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Introduction: The accurate and timely diagnosis of non-alcoholic fatty liver disease (NAFLD) 

and precise segmentation of tumors and liver are significant and critical for successful 

management of patients and improved medicinal outcomes. This review consolidates current 

developments in methodologies and algorithms used in medical imaging, particularly detection 

and segmentation of such intricate liver diseases. It explores the wide range of diagnostic 

techniques that extend from old school machine learning methodologies, such as classification 

tree-based methods of diagnosing NAFLD [1], to highly advanced deep learning models crafted 

specifically for analysis of ultrasound as well as computed tomography (CT) images. Specifically, 

we examine the application of deep learning models for ultrasound image classification in 

NAFLD and the development of advanced segmentation frameworks utilizing self-ONN-based 

decoders, U-Net architectures [6], and graph convolutional networks [8] for precise liver and 

tumor delineation. The availability of large-scale and carefully labeled medical image collections, 

such as the dataset created by Alshagathrh and colleagues [4], has been crucial for teaching and 

testing these advanced computer models. This has led to notable progress in how accurately we 

can diagnose liver conditions and precisely locate problems within the liver [5, 7]. This review 

brings together these advancements, highlighting how these computer-based methods have the 

potential to significantly improve the way we understand and manage liver diseases, ultimately 

leading to more efficient and dependable healthcare practices. 

Objectives: The key objective is to bring together the advancements in recent efficient deep 

learning models, highlighting how these computer-based methods have the potential to 

significantly improve the way we understand and manage liver diseases, ultimately leading to 

more efficient and dependable healthcare practices. 

Conclusions: In this review, the changing picture of liver disease segmentation and diagnosis, 

specifically the NAFLD, and tumor liver analysis via recent machine learning and deep learning 

strategies have been reviewed. Earlier contributions to this work were dependent upon rule-

based statistical and classic procedures like trees in classification in the identification of factors 

that contribute to NAFLD [1]. With increasing computational power and sizes of medical image 

datasets, the paradigm has undoubtedly shifted towards encoder-decoder architecture and 

convolutional neural networks (CNNs), including UNet and its several variants [6][7][8]. 

Keywords: Liver disease, Medical imaging, Deep learning, Segmentation, Classification, 

Ultrasound, Artificial intelligence, Machine learning, Image analysis. 

 

INTRODUCTION 

Liver diseases, from non-alcoholic fatty liver disease (NAFLD) to complex ones like liver tumors, are now significant 

global health concerns. Artificial intelligence (AI) and deep learning techniques have transformed the medical 

imaging sector by enabling the detection and segmentation of livers and liver tumors automatically and with high 

accuracy. Historically, conventional diagnostic techniques, typically dependent on doctor's interpretation of medical 

images, were constrained by inter-observer variability and labor-intensive manual processing. As a result, the use of 

computational techniques, especially machine learning and deep learning, has become an exciting line of action for 
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improving diagnostic accuracy and efficiency. Numerous studies have sought to examine and emphasize the 

capability of the application of computational methods in overcoming the challenges of NAFLD diagnosis. Birjandi 

et al. [1] investigated the application of classification tree techniques for the prediction and diagnosis of NAFLD and 

the identification of major associated factors that lead to disease development and progression. 

Furthering this line of research, [3] implemented a combinational deep learning algorithm for NAFLD classification 

in ultrasound images, demonstrating the potential of deep learning to improve diagnostic precision. The creation of 

large, labeled ultrasound data sets, including those developed by Alshagathrh et al. [4], has provided a useful resource 

in allowing these sophisticated computational models to be trained and validated, thus enabling the translation of 

research into practice. 

At the same time, considerable headway has been achieved in automatic liver tumor segmentation, a key step in 

surgery planning and monitoring patients' evolution along time. Akash H et al. [2] presented a comparison study of 

10 U-Net architecture for liver and tumor segmentation, emphasizing the interdependence between architectural 

design to segmentation performance (accuracy). Song et al. [5] proposed new deep learning models that even further 

improve segmentation performance. In addition, Hettihewa et al. [7] investigated the application of U-Net models 

and multi-attention networks, respectively, towards effective liver segmentation from CT scans, explaining the 

potential of such deep learning architectures in representing complex anatomical shapes. Khoshkhabar et al. [8] used 

graph convolutional networks for self-supervised liver tumor segmentation, demonstrating the generalizability of 

such methods to highly complex medical image data. Following these developments, the potential of single-stage 

Self-ONN U-Net models with Swin Transformer encoders is a possible line of improvement in making simultaneous 

liver and tumor segmentation more efficient. 

The aim of this review is to provide a comprehensive review of the current state-of-the-art in computation methods 

for diagnosing and segmenting liver diseases. By integrating the findings of these multidisciplinary research studies, 

our intention is to highlight the groundbreaking capabilities of these methods for improving clinic outcomes and 

leading medical imaging processing research. This review explores the advantages and limitations of different 

methods, offering inroads into future research and the integration of these technologies into clinical practice. 

