including Normal, Log-Normal, Log-

Pearson Type III, and Gumbel distributions. GIS data was sourced from USGS, DIVA-GIS, and 

WorldClim to assess flood risk and affected areas. The study’s result revealed that while Log-

Normal and Log-Pearson models did not exceed threshold values, the Gumbel distribution 

indicated potential exceedance at a 95% confidence level, suggesting enhanced safety measures 

were needed. The analysis shows varying risk levels across gauging stations, with 

recommendations for improved flood management strategies, especially for areas prone to high 

flood risk. Further research should focus on refining flood prediction models, enhancing GIS 

capabilities for risk assessment, and implementing comprehensive flood mitigation strategies. 

Keywords: Return Period, Frequency, Discharge Flow, Distribution Curve, Exceedance 

Probability, ArcGIS, Arc Scene, 3D Modell. 

 

INTRODUCTION 

With its diverse geography and climate, India is highly susceptible to natural disasters like floods and cyclones. The 

country's coastline is exposed to 10% of the world's tropical storms, with five to six forming annually. The Bay of 

Bengal is known for its higher frequency of cyclones (Sahoo & Bhaskaran, 2016). It is believed that about 40 million 

hectares, or 12% of India's geographical area, iss vulnerable to flood risks (Deshpande, 2022). Urban areas are 

increasingly vulnerable due to inadequate drainage systems and rapid urbanization, leading to economic losses and 

population displacement. 

In September 2014, massive floods in Jammu and Kashmir were observed, caused by heavy and continuous rainfall 

that lasted for a week (Mishra, 2015). Many of the Anantnag, Pulwama, Baramulla, Bandipora, and Srinagar 

districts were submerged (Bhat et al., 2019). The severity of the flood was quite massive, and the preparedness to 

face such a catastrophic event at the local level was also resilient; therefore, possible help and necessary support 

could be possible by the agencies responsible after passing significant period. All the services were at halt due to 

severity of the flood and huge economic loss was envisaged in terms of direct losses to the tune of approximately 20 

billion dollars and indirect losses of around 16.74 billion dollars. 
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Figure 1: A glimpse over the history of Natural disasters in India 

Figure 1 shows a decreasing trend in human losses but an increasing trend in damage cost due to India's developing 

status. The top graph shows a growing trend in natural disasters, with spikes in certain years indicating potential 

clusters of severe weather events. The bottom graph shows the financial damages caused by these disasters, with an 

upward trend indicating an escalating economic impact. The image aligns with the research's aim to analyze India's 
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frequency and effects of natural disasters, particularly floods, to identify patterns, examine correlations between 

disaster numbers, human loss, and damage cost, and assess future risks for preparedness and mitigation strategies. 

Flood frequency analysis is crucial in India, where 40% of natural disasters involve floods and cyclones. The 2014 

Kashmir flood was a major event, causing significant loss of infrastructure and human lives with a peak discharge 

of 1699 cus at Asham, 3398 cus at Sangam, and 1982 cus at Ram Munsi Bagh gauging station (Malik, 2022; Mishra, 

2015). Water resources design and management require analyzing extreme flood events, particularly those with 

defined return periods. The annual block maxima approach is a common method used, where peak streamflow is 

determined each year, and a distribution fitted to it is used to estimate the return level for a defined period (Langat 

et al., 2019). This approach is essential for managing water resources effectively and minimizing the impact of 

floods. 

In many case studies, the implementation of historical data into flood frequency analysis was demonstrated, e.g., by 

using traditional methods of statistical analysis (Frances et al., 1994; Kjeldsen et al., 2014; Sartor et al., 2010) or 

Bayesian statistics (Gaál et al., 2015; Payrastre et al., 2011; Viglione et al., 2013), Frances et al. (1994) conducted a 

systematic study which assesses the effectiveness of incorporating historical flood data in flood frequency analysis, 

comparing its impact with systematic records, examining factors like record length, flood return periods, and 

threshold levels (Frances et al., 1994). 

Strupczewski et al. (2014) examined the impact of the largest historical flood on flood frequency analysis in 

Srinagar, the most affected region in Jammu and Kashmir province. The authors have used the Weibull and 

Gumbel distribution to analyze the flooding extent in various neighborhoods, including Sonwar Bagh, Shivpora, 

Batwara, Soitang, Lasjan, Padshai Bagh, Natipora, Lal Chowk, Rajbagh, Jawahar Nagar, and Wazir Bagh 

(Strupczewski et al., 2014). 

However, the current study aims to enhance India's disaster management and mitigation strategies using ArcGIS 

tools. The study aims to improve preparedness and response planning for flood disasters by understanding return 

periods and risk mapping. Floods and cyclones are two of India's most recurrent and devastating natural hazards. 

The study uses ArcGIS to determine the return period for flood frequency and create risk maps. The return period 

estimates the likelihood of a flood event occurring within a given period, helping design infrastructure that can 

withstand extreme events and inform policy decisions. The risk mapping integrates historical flood records, 

topography, land use, and population density, identifying high-risk areas and developing targeted risk reduction 

strategies. 

DATA AND METHODS 

2.1 Data Collection 

2.1.1 Gauging Stations 

• Locations: The data for the current study was collected from three gauging stations in India: Asham, Sangam, 

and Ram Munshi Bagh 

• Discharge Rates: The discharge rate in cubic meters per second (cms) at these gauging stations was obtained 

from the state government’s website. 

