Journal of Information Systems Engineering and Management

Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing
Sarah A. Rafea 1 * , Ammar D. Jasim 2
More Detail
1 Ph.D candidate, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
2 Assistant Professor, College of Information Engineering, Al-Nahrain University, Baghdad, Iraq
* Corresponding Author
Research Article

Journal of Information Systems Engineering and Management, 2024 - Volume 9 Issue 3, Article No: 30380
https://doi.org/10.55267/iadt.07.15495

Published Online: 30 Aug 2024

Views: 18 | Downloads: 12

How to cite this article
APA 6th edition
In-text citation: (Rafea & Jasim, 2024)
Reference: Rafea, S. A., & Jasim, A. D. (2024). Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing. Journal of Information Systems Engineering and Management, 9(3), 30380. https://doi.org/10.55267/iadt.07.15495
Vancouver
In-text citation: (1), (2), (3), etc.
Reference: Rafea SA, Jasim AD. Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing. J INFORM SYSTEMS ENG. 2024;9(3):30380. https://doi.org/10.55267/iadt.07.15495
AMA 10th edition
In-text citation: (1), (2), (3), etc.
Reference: Rafea SA, Jasim AD. Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing. J INFORM SYSTEMS ENG. 2024;9(3), 30380. https://doi.org/10.55267/iadt.07.15495
Chicago
In-text citation: (Rafea and Jasim, 2024)
Reference: Rafea, Sarah A., and Ammar D. Jasim. "Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing". Journal of Information Systems Engineering and Management 2024 9 no. 3 (2024): 30380. https://doi.org/10.55267/iadt.07.15495
Harvard
In-text citation: (Rafea and Jasim, 2024)
Reference: Rafea, S. A., and Jasim, A. D. (2024). Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing. Journal of Information Systems Engineering and Management, 9(3), 30380. https://doi.org/10.55267/iadt.07.15495
MLA
In-text citation: (Rafea and Jasim, 2024)
Reference: Rafea, Sarah A. et al. "Artificial Intelligence Workload Allocation Method for Vehicular Edge Computing". Journal of Information Systems Engineering and Management, vol. 9, no. 3, 2024, 30380. https://doi.org/10.55267/iadt.07.15495
ABSTRACT
Real-time applications such as smart transportation systems require minimum response time to increase performance. Incorporating edge computing, processing units near end devices, achieving fast response time. The collaboration between edge servers and cloud servers is beneficial in achieving the lowest response time by using edge servers and high computational resources by using cloud servers. The workload allocation between edge–cloud servers is challenging, especially in a highly dynamic system with multiple factors varying over time. In this paper, the workload allocation decisions among the edge servers and cloud are considered for autonomous vehicle systems. The autonomous vehicle system generates multiple tasks belonging to different AI applications running on the vehicles. The proposed method considers allocating the tasks to edge or cloud servers. The cloud servers can be reached through a cellular network or a wireless network. The proposed method is based on designing a neural network model and using a high number of features that contribute to the decision-making process. A huge dataset has also been generated for the implementation. The EdgeCloudSim is used as a simulator for implementation. The competitor's methods considered for the comparison are random, simple moving average (SMA) based, multi-armed bandit (MAB) theory-based, game theory-based, and machine learning-based workload allocation methods. The result shows an improvement in the average Quality of Experience (QoE), ranging from 8.33% to 28.57%, while the average failure rate achieved enhancement up to 50%.
KEYWORDS
REFERENCES
  • Ammar, S., & Dawood, A. (2024). AI workload allocation methods for edge-cloud computing: A review. Al-Iraqia Journal of Scientific Engineering Research, 2(4), 115-132. doi:10.58564/ijser.2.4.2023.125
  • Biswas, A., & Wang, H. C. (2023). Autonomous vehicles enabled by the integration of IoT, edge intelligence, 5G, and blockchain. Sensors, 23(4), 1963. doi:10.3390/s23041963