REVIEW OF RECENT WORK 

[1] In the study, the Classification Tree (CT) model was utilized for prediction and diagnosis of Non-Alcoholic Fatty 

Liver Disease (NAFLD) and finding factors related to it. Out of 1,600 patients, the data was partitioned into test sets 

and training sets. Variables in the CT model were utilized by taking BMI, waist-hip ratio (WHR), triglycerides (TG), 

glucose, systolic blood pressure (SBP), and alanine aminotransferase (ALT) into account. These were found to be the 

predictors most important among the factors that were identified. The method applied the GUIDE method, in which 

predictor variables were divided according to chi-square tests of association and recursive partitioning and pruning 

for tree refinement. The resultant final model had accuracy of 80% on the training set and 75% on the testing set, 

having sensitivities of 74% and 73%, respectively, and specificities of 83% and 77%. Area under the ROC curve was 

78% for training and 75% for test, which was a strong performance. The benefits of using the CT approach include its 

interpretability, potential to capture nonlinear interactions among variables, and feasibility in clinical practice 

without data distribution assumption. The drawbacks, on the other hand, involve possible overfitting, usage of 

correlated variables being restricted due to each split's selection bias, and reliance on thresholds specific to samples, 

which can constrain generalizability. Also, CTs would not be able to detect the cumulative effect of weaker predictors, 

as well as other statistical models like logistic regression. Despite such limitations, the study suggests that CT is a 

valid and practicable tool for the early diagnosis of NAFLD, especially in resource-limited settings. 

[2] This paper offers an exhaustive comparison of ten U-Net-inspired architectures for liver segmentation from CT 

scans across three public datasets: LiTS, 3DIRCADb, and CHAOS. The key objective is to examine the performance 

of each model on various anatomical conditions and imaging scenarios using the same training procedures and 

evaluation protocol. The models that were tested are Vanilla U-Net, Attention U-Net, V-Net, U-Net 3+, R2U-Net, U2-

Net, U-Net++, ResU-Net, Swin-UNet, and Trans-UNet. The preprocessing was the conversion of DICOM/NIfTI to 

JPG and HU clipping to [−200, +200] for improving the visibility of the liver. All the models were trained with Dice 

Loss and the NAdam optimizer for a maximum of 70 epochs, and early stopping was used. Results show that the 
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Vanilla U-Net resulted in the maximum Dice Similarity Coefficient (DSC) of 0.9545 on the LiTS dataset and 

performed better compared to more complex models such as Trans-UNet (0.8632) and Swine-UNet (0.9352). The 

Attention U-Net performed well on CHAOS and 3DIRCADb, emphasizing the effectiveness of attention mechanisms 

for anatomical variation. Strengths of the study are the uniform benchmarking of various U-Net variants and multi-

metric evaluation (DSC, IoU, VOE, RVD, accuracy, precision, recall). Weaknesses are uniform hyperparameter 

settings across models and absence of tumor segmentation even though LiTS includes tumor masks. The results 

highlight that simplicity in architecture, like in Vanilla U-Net, can lead to state-of-the-art outcomes when combined 

with strong preprocessing, particularly for CT scan liver segmentation. 

[3] The article presents SALSA, a completely automated deep learning software for the detection and segmentation 

of liver tumors from CT scans, responding to an urgent need for consistent, reproducible, and scalable tumor 

quantification in cancer care. Trained on a heterogeneous set of 1,598 contrast-enhanced CT scans from 1,306 

patients and 4,908 tumors, including primary and metastatic liver cancer, SALSA was tested over an in-domain test 

set as well as four external independent cohorts, including the LiTS dataset. The method utilizes a 3D U-Net cascade 

from the nnU-Net framework, exhibiting better performance than state-of-the-art transformer-based architectures 

and even radiologist inter-reader agreement. SALSA had a Dice Similarity Coefficient (DSC) of 0.760 on external 

validation by tumor and showed patient-wise detection accuracy of 99.65%, with lesion-wise accuracy of 81.72%. The 

approach placed strong focus on solid preprocessing (e.g., liver masking, cropping, Hounsfield Unit standardization) 

and utilized attentive architectural tuning coupled with ensemble modeling. The tool surpassed best-performing 

models within the LiTS challenge and was radiologist-validated with demonstrated balanced preferences for SALSA 

vs. manual segmentations. Important strengths are its applicability to various tumor types and acquisition protocols, 

its prognostic value (tumor burden highly correlated with survival, p = 0.028), and public accessibility. Weaknesses 

include inferior performance on tiny or hyperdense tumors and use of single-rater annotations for ground truth, 

which may impose bias. In summary, SALSA is a clinically translatable method of automatic liver tumor segmentation 

that provides reproducible, precise, and rapid quantification with the potential to simplify cancer staging, diagnosis, 

and treatment response assessment.  