2.1.2 GIS Data 

• Sources: GIS data for the study have been taken from USGS, DIVA-GIS and WorldClim. 

2.2 Flood Modeling Methods 

In the present study, the following methods have been employed for flood modeling: 

2.2.1 Normal Distribution 

The normal distribution is very typical in the technical analysis of the stock market and has mean and standard 

deviation parameters (Sahu & Sahu, 2016). Like any other data set, it consists of an average, median, and mode; the 

apex denotes the highest point. This distribution is vital in deriving the Central Limit Theorem (CLT), whereby 

averages from independent identically distributed random variables are approximated by normal distribution (Bera 

et al., 2016). 
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However, as can be observed, only the mean (μ) and the standard deviation (σ) are required for the computation. 

𝐹(𝑥) =  
1

𝜎√2𝜋
 𝑒−

1
2

 (
𝑥−𝜇

𝜎
)2  

Where, 

x = value of the variable or data being examined and f(x) the probability function 

μ = the mean 

σ = the standard deviation 

• T-Year Flood Estimation: 

T-year flood estimates can be graphically or analytically, with the main drawback being that different individuals 

may receive different forecast. Analytical methods use parameter estimation using the Method of Moment. 

In normal distribution, T-year flood is given by: 

𝑋𝑡 =  𝑥 + 𝐾𝑇𝑆𝑥 

Where, 

x- = Sample mean 

SX = Sample Standard Deviation 

KT = Frequency factor corresponding to probability of exceedance 

2.2.2 Log-Normal Distribution: 

This distribution is utilized when the data's logarithms match a normal distribution. 

(Crow & Shimizu, 1987) 

Probability Distribution Function: 𝐹(𝑥) =  
1

𝑥σ𝑦√2𝜋
𝑒

− 
[𝑙𝑜𝑔𝑥−𝜇𝑦]

2σ2𝑦

2

 

• T-Year Flood Estimation: 

𝑋
𝑇= 𝑒𝑧+𝐾𝑇𝜎𝑧  

2.2.3 Log-Pearson Type III Distribution: 

This distribution is often utilized in the USA for government-sponsored projects (Kumar et al., 2020). After 

converting the data into base ten logarithmic form, analysis shows that the series of Z also varies if X is the variate 

of a random hydrologic series. 

Hence, 

Z = log X 

𝑋𝑇 = 10𝑍𝑟 

𝑍𝑇 =  𝑧 + 𝐾𝑧𝜎𝑧 

𝐾𝑍 = a frequency factor which is a function of recurrence interval T and the coefficient of skew Cs, 

σz = Standard deviation of the Z variate sample 

2.2.4 Gumbel Distribution: 

Gumbel introduces the Gumbel model, an extension of the exponential distribution, which offers an increasing or 

decreasing hazard function, unlike the constant exponential distribution (Fayomi et al., 2022). Gumbel's model is a 

widely used distribution for fitting extreme data sets in various scientific fields, including hydrology, meteorology, 

climatology, insurance, finance, and geology, as demonstrated in a study by Gumez et al. (2019) (Gómez et al., 



685  
 

J INFORM SYSTEMS ENG, 10(7s) 

2019). In hydrologic and meteorological research, it is one of the most often used probability distribution functions 

for extreme values, used to estimate flood peaks, maximum rainfall, maximum wind, etc. 

• Probability Formula: 

𝑃(𝑋 ≥ 𝑥0) = 1 − 𝑒−𝑒−𝑦
 

Where y is a dimensionless variable given by: 

• T-Year Flood Estimation: 

𝑋𝑇 =  𝑥 + 𝐾σ𝑧 

𝑦𝑇 =  −𝐼𝑛[𝐼𝑛 (
𝑇

𝑇 − 1
)] 

𝐾 =  
(𝑦𝑟 − 0.577)

1.2825
 

2.3 Goodness-of-Fit Tests 

2.3.1 Chi-Square Test: 

The chi-square test for goodness of fit involves comparing frequencies of a variable with expected values derived 

from the assumed theoretical distribution model (Collins et al., 1993). The test is based on the quantity distribution, 

which asymptotically approaches the chi-square distribution with a k-1 degree of freedom. Suppose the parameters 

of the theoretical model are unspecified and have to be determined from the data at hand. In that case, the degrees 

of freedom will have to be decremented by one for every unspecified parameter to be estimated. 

Suppose the assumed distribution gives the value of ∑i=1K (ni – ei)2 /ei < C1-α. f, the assumed theoretical 

distribution is an acceptable model; otherwise, the assumed distribution model does not support the observed data 

at the α significance level. For satisfactory results, it is generally necessary to have k>=5 and ei>=5. A chi-square 

(X2) goodness of fit test has been conducted for a categorical variable, assessing how well a statistical model fits a 

set of observations. 

• Test Statistics: 

𝑋2 =  ∑
𝑘

𝑖 = 𝑖
 
(𝑛𝑖 −  𝑒𝑖 )  2

𝑒𝑖
 

Ho: The population does follow the specified distribution. 

Ha : The population does not follow the specified distribution. 