  • Chen, R., Fan, Y., Yuan, S., & Hao, Y. (2024). Vehicle collaborative partial offloading strategy in vehicular edge computing. Mathematics, 12(10), 1466. doi:10.3390/math12101466
  • Dai, F., Liu, G., Mo, Q., Xu, W. H., & Huang, B. (2022). Task offloading for vehicular edge computing with edge-cloud cooperation. World Wide Web, 25(5), 1999-2017. doi:10.1007/s11280-022-01011-8
  • Dos Anjos, J. C. S., Gross, J. L. G., Matteussi, K. J., González, G. V., Leithardt, V. R. Q., & Geyer, C. F. R. (2021). An algorithm to minimize energy consumption and elapsed time for IoT workloads in a hybrid architecture. Sensors, 21(9), 2914. doi:10.3390/s21092914
  • Hao, T., Zhan, J., Hwang, K., Gao, W., & Wen, X. (2021). AI-oriented workload allocation for cloud-edge computing. 2021 IEEE/ACM 21st International Symposium on Cluster, Cloud and Internet Computing (CCGrid), 555-564. doi:10.1109/CCGrid51090.2021.00065
  • Koulamas, C., & Lazarescu, M. T. (2018). Real-time embedded systems: Present and future. Electronics (Switzerland), 7(9), 205. doi:10.3390/electronics7090205
  • Liu, L., Chen, C., Pei, Q., Maharjan, S., & Zhang, Y. (2021). Vehicular edge computing and networking: A survey. Mobile Networks and Applications, 26(3), 1145-1168. doi:10.1007/s11036-020-01624-1
  • Liu, Z., Jia, Z., & Pang, X. (2023). DRL-based hybrid task offloading and resource allocation in vehicular networks. Electronics, 12(21), 4392. doi:10.3390/electronics12214392
  • Long, J., Luo, Y., Zhu, X., Luo, E., & Huang, M. (2020). Computation offloading through mobile vehicles in IoT-edge-cloud network. Eurasip Journal on Wireless Communications and Networking, 2020. doi:10.1186/s13638-020-01848-5
  • Naha, R. K., Garg, S., Georgakopoulos, D., Jayaraman, P. P., Gao, L., Xiang, Y., & Ranjan, R. (2018). Fog computing: Survey of trends, architectures, requirements, and research directions. IEEE Access, 6, 47980-48009.
  • Nguyen, V., Khanh, T. T., Oo, T. Z., Tran, N. H., Huh, E. N., & Hong, C. S. (2021). Latency minimization in a fuzzy-based mobile edge orchestrator for IoT applications. IEEE Communications Letters, 25(1), 84-88.
  • Peixoto, M. J. P., & Azim, A. (2023). Design and development of a machine learning-based task orchestrator for intelligent systems on edge networks. IEEE Access, 11, 33049-33060. doi:10.1109/ACCESS.2023.3263483
  • Sonmez, C., Ozgovde, A., & Ersoy, C. (2018). EdgeCloudSim: An environment for performance evaluation of edge computing systems. Transactions on Emerging Telecommunications Technologies, 29(11), e3493. doi:10.1002/ett.3493
  • Sonmez, C., Tunca, C., Ozgovde, A., & Ersoy, C. (2021). Machine learning-based workload orchestrator for vehicular edge computing. IEEE Transactions on Intelligent Transportation Systems, 22(4), 2239-2251. doi:10.1109/TITS.2020.3024233
  • Sun, D., Chen, Y., & Li, H. (2024). Intelligent vehicle computation offloading in vehicular Ad Hoc networks: A multi-agent LSTM approach with deep reinforcement learning. Mathematics, 12(3), 424. doi:10.3390/math12030424
  • Ullah, I., Lim, H. K., Seok, Y. J., & Han, Y. H. (2023). Optimizing task offloading and resource allocation in edge-cloud networks: A DRL approach. Journal of Cloud Computing, 12(1), 1-28. doi:10.21203/rs.3.rs-2522525/v1
  • Wang, H., Peng, Z., & Pei, Y. (2020). Offloading schemes in mobile edge computing with an assisted mechanism. IEEE Access, 8, 50721-50732. doi:10.1109/ACCESS.2020.2979770
  • Wang, X., Han, Y., Wang, C., Zhao, Q., Chen, X., & Chen, M. (2018). In-edge AI: Intelligentizing mobile edge computing, caching and communication by federated learning. IEEE Network, 335, 156-165. doi:10.1109/MNET.2019.1800286
  • Wu, Z., Jia, Z., Pang, X., & Zhao, S. (2024). Deep reinforcement learning-based task offloading and load balancing for vehicular edge computing. Electronics, 13(8), 1511. doi:10.3390/electronics13081511
  • Yang, S., Lee, G., & Huang, L. (2022). Deep learning-based dynamic computation task offloading for mobile edge computing networks. Sensors, 22(11). doi:10.3390/s22114088
  • Zhang, X., Cao, Z., & Dong, W. (2020). Overview of edge computing in the agricultural Internet of Things: Key technologies, applications, challenges. IEEE Access, 8, 141748-141761. doi:10.1109/ACCESS.2020.3013005
LICENSE
This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.