[4] The paper introduces an extensively curated and annotated ultrasound image dataset for Non-Alcoholic Fatty 

Liver Disease (NAFLD) and is derived from two large-scale Saudi hospitals, namely King Saud University Medical 

City (KSUMC) and National Guard Health Affairs (NGHA). For the methodology, 12,766 DICOM ultrasound scans 

were gathered, carefully filtered for their quality by practicing radiologists. Low-quality and incomplete images were 

excluded, yielding 10,352 high-resolution images. These were then transformed to PNG form in lossless compression 

and normalized to 768 × 1024 pixels utilizing padding technique to maintain image quality. Every image was 

associated with histologically verified liver biopsy information and tagged in terms of NAFLD Activity Score (NAS), 

including both stages of fibrosis (0–4) and grades of steatosis (0–3). The classification was also checked by agreement 

between three expert hematopathologists and achieved an inter-rater reliability of 92.2% with Cohen's kappa, where 

high annotation reliability was confirmed. Although the paper itself does not report traditional model training 

accuracy, the dataset itself offers future AI models with good diagnostic ability and reliability based on correct 

annotations and clinical validation. The major strengths of this dataset are its large size, patient diversity, full biopsy-

linked labels, and high-quality preprocessing pipeline that maintains image integrity. It is designed for machine 

learning use in NAFLD detection, so it is a unique and valuable public dataset. In addition, format compatibility with 

standard tools such as Python and MATLAB makes it even more accessible. Despite that, the dataset too has 

limitations like demographic bias in middle-aged patients and variability of ultrasound equipment that can influence 

consistency. Further, subjectivity in interpreting ultrasound images and rejection of low-quality images can lower 

variability. Nevertheless, the dataset creates a solid ground for constructing AI-based diagnostic equipment for liver 

disease and is good for reproducible, clinically valuable research. 

[5] This research suggests an improved deep learning model for automatic liver vessel segmentation from CT images 

to overcome the clinical problem of effectively delineating hepatic vasculature, usually hidden due to low contrast 

and intricate structures. The authors refined the 3D V-Net model by implementing several fundamental changes to 

improve performance. These consist of pyramidal convolution block integration to perform multi-scale spatial feature 

extraction, dilated convolutions to increase the receptive field without downsampling, and multi-resolution deep 
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supervision to enforce robust learning in all layers. In addition, the model uses the Tversky loss function, which is 

specifically designed to address class imbalance by modulating sensitivity to false negatives and false positives. The 

model was trained on two public data sets—LiTS17 and MICCAI Hepatic Vessel—via 10-fold cross-validation. It had 

a Dice Similarity Coefficient (DSC) of 72.53%, which was better than eleven other state-of-the-art approaches like 

3D-UNet, nnUNet, and 3D-GCCN. With regard to evaluation time, the model was able to trade computational 

efficiency with segmentation quality, taking 5.97 seconds per inference, which is tolerable for clinical practice. The 

advantages of this approach include its ability to encode complex vessel patterns, partition minute structures 

accurately, and generalize effectively even in limited amounts of labeled data, because of dropout regularization and 

adaptive feature fusion. Also, modularity simplifies extension and integration into clinical practice. Despite the 

advantages, there are also disadvantages, including comparatively high computational requirement versus 

lightweight architectures, reliance on high-quality annotated data, and the risk of overfitting unless well-regularized. 

Additionally, the 3D segmentation strategy raises memory requirements, which could become a real-time limitation 

on lower-end platforms. Nonetheless, the proposed model is a solid and extensible solution to hepatic vessel 

segmentation with substantial repercussions in the diagnosis of liver tumors and surgical planning. 

[6] In this research, the authors created and validated deep learning models to segment the liver and colorectal liver 

metastases (CRLM) automatically, with the goal of automating total tumor volume (TTV) evaluation in patients with 

initially unresectable CRLM. With 595 contrast-enhanced CT scans of 259 patients in the CAIRO5 trial, and an 

external validation set of 72 CT scans, the researchers trained two U-Net models, one for liver segmentation and one 

for tumor segmentation. Ground truth labels were generated via semi-automatic segmentation, refined by expert 

radiologists. Image preprocessing included HU clipping and histogram equalization to enhance contrast. The models 

achieved Dice similarity coefficients (DSC) of 0.96 for liver and 0.86 for tumor in the test set, and 0.82 DSC for 

tumors in the external validation. Intraclass correlation coefficient (ICC) for TTV estimation was as high as 0.97–

0.98, demonstrating excellent concordance with manual segmentations. Advantages are the model's capacity to 

analyze heterogeneous multi-center CT data and facilitate high-throughput, reproducible TTV measurement—

potentially better than RECIST 1.1 for assessing treatment response. Limitations involve decreased performance in 

external datasets, particularly for small tumors, and reliance on a single expert for ground truth annotations. 

Nonetheless, the study demonstrates the clinical promise of AI-driven segmentation tools for improving tumor 

response evaluation and supporting radiomics-based cancer analysis. 