2.3.2 Kolmogorov-Smirnov (K-S) Test: 

The K-S test measures the difference between the cumulative frequency from experiments with the cumulative 

distribution of an assumed theoretical distribution (Cox et al., 1988). This means that if the observed difference is 

greater than anticipated for the particular number of subjects in the sample, then the theoretical distribution 

cannot be used to model the given population. If the statistical value of the difference is less than the critical value, 

the theoretical distribution is acceptable at a specified level of significance. 

𝐷𝑛 =  max | 𝐹𝑥 (x) − 𝑆𝑛 (x)| 

The K-S test determines a random variable's maximum difference, Dn, with the critical value, Dn α, at a particular 

significance level α. The proposed theoretical distribution is acceptable if Dn is less than the critical value. The K-S 

test has an advantage over the chi-square test, which doesn't require data division into intervals (Kim & Whitt, 

2015). 

2.3.3 The Anderson Darling (A-D) Test: 

The Anderson-Darling (A-D) Test, introduced by Anderson and Darling in 1954, is a statistical method that 

emphasizes the importance of the tails of a distribution (Aboraya et al., 2022; Raschke, 2020). It is valid for sample 

sizes larger than 7, as it is expressed in logarithms of probabilities. The critical value (cα) and adjusted A-D statistic 
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(A*) are based on the form of the proposed theoretical distribution and sample size (n), as defined in the table 

under the appendix. 

• Test Statistics: 

𝐴2 =  −𝑛 −  
1

𝑛
 ∑

𝑛

𝑖 = 𝑖
 (2𝑖 − 𝑖)[𝐼𝑛 𝐹𝑥(𝑥𝑖) + 𝐼𝑛(1 − 𝐹𝑥(𝑥𝑛+1−𝑖))] 

• Adjusted Statistics: 

𝐴∗ = 𝐴2(1 +
0.2

√𝑛
) 

RESULTS AND DISCUSSIONS 

3.1 Performance Indicators 

Table 1 presents the performance indicators for the Ram Munsi Bagh gauging station, comparing Normal, Log-

Normal, and Log-Pearson Type III distributions. The Normal distribution shows high accuracy with an R² of 0.98 

and IA of 0.9999 but a higher RMSE (1.036) and MAE (75.76). The Log-Normal distribution has lower accuracy (R² 

= 0.75, IA = 0.9366) but reduced MAE (0.485). The Log-Pearson Type III distribution simplifies to Log-Normal 

due to zero skewness (Cs = 0). 

Table 1: Performance Indicator for Ram Munsi Bagh gauging station 

Distribution  NAE RMSE MAE PA R2 IA 

Normal 
µ=756.87 

1.036 75.76 0.574 0 0.98 0.9999 
σ=404.58 

Log-Normal 
µ=0.7243 

1.181 0.485 0.248 0 0.75 0.9366 
σ=0.032 

Log-Pearson 

Type-III 

Cs=0, hence log -Pearson Type III reduces to Log normal distribution 

Cs(Coefficient of skewness)=N∑(Z-Zbar)^3/(N-1)(N-2)σz^3 

 

Normalized Absolute Error = ∑N
i=1(Ypred. -Yreal)/∑N

i=1Yreal 

Root Mean Square Error = √ (Y^
i –Yi)2/n 

Mean Absolute Error = ∑n
i=1(yi - xi )/n 

Prediction Accuracy = ∑n
i=1(Yi- Y^)(Xi-X^)/(n-1)σP σo[ 

R2(Coeff. Of Determination) = [∑n
i=1(Yi- Y^)(Xi-Xi^)/nSPSo]2 

Index of Accuracy = 1-∑n
i=1 (Y^

i –Yi)2/∑n
i=1 [(Yi- X^)+( Xi- Xi^)]2 

n = no. of observations, Yi=Predicted value, Oi=Observed value, Y^
i=Mean of predicted value 

Xi^=Mean of observed value, Sp=S.D. of predicted value, So=S.D. of the observed value 

3.2 Flood Frequency 

Table 2 highlights the flood frequency estimates for the Jhelum River at Ram Munsi Bagh gauging station. The 

highest discharge estimate is 1895.11 cms for a 50-year return period using the Log-Normal distribution, while the 

lowest is 1055.71 cms for a 5-year return period using the Gumbel distribution. These figures reflect the variability 

in discharge predictions depending on the statistical distribution model and return period used. 
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Table 2: Flood Frequency estimates of Jhelum River for Ram Munsi Bagh gauging station 

 

Pi=Exceedance Probability, qi=Non-Exceedance Probability 

W=(-2Log(P))1/2, P=1-F and F=1-T-1 

KT =W-(C0+C1W+C2W2) / (1+d 1W +d2W2
 +d3W3)

 +ε(P) 

C0=2.5155, C1=0.8028, C2=0.0103, d1=1.4327, d2=0.1892, d3=0.0013 

Table 3 presents the Chi-Square Test results comparing observed flood frequencies with theoretical frequencies 

using Normal and Log-Normal distributions over different periods. The sum of the Chi-Square values for the 

Normal distribution is significantly higher (153.77) than the Log-Normal distribution (52.62), indicating a larger 

discrepancy between observed and expected frequencies for the Normal distribution. This suggests that the Log-

Normal distribution may better fit the observed flood data at the Ram Munsi Bagh gauging station. 