[7] We present MANet, a new Multi-Attention Network for accurate liver tumor segmentation from CT scans. Based 

on the U-Net framework, MANet improves segmentation by using deep residual learning as well as sophisticated 

attention mechanisms. The methodology embeds residual blocks in the encoder to resist vanishing gradients and 

leverages attention components on diverse levels: channel attention (for focusing 'what' features), spatial attention 

(to local 'where' features), skip connection attention gates (for filtering low-level features), and Convolutional Block 

Attention Modules (CBAMs) in the bridge. The framework was trained and tested using two publicly available 

datasets—LiTS17 and 3DIRCADb—within slice-based as well as volume-based experiments. MANet achieved a Dice 

Score of 81.45% (slice-wise) and 67.35% (volume-wise), comparing favorably against baseline models such as U-Net, 

Attention U-Net, and U-Net+CBAM, and performing more sensitivity (as high as 87.23%) and accuracy (99.47%). 

Generalizability between datasets was also shown by the model, preserving a 64% Dice score on 3DIRCADb. Benefits 

of MANet are that it can effectively identify tumors with fuzzy edges and varied sizes, higher sensitivity to small and 

complicated tumors, and fewer parameters than conventional models. The attention mechanisms enable fine-grained 

feature re-calibration, enhancing model concentration on the appropriate tumor areas. MANet also performed better 

than some state-of-the-art models with less computational resources. Limitations include longer inference time and 

greater computational complexity because of the multiple attention modules. Additionally, volume-based 

segmentation performance, although good, still falls short of slice-based performance—perhaps because of tumor 

heterogeneity and data heterogeneity. Also, the generalizability of the model to real-world, multicenter datasets with 

varying imaging protocols needs to be validated. In spite of these, MANet is a robust and efficient model for 

automated liver tumor segmentation. 

[8] This paper presents a novel deep learning architecture for automated liver and tumor segmentation of CT images 

based on a mix of Simple Linear Iterative Clustering (SLIC) and Chebyshev-based Graph Convolutional Networks 
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(GCNs). The novel SLIC-DGN model maps the CT image to a graph representation by dividing the image into 

superpixels as graph nodes with mean pixel intensity-based feature extraction. These properties are inlaid and 

processed by a four-layer Chebyshev GCN and then batch normalized, activated using ReLU, dropped out, and 

completed using a fully connected softmax classifier. The model is trained and validated with the LiTS17 dataset, 

using 987 images derived from 4158 preprocessed CT slices. Data augmentation and intensity normalization are 

implemented during preprocessing to improve robustness. The architecture is optimized with the Adam optimizer 

and validated using 10-fold cross-validation. The model scored a liver segmentation accuracy of 99.1% and tumor 

segmentation accuracy of 98.7%, and Dice coefficients of 91.1% for liver and 90% for tumors, and performed better 

compared to other models such as U-Net, Shortcut-CNN, and hybrid FCNNs. Its main strengths are high 

segmentation accuracy for both tumors and liver, noise robustness (being 90% accurate even at −4 dB SNR), and its 

light-weight nature that prevents heavy parameter tuning. Using graph structures allows it to model spatial 

relationships in a superior manner compared to regular CNNs. Yet, some of the disadvantages are that there is limited 

validation on just the LiTS17 dataset, which threatens generalizability, and using traditional data augmentation 

techniques over newer generative methods such as GANs. These notwithstanding, the presented model provides a 

new benchmark by merging the accuracy of GCNs with superpixel-based region encoding and thus is a potential 

radiology assistant for clinical liver tumor analysis. 

[9] This research suggests a hybrid cascaded neural network that efficiently integrates both 2D and 3D convolutional 

neural networks to perform precise liver lesion segmentation with a specific emphasis on identifying small lesions 

frequently ignored by conventional models. The approach is a multi-step process with 2D CompNet architectures to 

segment the liver and large tumors from CT slices, and then a 3D CompNet to segment small lesions from volumetric 

data (32×32×32 cubes). The liver is localized first from CT images slice-by-slice using a 2D network, and large lesions 

are detected using another 2D model. For the small lesions, a distinct 3D model is used, taking advantage of spatial 

consistency between slices to decrease false positives. The model was trained and tested on the LiTS dataset, utilizing 

58,638 liver slices and more than 11,000 volumes of small lesions. Without post-processing or pre-training, the model 

obtained a Dice score of 68.1% per case, which is second in published methods and first in non-pretrained methods. 

Its major strengths are that it can better find smaller liver lesions compared to conventional 2D networks, improved 

performance without using pre-trained weights, and efficiency in computation by using 3D processing only for small 

lesions. The hybrid architecture finds a balance between performance and resources. Furthermore, the model's 

capability to segment unannotated tumor-like areas promises its capacity to detect missed lesions. Yet, some 

limitations are added training complexity in dealing with both 2D and 3D networks and heuristic threshold 

dependency (such as 32×32 size) in differentiating lesion types. The model's segmentation accuracy is also limited 

by LiTS ground truth label imperfections, which might affect fairness of evaluation. Still, the architecture offers a 

stable, flexible, and scalable framework for liver lesion segmentation in automatic fashion. 