Table 3: Chi-Square Test 

Year Flood 

Frequency 

Theoretical Frequencies ∑(ni – ei)2/ei 

Normal Log Normal Normal Log Normal 

1979-82 12 22.96 8.80 5.231777003 4.531864093 

1983-86 17 24.72 9.10 2.410938511 4.315671977 

1987-90 13 32.27 8.80 11.50706229 4.417710968 

1991-94 19 37.44 9.30 9.082094017 4.343350096 

1995-98 18 42.85 9.30 14.41126021 4.417562817 

1999-02 23 48.00 9.60 13.02083333 4.353107816 

2003-06 46 46.17 10.50 0.000625948 4.238764344 

2007-10 46 59.10 10.50 2.903722504 4.238764344 

2011-14 25 64.43 9.60 24.1304501 4.241536014 

2015-18 36 69.85 10.20 16.40404438 4.291943298 

2019-22 17 74.54 9.00 44.41711296 4.225473073 

∑    153.7705763 52.62475788 

 

The critical Chi-square value of 113.14 indicates that the Chi-square test is valid for Log-normal tests only, allowing 

for modeling based on log normal distribution. 

3.3 Log Pearson Type III Distribution 

σZ=√((Σ(Sq(Z-Z(bar))/(N-1) = 0.334025046 

Cs=N∑(Z-Zbar) ^3/(N-1) (N-2) σz^3 

Cs=0, hence log -Pearson Type III distribution reduces to log normal, therefore detailed calculation for L of Pearson 

Type III. 



688  
 

J INFORM SYSTEMS ENG, 10(7s) 

Log Pearson Type III has not been carried out. 

 

 

Figure 2: Comparison of Gumbel distribution fit, model fit, and flood frequency curve with peak discharge and 

return period 

The graph consists of three components: The Gumbel Distribution Curve, which compares theoretical and 

calculated discharge values based on exceedance probability; the Distribution of Fit, plotting annual discharge 

against different models; and the Flood Frequency Curve, relating peak annual discharge to return period. The 

Gumbel distribution appears to be a reasonable fit for discharge data, showing an increasing trend with increasing 

return periods. However, further statistical analysis is needed to confirm this and assess the accuracy of the flood 

frequency curve. 
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(a) 

 
(b) 

Figure 3: K-S Test 

Figure 2 displays two graphs utilizing Kolmogorov-Smirnov (K-S) tests to evaluate data fit to distribution models. 

In Graph (a), the Normal Distribution’s K-S statistic (Dmax = 0.19) exceeds the critical value (0.17), indicating a 

significant deviation from normality. In Graph (b), the Log-Normal Distribution’s K-S statistic (Dmax = 0.19) is 

slightly below the critical value (0.18), suggesting a closer fit. However, the difference is minimal. While the data 

deviates from a normal distribution, further analysis is needed to confirm the log-normal fit. 

K-S Test also qualifies to Log Normal Distribution as Dmax < Dnα. 

3.4 A-D Test for Gumbel Distribution: 

Table 4 shows the Anderson-Darling (A-D) test results for the Gumbel distribution, which demonstrates an A-D 

statistic (A²) of 0.0185 and an adjusted statistic (A*) of 0.0189. These values are significantly lower than the critical 

value (Cα) of 0.757, showing that the Gumbel distribution is compatible with the data. The low A-D statistic 

suggests a minimal deviation from the expected distribution, supporting the hypothesis that the data follows a 

Gumbel distribution. 

Table 4: A-D Test for Gumbel Distribution 

A2(A-D Statistic.) Adjusted. Statistic(A*) Cα 

0.018463967 0.01894473 0.757 

 

As Adjusted. Statistic(A*) value (0.01894473) <Critical Value Cα (0.757) 

Table 3 and Graph 3 (a) and (b) indicate that only Log Normal distribution has a qualified chi-square test, and 

Table 4 shows that the A-D test has a qualified Gumbel Distribution. Also Graph 2(a) shows a very good fit of 
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distribution for Gumbel distribution. However, it is evident from Table 2 that the calculated peak discharge in 50 

years from any distribution cannot supersede the peak discharge of 1982 cms reached in the year 2014. Further, the 

study considered the goodness of fit by Gumbel distribution and calculated the upper and lower bound peak 

discharge at a 95 % confidence level. 

 

Value of Yn and Sn taken from Gumbel distribution table 

Y50=-Ln(Ln(T/T-1)) 

K50= (Y50 –Yn)/Sn 

X50=µ +K50*σ 

b = √ (1+1.3* K50+1.1* K50
2) 

Se = b*σ/√50 

Ui = X50 + 1.96*Se 

Li = X50 – 1.96*Se 

The upper peak discharge flow, with a 95% confidence level, crosses the 1982 cum peak during the 2014 flood 

condition. This suggests a 95% (α = 0.05) probability of reoccurrence. The orange line in Graph 2(b) shows the 

theoretical distribution, while the blue line represents the fit of annual peak streamflow data with a Gumbel 

distribution, allowing for predictions of streamflow values for return periods ranging from 1 to 100 years. The study 

uses a Gumbel distribution curve to predict streamflow values for return periods from 1 to 100 years. However, the 

curve follows the distribution for low flows but drifts away from the theoretical distribution at higher flows. 

Therefore, multiple distributions are recommended, as this study follows this approach. 