[10] This work presents a combined framework of transfer learning and multi-task learning for improving 

segmentation and classification of liver lesions in CT scans. The framework makes use of a U-Net with SE-ResNet 

backbone that has been enhanced by Squeeze-and-Excitation (SE) blocks for more effective feature learning. Two key 

frameworks are explored: (1) a multi-task architecture (similar to Y-Net), where classification and segmentation 

outputs are learned separately, and (2) a joint pixel-wise classification model, where segmentation is achieved via 

pixel-wise classification and lesion type is determined by majority vote. The data collection consists of 332 CT slices 

from 140 patients with three liver lesion categories—cysts, hemangiomas, and metastases. To handle class imbalance 

and a small dataset size, the work employs transfer learning from ImageNet and the LiTS dataset whereby pre-trained 

models for liver segmentation are employed in cropping regions of interest. Results indicate that the joint learning 

model trained on LiTS data performs the best in terms of classification accuracy (86%), Dice coefficient for 

segmentation (71%), and segmentation recall (76%), far surpassing training-from-scratch and Y-Net variants. The 

benefits of this strategy are enhanced overall generalization, insensitivity to small amounts of data, and less 

overfitting using shared feature representation across tasks. Joint training achieves better performance for 

segmentation and classification as a result of shared context knowledge. Applying transfer learning enables faster 

convergence and enhanced accuracy with the use of domain-specific prior knowledge. But limitations are reliance on 

well-annotated external data such as LiTS for successful pre-training, and possible underperformance on lesion types 

poorly represented in the source data. Also, the pixel-wise classification approach can be challenged by very small or 
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overlapping lesions. Nevertheless, this framework presents a strong, data-efficient solution for liver lesion analysis, 

especially for clinical environments with limited labeled data. 

[11] The Liver Tumor Segmentation (LiTS) Benchmark was created to give a unified platform for assessing and 

comparing automated liver and liver tumor segmentation algorithms from abdominal CT scans. The methodology of 

the benchmark included acquiring 201 contrast-enhanced CT volumes from seven medical institutions across the 

world, presenting a varied set of liver anatomy and tumor varieties, both primary and metastatic lesions. Manual 

segmentations were carried out by experienced radiologists and validated using a strict, blinded review process. 

Seventy-five algorithms competed in three grand events—ISBI 2017, MICCAI 2017, and MICCAI 2018—where the 

submissions were assessed on the basis of Dice score, Average Symmetric Surface Distance (ASD), and Relative 

Volume Difference (RVD). The highest-performing liver segmentation model had a Dice score of 0.963, and the 

highest tumor segmentation Dice scores were 0.674 (ISBI 2017), 0.702 (MICCAI 2017), and 0.739 (MICCAI 2018), 

showing improvement over the years. 

Strengths of the LiTS benchmark are that it is diverse in image protocols, tumor cases, and equipment used for 

acquisition, thus highly representative of actual clinical data. It was instrumental in improving segmentation 

methods by stimulating development of resilient U-Net-based and hybrid 2D/3D models. The open dataset and 

Codalab benchmarking platform enabled reproducibility and comparative performance monitoring. Nevertheless, 

there are limitations: tumor segmentation performance is much lower than for liver segmentation, particularly for 

tiny or low-contrast lesions. The heterogeneity of the dataset—although a strength for generalization—also brings 

difficulties with algorithm training and testing. Further, the LiTS dataset has no annotations of tumor subtypes, 

which means it is limited in its usefulness for fine-grained classification applications. Notwithstanding these 

constraints, the LiTS benchmark is now a key resource for medical image segmentation research with ongoing 

innovation in liver tumor analysis. 

[12] In this paper, RA-UNet is proposed as a new hybrid 3D deep learning framework that combines residual learning 

and attention mechanisms for accurate liver and tumor segmentation in CT scans. The framework is a three-step 

pipeline: (1) RA-UNet-I, a 2D residual attention U-Net, performs coarse liver localization and outputs a boundary 

box to decrease computational burden; (2) RA-UNet-II, a 3D U-Net that has been improved by residual blocks and 

attention modules, segments the liver from inside the boundary box; and (3) another RA-UNet-II does tumor 

segmentation in the segmented liver. Preprocessing involves HU windowing (−100 to 200), zero-mean 

normalization, and patch extraction. The model is trained on LiTS dataset and tested on LiTS and 3DIRCADb 

datasets. It produced Dice scores of 0.961 (liver) and 0.595 (tumor) on LiTS, and 0.977 (liver) and 0.830 (tumor) on 

3DIRCADb and outperforms a number of state-of-the-art methods. RA-UNet has better segmentation accuracy, 

particularly in volumetric tumor detection, high generalizability across datasets, and potent combination of 

hierarchical features through residual and attention modules. It does not require post-processing steps such as CRFs; 

hence it is end-to-end trainable. Its modularity also facilitates adaptive learning of tumor size and shape, improving 

detection of small tumors. Yet drawbacks are the long training time resulting from 3D convolution operations and 

higher memory requirements, rendering it less optimal for systems with lower computational power. Tumor 

segmentation is still challenged in distinguishing low-contrast and irregular tumors despite improvements. In spite 

of such drawbacks, RA-UNet is a robust and versatile model with high clinical applicability for liver tumor diagnosis 

and treatment planning, which is a gold standard in fully automatic 3D medical image segmentation. 