Table 5 presents performance indicators for the Sangam gauging station, comparing Normal, Log-Normal, and 

Log-Pearson Type III distributions. The Log-Normal distribution shows superior performance, with very low errors 

(NAE: 0.0002, RMSE: 0.475, MAE: 0.174) and a high index of agreement (IA: 0.9999), suggesting excellent 

predictive accuracy. The Normal distribution, while having a strong R² (0.92), has higher errors and a low 

percentage accuracy (0.00119). Overall, the Log-Normal distribution provides the best fit for the observed data. 

Table 5: Performance Indicator for Sangam gauging station 

Distribution  NAE RMSE MAE PA R2 IA 

Normal µ=751.83 1.056 

 

191.55 

 

1.55 

 

0.00119 

 

0.92 

 

0.9992 

 σ=624.28 

Log-Normal µ=0.5751 

0.0002 0.475 0.174 0.1047 0.92 0.9999 σ=0.032 

Log-Pearson 

Type-III 

Cs=0, hence log -Pearson Type III reduces to Log normal distribution 

Cs(Coefficient of skewness)=N∑(Z-Zbar)^3/(N-1)(N-2)σz^3 

 

Table 6 shows that as the return period increases, the estimated annual discharge for the Jhelum River at the 

Sangam gauging station also rises across different distributions. For example, at a 50-year return period, the 

Normal distribution estimates an annual discharge of 2,034.23 cms, the Log-Normal distribution (LN2) suggests 

2,733.11 cms, and the Gumbel distribution predicts 2,390.70 cms. The Log-Normal distribution consistently 

provides the highest discharge estimates, highlighting how different models can significantly influence flood risk 

assessments. 

Ul Ll

N yn Sn T50 Y50 K50 x50 b Se x1 x2

59 0.5527 1.177 50 3.901938658 2.845572 1908.149 3.688666 211.0537 2321.813694 1494.483
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Table 6: Flood Frequency estimates of Jhelum River for Sangam gauging station 

 

 

 

Figure 4: Analysis of Flood Frequency and Discharge Predictions for Sangam Gauging Station 

Figure 3 shows a graph of three key elements: The Gumbel Distribution Curve, The Flood Frequency Curve, and the 

Sangam Gauging Station data. The Gumbel distribution provides a good fit for modeling discharge data, with points 

generally aligning. The Flood Frequency Curve shows the relationship between return periods and peak annual 

discharge, with theoretical and estimated values showing an increase with return periods. The Sangam Gauging 

Station graph compares peak annual discharges calculated using three distribution models (Normal, Log-Normal, 
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and Gumbel) across various return periods. All three models provide similar estimates of peak discharge, with the 

Log-Normal distribution estimating slightly higher discharges at longer return periods. 

 

Figure 5: Graph 4 (a): K-S Test 

 

Figure 6: Graph 4 (b): K-S Test 

K-S Test also qualifies to Log Normal Distribution as Dmax < Dnα. 
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3.5 A-D Test for Gumbel Distribution 

Table 7: A-D Test for Gumbel Distribution 

A2(A-D 

Statistic.) 

Adjusted. 

Statistic(A*) Cα 

0.018464 0.0189447 0.757 

 

As Adjusted. Statistic(A*) value (0.0189447) <Critical Value Cα (0.757) 

Table 3 and Graph 4 (a) and (b) indicate that only the Log Normal distribution has a qualified chi-square test, and 

Table 7 shows that the A-D test has a qualified Gumbel Distribution. Also Graph 4 (a) shows a very good fit of 

distribution for Gumbel distribution. However, it is evident from Table 6 that the calculated peak discharge in 50 

years from any distribution cannot supersede the peak discharge of 3398 cm reached in the year 2014. Further, the 

study considered the goodness of fit by Gumbel distribution and calculated the upper and lower bound peak 

discharge at a 95% confidence level. 

 

The upper peak discharge flow during the flood condition 2014 did not cross the 3398cum peak discharge, 

indicating that a 95% probability of reoccurrence is not possible. Graph 4 (c) shows a Gumbel distribution, allowing 

for predictions of streamflow values for any return period from 1 to 100 years, with the theoretical distribution 

represented by orange and the fit of annual peak streamflow data. 

Table 8 shows the performance indicators for the Asham gauging station using different statistical distributions. 

The Normal distribution demonstrated strong performance with an R² of 0.94, RMSE of 107.26, and an IA of 

0.9999. In contrast, the Log-Normal distribution had a lower R² of 0.00 but achieved an RMSE of 0.383 and an IA 

of 0.9665. The Log-Pearson Type-III distribution, which reduces to Log-Normal due to a zero skewness coefficient 

(Cs), reflects a similar trend in accuracy. 

Table 8: Performance Indicator for Asham gauging station 

Distribution  NAE RMSE MAE PA R2 IA 

Normal 
µ=834.62 1.0314 

 

107.2573 

 

0.49566 

 

0.001850237 

 

0.94 

 

0.999886758 

 σ=387.88 

Log-Normal 
µ=0.7560 

0.0002 0.383007 0.19834 0.00 0.78 0.966468497 
σ=0.032 

Log-Pearson 

Type-III 

Cs=0, hence log -Pearson Type III reduces to Log normal distribution 

Cs(Coefficient of skewness)=N∑(Z-Zbar)^3/(N-1)(N-2)σz^3 

 

Table 9 shows the flood frequency estimates for the Jhelum River at the Asham gauging station using various 

statistical distributions. For a 5-year return period, the Normal distribution predicts an annual discharge of 1161.02 

cms, the Log-Normal distribution estimates 1178.28 cms, and the Gumbel distribution estimates 1129.93 cms. As 

the return period increases to 50 years, the predicted discharges rise, with the Normal distribution estimating 

1631.42 cms, Log-Normal 1874.07 cms, and Gumbel 1857.45 cms. 