[13] This work introduces a sophisticated deep learning architecture called AIM-Unet, which combines the benefits 

of U-Net and Inception modules to attain accurate and fully automated liver and tumor segmentation from 

abdominal CT scans. The model extends the basic U-Net by integrating Inception modules into the skip connections, 

which facilitates multi-scale feature extraction and enhanced boundary localization. The architecture conducts image 

feature processes through four simultaneous convolutional branches with varying filter sizes and pooling operations 

to allow stronger and high-resolution edge feature learning. The training was conducted on three datasets: CHAOS, 

LiST, and a hospital-based dataset created by the authors, and image augmentation was employed to enhance 

training diversity. The model was trained from scratch on TensorFlow and optimized with the Adam optimizer and 

binary cross-entropy loss, with a real-time segmentation time of about 1.12 seconds per slice. The AIM-Unet model 

achieved Dice scores of 97.86% (CHAOS), 97.38% (custom dataset), and 95.77% (LiST) on liver segmentation and 
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75.6% (LiST) and 65.5% (3DIRCADb) on tumor segmentation—better than several state-of-the-art models. Benefits 

of AIM-Unet are high segmentation accuracy on various datasets, insensitivity to irregular liver shapes and densities, 

and fast feature learning with inception-augmented skip paths. The model has no pre-trained weights and gives a 

nearly real-time answer, which can be deployed in clinical environments. In addition, the identification of faint liver 

boundaries and tumor segmentation from challenging CT images proves its applicability in aiding radiological 

diagnosis and radiotherapy treatment planning. Drawbacks include increased model complexity and GPU usage from 

the expanded architecture, which can lead to longer training time and deter deployment on low-resource devices. 

Moreover, liver segmentation is very accurate, yet it is relatively less accurate in capturing the tumor segmentation, 

particularly on smaller or less-prevailing datasets such as 3DIRCADb. Nevertheless, AIM-Unet offers a scalable 

solution with high accuracy for automated liver imaging analysis. 

[14] This paper introduces H-DenseUNet, a new hybrid deep learning framework for unsupervised liver and tumor 

segmentation from CT volumes. The method merges a 2D DenseUNet for intra-slice feature extraction with a 3D 

DenseUNet to learn inter-slice spatial context, combined through a Hybrid Feature Fusion (HFF) layer in an end-to-

end training pipeline. The 2D network leverages long-range skip connections and dense blocks akin to DenseNet to 

maintain high-resolution spatial information, and the 3D network refines the segmentation from contextual 

information available in neighboring slices. The combined strategy overcomes the drawbacks of isolated 2D or 3D 

networks—2D networks have limited volumetric context, and 3D networks are computationally intensive and 

memory-constrained. The model was trained on MICCAI 2017 LiTS dataset and evaluated on both LiTS and 

3DIRCADb datasets. It recorded Dice scores of 96.1% (liver) and 72.2% (tumor) on LiTS, and 94.7% (liver) and 93.7% 

(tumor) on 3DIRCADb, which surpassed a number of state-of-the-art models, such as UNet and ResNet variants. The 

advantages of the H-DenseUNet are high segmentation performance on both tumors and liver, good memory 

efficiency, effective feature representation through dense connections, and enhanced generalizability. Transfer 

learning is supported by the architecture and it also cuts down the training time with respect to independent 3D 

models. In addition, it can handle both small and large tumors and generalize well across datasets. Limitations 

include increased training time as a result of dual-network optimization, high GPU memory requirements, and 

comparatively modest improvement in small tumor segmentation. Moreover, even with its robustness, the 

performance of the model can still be affected by differences in CT acquisition protocols. Nevertheless, H-DenseUNet 

establishes a new standard in fully automated liver and tumor segmentation, providing a scalable and clinically useful 

tool for medical image analysis. 

[15] In this work, a new model is proposed, i.e., ECLMS (Edge Constraint and Location Mapping Segmentation), 

aiming to solve liver tumor segmentation in non enhanced MRI images that are generally of low contrast and with 

fuzzy borders. The methodology includes a dual-branch network and a localization network. The localization network 

first generates coarse tumor masks using a U-Net, followed by Xception to create accurate tumor location maps via 

class activation mapping (CAM). These maps guide the segmentation process. The dual-branch segmentation 

network has one branch focused on tumor region decoding and another focused-on edge information. The model 

utilizes squeeze-and-excitation (sSE) blocks, dense up-link connections, and a Bottleneck Multiscale Module (BMM) 

for enhanced attention towards important features as well as detection of multiscale tumor morphology. Training 

was on a private database of 215 patients (T2WI modality), enhanced to 2709 images. The model achieved Dice of 

90.23%, precision of 92.25%, as well as accuracy of 92.39%, surpassing the performance of U-Net, U-Net++, BESNet, 

as well as RgGAN based on both detail segmentation and accuracy. Advantages of ECLMS include its improved 

performance on unenhanced images without using contrast agents, reduced risk and time for patients, and the 

detection of small and morphologically varied tumors with improved boundary sharpness. Detailed internal and edge 

segmentation is permitted through the use of dual-branch architecture, and location mapping eliminates background 

noise and misclassification. Additionally, the model demonstrates effective use of feature recalibration and context-

aware processing. Yet, the drawbacks are higher model complexity (51.9M parameters), possibly expensive training 

time, and utilization of merely 2D image slices, which is insufficient for contextual continuity between slices. 

Additionally, dependence on concatenation for the integration of location maps might not fully exploit localization 

cues. Notwithstanding these, ECLMS has good potential for noninvasive and precise liver tumor diagnosis. 
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[16] In this paper, the authors propose a deep learning method based on cascaded deep residual networks (ResNet) 

for precise liver and liver lesion segmentation from contrast-enhanced CT scans. The authors overcome the 

disadvantages of conventional fully convolutional networks (FCNs), especially VGGNet-based FCNs, by adding 

ResNet architectures capable of enabling deeper networks with skip connections. The model under proposal includes 

a backbone ResNet as an initial segmenter, preceded by a cascaded ResNet that fine-tunes predictions with learning 

from current input as well as past probability maps. The model is fed 2D axial slices from the LiTS dataset, multi-

scale fusion utilized during testing for enhanced robustness across different resolutions. The HU window was clipped 

to [-160, 240] to be liver-relevant, and all volumes were normalized to [0, 1]. Data augmentation and ImageNet pre-

trained weights fine-tuning were adopted for generalization. The most ideal setting—cascaded ResNet with multi-

scale fusion—yielded Dice scores of 95.90% for liver segmentation and 50.01% for lesion segmentation, much higher 

than conventional FCNs and isolated ResNet models. 

Benefits of such an approach are its capacity to train extremely deep networks without the presence of degradation 

due to residual connections. The cascaded architecture enables iterative boundary refinement of tumors and the 

multi-scale fusion strategy enhances scale invariance, necessary for datasets with different resolutions and lesion 

sizes. It is especially useful for segmenting lesions with ill-defined boundaries and small size, prevalent in liver 

pathology. Yet, drawbacks are high computational expense—training lasted around 7 days—and dependence on 2D 

slice processing, which can ignore spatial continuity between volumes. Moreover, though performance was enhanced, 

lesion Dice is still low, suggesting additional optimization is required. Nevertheless, this model is one of the best-

performing solutions in the ISBI 2017 LiTS challenge, showing excellent clinical utility for liver lesion segmentation. 

Table 1.1. A comparative overview of liver disease and tumor segmentation studies, highlighting 

their datasets, methods, performance, and limitations. 

Pape

r No. 

Dataset Methodology Accuracy / Dice 

Score 

Strengths Limitations 

[1] 1600 clinical 

records 

Classification Tree 

(GUIDE) 

80% train, 75% test 

accuracy 

Simple, interpretable, 

models clinical 

interactions well 

Overfitting risk, biased 

splits, not ideal for 

weak predictors 

[2] LiTS, 

3DIRCADb, 

CHAOS 

Comparative study 

of 10 U-Net 

architecture 

DSC up to 0.9545 

(Vanilla U-Net) 

Extensive 

benchmarking, 

consistent training, 

architectural diversity 

Uniform 

hyperparameters, no 

tumor segmentation 

on LiTS 

[3] 1598 CT 

scans, 4908 

tumors, 

LiTS 

included 

3D U-Net cascade 

with ensemble 

tuning 

DSC 0.760 

(external), precision 

99.65% 

High generalizability, 

radiologist-level 

agreement, survival 

correlation 

Lower performance on 

small tumors, single-

rater bias 

[4] 10,352 

annotated 

ultrasound 

images 

Dataset 

preparation and 

validation 

Not applicable Large, annotated, 

biopsy-linked dataset; 

reproducible 

Device heterogeneity, 

no model training 

accuracy reported 

[5] LiTS17, 

MICCAI 

Hepatic 

Vessel 

Modified 3D V-Net 72.53% (vessel DSC) Captures small vessels, 

modular and extensible 

High memory usage, 

needs quality data, 

slower inference 
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[6] LiTS17,  SLIC + Chebyshev 

GCN 

DSC 91.1% (liver), 

90% (tumor) 

High accuracy, noise 

robustness, lightweight 

Limited dataset 

validation, no GAN 

augmentation 

[7] LiTS17, 

3DIRCADb 

MANet (multi-

attention U-Net) 