Ul Ll

N yn Sn T50 Y50 K50 x50 b Se x1 x2

59 0.5527 1.177 50 3.901939 2.845572 2528.276 3.688666 325.6605 3166.570446 1889.981
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Table 9: Flood Frequency estimates of Jhelum River for Asham gauging station 

 

 

 

a) 

 

b) 
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c) 

Figure 7: K-S Test 

Figure 6 shows The Gumbel Distribution Curve and Flood Frequency Curve, which are used to analyze flood 

frequency at the Asham gauging station. The Gumbel distribution aligns well with observed data, suggesting similar 

discharge predictions among the three distributions. The Flood Frequency Curve compares theoretical and 

estimated peak discharge values over 120 years, indicating the reliability of the estimations. The K-S Test for 

Normal Distribution evaluates the goodness of fit for the Normal distribution, with closer alignment showing better 

fit. Overall, the Gumbel and Normal distributions align closely with observed data, validating their use in flood 

frequency analysis. 

 

Figure 8: K-S Test for Log Normal Distribution 

Figure 7 shows the Kolmogorov-Smirnov (K-S) test, which assesses the fit of a Log-Normal distribution with 

observed data. It compares the cumulative distribution function (CDF) with the theoretical log-normal distribution, 

indicating its closeness. The maximum deviation (Dmax) between the two is 0.16, less than the critical value of 0.17. 

The Log-Normal distribution, with parameters Ln (6.577,0.6237), is considered a good fit for the data, as the Dmax 

is less than the critical value. 
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3.6 A-D Test for Gumbel Distribution: 

Table 10 shows that the Adjusted Statistic (A* = 0.0189447) for the Anderson-Darling (A-D) test of the Gumbel 

distribution is significantly lower than the critical value (Cα = 0.757). This indicates that the Gumbel distribution is 

a good fit for the data, as the A* value is well below the threshold. 

Table 10: A-D Test for Gumbel Distribution 

A2(A-D 

Statistic.) 
Adjusted. Statistic(A*) Cα 

0.01846397 0.01894473 0.757 

 

As Adjusted. Statistic(A*) value (0.0189447) <Critical Value Cα (0.757) 

 

Here, it is observed that the upper peak discharge flow at 95% confidence level crosses the peak discharge of 1699 

cum that occurred during the flood condition of the year 2014. Therefore, the probability of reoccurrence at 95% (α 

= 0.05) is quite possible. 

In addition, in graph 6 (c), the line in orange shows the theoretical distribution and the blue line depicts the fit of 

annual peak stream flow data with the Gumbel distribution. With the help of this curve, one can determine the 

streamflow values corresponding to any return period starting from 1 year up to 100 years. 

Floods are one of the most frequent natural disasters that can impact people and their ability to earn a living. 

Therefore, flood hazard mapping and flood shelter suitability analysis are important factors in managing land use 

in flood-prone areas. Application of Remote Sensing (RS) and Geographical Information Systems (GIS) in 

identifying flood hazard zones and flood shelters are, therefore, important tools for planners and decision-makers 

(Uddin et al., 2013; Maltare et al., 2023). 

A weighted multi-criteria evaluation for mapping flood-prone areas utilizing the GIS wherein criteria with greater 

impact weights consist of the slope, aspect, soil type, rainfall intensity, flow accumulation, LULC, NDVI, distance 

from the river, and distance from road announced to find out the impact weight of the nine chosen flood 

conditioning factors (Alaghmand et al., 2010). 

The study also aimed to analyze the Kashmir flood 2014 based on a GIS study to understand better. Accordingly, 

GIS study has been carried out from different perspectives to undermine the important insights. 

As the altitude of Srinagar is 1585m from sea level, an attempt was made to assess the flooded area at different 

altitudes. The Digital Elevation Model was constructed in ArcGIS 10.8.2 using the USGS database for this exercise, 

as seen in Figure 8. Selecting SRTM – SRTM 1 Arc-Second Global, data was downloaded. A shape file was created 

using DIVA.GIS. The lower and upper values of DEM were 1573 and 5531m, respectively. 

Using the raster calculator in ArcGIS 10.8.2, rasters were created for 1600 and 1800 m and then converted to 

polygons to calculate the affected area using the geo area calculator. The study area was 9312 Km2, and the flood-

affected area for an altitude of 1600 m was 242 Km2, around 2.59% of the study area. The flood-affected area for an 

altitude of 1800 m was 1417 Km2, around 15.21% of the study area. This is depicted in Figure 2, which shows that 

adjacent areas of Srinagar like Pulwama, Awantipora, Anantnag, Chadoora, Badgam, Shopian, Rajpora, Khan 

Sahib, Beerwah, etc. will be affected if flood covers an area of 1417 Km2. The entire Srinagar, including the outskirt 

area, will be affected when flood covers an area of 242 Km2. 

Ul Ll

N yn Sn T50 Y50 K50 x50 b Se x1 x2

59 0.5527 1.177 50 3.901939 2.845572 1938.391243 3.688666 202.344289 2334.98605 1541.796
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Figure 9: Digital Elevation Model constructed in ArcGIS 10.8.2 and Arc Scene with DEM value (Lower:303 and 

Upper:6002 

 

Figure 10: Animation Manager 

Figure 9 shows the Animation Manager, which demonstrates a time 0.667 with Z coordinate 1750, i.e., altitude 

from base height. Fig 4 shows that at time 0.667, the entire valley and its adjacent areas have submerged. This fact 

also corroborates the findings drawn from Figure 2. 
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Figure 11: Water shade Delineation model 

Further, the Water shade Delineation model was constructed with DEM value (Lower:303 and Upper:6002) and 

shape file (Lower:1589 and Upper:3912), as seen in Figure 10. Creating rasters of fill, flow direction, flow 

accumulation, Stream, outlet, and catchment area, eventually, water shade was delineated in the study area. 

 

Figure 12: Catchment Area 
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Figure 11 shows the area of the water shadow stream, also known as the catchment area, which was predicted to be 

241 Km2 using a geometry calculator and statistics. 

Catchments are small tributaries that flow into larger streams or rivers, often found in urban areas or on steep 

slopes. They influence the biodiversity and ecology of these systems by affecting light, water temperature, pH, 

nutrient levels, and substrate (Hamid et al., 2020). These characteristics vary naturally as water travels from upper 

to lower catchments, but human factors such as land use and water flow changes can have a greater impact. A 

topographic map of a hilly or mountainous area can show where streams begin and join up to create larger sub-

catchments. 

In this study, flow discharge is being calculated by Rational Method, which is as below: 

If R is the total amount of rain in centimeters for a period of T hours, then the mean intensity of rainfall, or I in 

centimeters per hour, over the storm's whole duration is given by: 

𝐼 =
𝑅

𝑇
 (3.6)          (1) 

At a small time interval t, the intensity of rainfall I may be more, as is clear from Figure 12 because the mean value 

of intensity for a short interval of time t is more than the mean value of intensity for the total period T. 

 

Figure 13: Duration intensity of rainfall 

The relation between i and I may be shown as: 

𝑖

𝑇
= (𝑇 +

𝐶

𝑡
+ 𝐶)         

(2)  

C is a constant and may be considered unity for all practical purposes. 

𝑖 = 𝐼 (𝑇 +
1

𝑡
+ 1)         (3) 

If t = one hour and corresponding i is taken as io and the value of I is taken from the above equation 

Then, 

𝑖0 = 𝐼 (𝑇 +
1

2
) =

𝑅

𝑇
(𝑇 +

1

2
) 

𝐼𝑐 = 𝑖𝑜 (
2

𝑇𝑐+1
)          (4) 

From equation 4, io (One-hour rainfall) can be worked out if the total rainfall R and duration of the severest storm 

are known. It is advisable to consider several heavy storms spread over a prolonged period. io may be calculated for 

each case, and the maximum value of U shall be taken as the region's one-hour rainfall for the flood discharge 

estimation. 

From a record of the Meteorological Department, Govt. of India, the values of io for various places of the Indian 

Union are reproduced in Figure 13. 
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Figure 14: Values of io for Various Locations in the Indian Union as Recorded by the Meteorological Department, 

Govt. of India 
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Figure 15: Characteristics of the Catchment - Value of P 

 

Figure 16: Area of Catchment in Hectares - Value of f 

Time of concentration is defined as the time the run-off takes to reach the bridge site from the furthest point of the 

catchment, termed the critical moment. 

Since the time of concentration is dependent upon the length, slope, and roughness of the catchment, a relationship 

is established with these factors as below: 

𝑇𝑐 = [
0.89𝐿3

𝐻
]

0.385

  (5) 

Where Tc = Concentration time in hours. 

H = Fall in level from the critical point to the site of the bridge in meters. 

L = Distance from the critical point to the site of the bridge in Km. 

The values of H and L can be found in the contour map of the catchment area. 

The critical intensity of rainfall, Ic, corresponding to the concentration-time, Tc, is derived from equation 3.9, 

considering I = Ic corresponding to T = Tc. 

3.7 Estimation of Run-off: 

Every centimeter of rainfall over one hectare will produce 100 cu of run-off. m per hour. Hence, a rainfall of Ic cm 

per hour over an area of A hectare will result in a run-off of 100 A Ic cu. m per hour. If losses due to absorption, etc., 

are considered, then the run-off is given by: 

Q = 100 PICA cu. m per hour 

𝑄 = 0.028 𝑃𝐼𝑐𝐴 𝑐𝑢. 𝑚/𝑠𝑒𝑐  (6) 

Where P = Coefficient, which varies according to the porosity of the soil, growth of vegetation, state of initial 

saturation of the soil, etc. 
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The values of P for various conditions of the catchment area arc are given in Table 3.3: 

 

3.8 Estimation of Run-off: 

One centimeter of rainfall over one hectare gives a run-off of 100 C. m per hour. Hence, Ic cm of rainfall for each 

hour over A hectares will lead to 100 A Ic cubic cm. m run-off per hour. 