81.45% (slice), 

67.35% (volume), 

64% (3DIRCADb) 

Handles fuzzy/complex 

tumors, high sensitivity 

Higher inference time, 

generalizability varies 

[8] LiTS17 SLIC + Chebyshev 

GCN 

91.1% (liver), 90% 

(tumor, DSC) 

Noise robust, 

superpixel-aware, 

lightweight 

Tested on one dataset, 

lacks GAN-based 

augmentation 

[9] LiTS 2D+3D Hybrid 

CompNet 

68.1% (DSC, lesions) Accurate small lesion 

detection, no pre-

training needed 

Threshold-based 

separation, complexity 

in training 

[10] LiTS, 

ImageNet 

SE-ResNet U-Net 

+ multi-task 

learning 

86% (classification), 

71% (segmentation 

DSC) 

Transfer learning, 

robust with small 

datasets 

Dependent on external 

data, weaker on small 

lesions 

[11] LiTS (201 

scans) 

Benchmark 

dataset & 

evaluation 

platform 

Up to 96.3% (liver), 

73.9% (tumor, DSC) 

Diverse, reproducible, 

drove community 

progress 

Low tumor DSC, no 

subtype labels, dataset 

heterogeneity 

[12] LiTS, 

3DIRCADb 

3-stage RA-UNet 96.1%/0.595 (LiTS), 

0.977/0.830 

(3DIRCADb) 

Residual + attention 

fusion, strong 

generalization 

High 

memory/training 

time, low-contrast 

tumor challenge 

[13] CHAOS, 

LiST, 

Custom 

AIM-Unet (U-Net 

+ Inception 

modules) 

Up to 95.77% (liver), 

75.6% (LiST), 65.5% 

(3DIRCADb) 

Real-time, accurate, 

robust across datasets 

Higher GPU load, 

tumor segmentation 

lower on rare data 

[14] LiTS, 

3DIRCADb 

H-DenseUNet 

(2D+3D + HFF) 

96.1%/72.2% (LiTS), 

94.7%/93.7% 

(3DIRCADb) 

Dense features, 

generalizes well, 

supports transfer 

learning 

High GPU demand, 

limited small tumor 

boost 

[15] Private MRI 

dataset (215 

subjects) 

ECLMS (dual-

branch + CAM) 

90.23% Dice, 

92.39% accuracy 

No contrast needed, 

edge-aware, non-

invasive 

2D only, high param 

count (51.9M), high 

training time 

[16] LiTS Cascaded ResNet 

with multi-scale 

fusion 

95.9% (liver), 

50.01% (tumor, 

DSC) 

Deep residual learning, 

iterative refinement 

Long training (7 days), 

2D-only, low lesion 

DSC 

 

DISCUSSION 

In this review, the changing picture of liver disease segmentation and diagnosis, specifically the NAFLD, and tumor 

liver analysis via recent machine learning and deep learning strategies have been reviewed. Earlier contributions to 

this work were dependent upon rule-based statistical and classic procedures like trees in classification in the 

identification of factors that contribute to NAFLD [1]. With increasing computational power and sizes of medical 

image datasets, the paradigm has undoubtedly shifted towards encoder-decoder architecture and convolutional 

neural networks (CNNs), including UNet and its several variants [6][7][8]. 
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Recent research has proposed innovations such as self-organized operational neural networks (Self-ONNs), graph 

convolutional networks [8], and attention-based multi-decoder architectures [7], all improving segmentation 

performance through architectural advances and improved spatial perception. In addition, the combination of 

residual and densely connected layers, as shown in H-DenseUNet and cascaded deep residual networks, has greatly 

enhanced lesion detection accuracy through multi-scale feature propagation [14][16]. 

A key facilitator of this advancement has been the presence of high-quality, annotated datasets like the LiTS 

benchmark [11], and domain-specific datasets like the Saudi ultrasound dataset for NAFLD [4]. These datasets not 

only enable comparative benchmarking but also compel generalization during model development. Despite this, 

challenges still exist owing to the inherent anatomical variability in the liver, imaging modalities (CT vs. ultrasound), 

low contrast between tumors and normal tissue, and the limited availability of labeled clinical data in some areas 

[5][10]. 

Even with segmentation precision of up to 97% in certain experiments [5][13], broad generalizability and practical 

clinician adoption continue to be problem areas. Solutions such as transfer learning [10], cascaded hybrid 

architectures [9], and CRF post-processing hold bright promise for advancing further. The journey towards realistic 

deployment, though, calls for advances in explanation, insusceptibility across institutions, as well as adaptation to 

clinical domains to support credibility across different real-world clinics. 

In conclusion, the synergy of deep learning, medical imaging, and clinical collaboration has led to substantial 

improvements in liver disease analysis. Future research should prioritize the development of explainable AI models, 

integration of multimodal data, and expansion of publicly available datasets to bridge the gap between algorithmic 

success and clinical utility [15]. 
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