If losses due to absorption, etc., are considered, then the run-off is given by: 

Q = 100 PICA cu.m per hour (7) 

𝑄 = 0.028 𝑃𝐼𝑐𝐴 𝑐𝑢. 𝑚/𝑠𝑒𝑐         

Where P = Coefficient that is affected by the porosity of the soil and vegetation cover or the initial state of 

saturation of the soil, etc. 

The values of P for various conditions of the catchment area arc are given in Table. 

In addition to the coefficient, P, another coefficient, f, is introduced in the run-off formula. As the catchment area 

gets larger and larger, the possibility of reaching the run-off to the bridge site simultaneously from all parts of the 

catchment is less and less. As such, the value of f is gradually reduced as the catchment area increases. 

𝑄 = 0.028 𝑃𝑓𝐼𝑐 𝐴 𝑐𝑢. 𝑚/𝑠𝑒𝑐    (8) 

In the present study, the data are as below: 

Catchment Area = 241 Km2, L=30 km 

P = 0.9 from the above-given table 

f = 0.62 from the above-given table 

R = 120 mm (av.) rainfall during 4-6 Sept. 2014 in Srinagar region (Data from Website) 

T = 1 Hr 

From Equation 4 

io =12/1(1+1/2) =12 cm/hr 

From Equation 5 

Tc = [0.89*(30)3/2323]0.385 = 1.6 

From Equation 4 

Ic =12[2/1. +1.6] =9.23cm/hr 

From Equation 7 

Q = 0.028x0.90x0.62x9.23x24100 = 3470cms 

However, as per Govt. data at three gauging stations, i.e., Asham, Sangam and Ram Munshi Bagh 

The max. discharge recorded at Sangam Gauging station is 3398cms 

Calculated discharge is closer to recorded data by Govt. 

3.9 Peak Discharge During Normal Rainy Season: 

Now, we calculate peak discharge during normal rainy season: 

Catchment Area = 241 Km2 

P=0.9 from the above-given table 

f =0.62 from the above-given table 

R=70 mm(av.) rainfall during normal rainy season in Srinagar region (Data from Website) 
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T=1 Hr 

From Equation 4 

io =7.0/1(1+1/2) =7.0 cm/hr 

From Equation 5 

Tc = [0.89*(30)3/2323]0.385 = 1.6 

From Equation 4 

Ic = 7.0 [2/1. +1.6] =5.38 cm/hr 

From Equation 7 

Q = 0.028x0.90x0.62x5.38x24100 = 2024cms 

From the above calculation, it is very clear that the existing drainage system of Srinagar and its adjacent areas 

cannot sustain a peak discharge of more than 2000 cm. 

Lastly, flood risk hazard mapping has been carried out in ArcGIS 10.8.2. In developing the flood risk hazard model, 

the following components have been considered, which play an important role in identifying risk areas. 

Elevation (DEM) - 10% 

Slope   - 15% 

Land Use/Land Cover  - 10% 

Precipitation   - 35% 

Proximity to streams/channels - 30% 

The above considerations have been used in developing the model. 

Shape file has been created from DIVA.GIS, DEM from SRTM – SRTM 1 Arc-Second Global(USGS), Land 

Use/Land Cover (2022) from NASA LPDAAC Collections-MODIS MCD 12C1V6.1(USGS) and precipitation data 

from World Clim- spatial resolutions, between 30 seconds (~1 km2) to 10 minutes (~340 km2) 
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Figure 17: Risk Hazard Map of Srinagar 

Figure 16 shows the Risk Hazard Map concept, which labels the risk categories from 1 to 5, with 1 denoting the least 

risky place and 5 the most dangerous. Accordingly, the north of Srinagar areas, i.e. Kangan, Wangat, Haramukh, 

Manigam, and Ganderbal, are in the least risk zone. Areas in East and East-South i.e., Kullan, Sonmarg, Baltal, 

Pahalgam, are in least and moderate risk zone. Area in the west and west-south of Srinagar i.e.Awantipora, 

Anantnag, Kulgam, Shopian,  Pulwama, Kulgam, verinag, Banihal are highly risk zones. These are the areas which 

were highly affected during the 2014 flood. 

CONCLUSION 

The Ram Munsi Bagh and Asham Gauging Stations have reported that the peak discharge flow during the 2014 

flood did not exceed the threshold value. Still, the upper limit exceeded it within 50 years, indicating the need for 

safety measures. The Sangam Gauging Station also reported that the peak discharge flow did not exceed the 

threshold value, indicating the likelihood of a massive flood recurrence in 2014. However, the analysis suggests that 

suitable mitigation measures should be implemented to prevent chaos and minimize damage. The J&K Govt must 

formulate a proper framework and policy guidelines to address the devastating economic loss of 20 B$ in direct and 

16.74 B$ in indirect losses from the floods. GIS-based models suggest that an altitude of 1600 m, close to the 

catchment area, covers the flooded area of 242 Km2, indicating the need for increased caution. Flood Risk Hazard 

Mapping identifies high-risk zones, and the government should focus on improving the outlet/drainage system in 

Srinagar and its surrounding areas, increasing catchment areas, and enhancing biodiversity and ecology of stream 

and river systems. 
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